
Open Ended Systems, Dynamic Bisimulation
and Tile Logic

Roberto Bruni1, Ugo Montanari1, and Vladimiro Sassone2

1 Dipartimento di Informatica, Università di Pisa, Italia.
2 Dipartimento di Matematica e Informatica, Università di Catania, Italia.

{bruni,ugo}@di.unipi.it, vs@dmi.unict.it

Abstract The sos formats ensuring that bisimilarity is a congruence of-
ten fail in the presence of structural axioms on the algebra of states. Dy-
namic bisimulation, introduced to characterize the coarsest congruence
for ccs which is also a (weak) bisimulation, reconciles the bisimilarity
as congruence property with such axioms and with the specification of
open ended systems, where states can be reconfigured at run-time, at
the cost of an infinitary operation at the meta-level. We show that the
compositional framework offered by tile logic is suitable to deal with
structural axioms and open ended systems specifications, allowing for a
finitary presentation of context closure.

Keywords: Bisimulation, sos formats, dynamic bisimulation, tile logic.

Introduction

The semantics of dynamic systems can be conveniently expressed via labelled
transition systems (lts) whose states are terms over a certain algebra and whose
labels describe some abstract behavioral information. Provided such informa-
tion models the possible interactions between various components, the frame-
work yields a compositional semantics. Plotkin’s structured operational semantics
(sos) [23] is one of the most successful such frameworks, where the transitions
a system can perform are defined by recursion on the structure of its states.

Several notions of equivalence on the state space of ltss have been consid-
ered in the literature that take into account particular aspects. For example, if
one is interested only in the action sequences performed by the system, then one
should observe traces, whereas in a truly concurrent approach one would rather
observe partial orderings of actions. State equivalences can then be defined on
the basis of the chosen observables. In this paper we consider bisimulation equiv-
alences [18,22] (with bisimilarity meaning the maximal bisimulation), where the
entire branching structure of the transition system is accounted for: two states
are equivalent if whatever transition one can perform, the other can simulate it
via a transition with the same observation, still ending in equivalent states.

Research supported by CNR Integrated Project Progettazione e Verifica di Sistemi
Eterogenei Connessi mediante Reti ; by Esprit Working Groups CONFER2 and CO-
ORDINA; by TMR Network GETGRATS ; and by MURST project TOSCA.

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 440–456, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Open Ended Systems, Dynamic Bisimulation and Tile Logic 441

One of the main advantages of a compositional semantics is that each sub-
component of a state can be safely replaced by any equivalent subcomponent
without affecting the overall behavior. This triggered many efforts devoted to
the study of sos formats whose syntactic constraints guarantee that bisimilarity
is a congruence. Among the most popular such formats, we mention the sim-
ple De Simone format [10], the more general positive gsos format [3], and the
‘liberal’ family of tyft formats [13,1] (tyxt, zyft, promoted tyft,...). Yet, in
many interesting cases the use of these formats is not straightforward. For in-
stance, although it is often convenient to have some structural axioms on states,
these cannot be handled by ordinary formats. Fall in this case several semantic
descriptions based on the chemical abstract machine [2], where operators are
often assumed to be associative, commutative and with unit, as e.g., the parallel
composition of ccs. Further examples are given by systems modeled using UML
graphs, that must be taken up to suitable isomorphisms and therefore require
the lts to be defined on suitable structural equivalence classes. Also the (finite)
π-calculus [19] is defined by rules in good format when substitution is explicit,
but agents are subject to substitution axioms.

It is therefore often necessary to resort to the largest congruence included
in the bisimilarity by an operation of closure ‘for all contexts’, which results in
a congruence which is no longer a bisimulation. Dynamic bisimulation [20], in-
stead, performs such a context closure during the bisimulation ‘game’. Dynamic
bisimilarity was shown to capture the coarsest equivalence for ccs agents among
weak bisimulations that are also congruences, being completely axiomatized by
the axioms of strong observational equivalence plus two of the three Milner’s
τ -laws. The basic idea is to allow at every step of bisimulation not only the exe-
cution of an action, but also the embedding of the two states under comparison
within the same, but otherwise arbitrary, context. It is worth remarking that
such dynamical contextual embedding has a natural interpretation in terms of
dynamic reconfiguration of the system, and hence can find many application in
practice for modeling open ended systems. Its main drawback is the lack of a
convenient representation at the level of the sos rules; it rather has the spirit of
a ‘meta’ construction, involving a universal quantification on contexts. An in-
teresting approach – in the style of Sewell’s work on defining lts from reduction
systems [24] – would be to enrich the transition system with all (unary) contexts

as labels, and all transitions p
C[]−→ C[p] for any state p and context C[]. This

solution, however, would still be at the meta-level and infinitary in principle.

In this paper we propose to recast dynamic bisimulation inside the tile model,
where it can be finitely modeled. The tile model [12] is a formalism for modular
descriptions of the dynamic evolution of concurrent systems. It relies on a form
of rewrite rules with side effects, called basic tiles, which are reminiscent of both
sos rules and context systems [14], collecting intuitions coming from structured
transition systems [9] and rewriting logic [16]. In particular, by analogy with
rewriting logic, the tile model can be defined employing a logical presentation,
called tile logic, where tiles are (decorated) sequents subject to inference rules.

442 R. Bruni, U. Montanari, and V. Sassone

◦ //

��
α

◦ //

��
β

◦
��◦ // ◦ // ◦

◦ //

��

◦
��◦ //

��

◦
��

β

◦ // ◦
◦ //

α ◦

◦ //

��
α

◦
��◦ //

��
β

◦
��◦ // ◦

Figure 1. Horizontal, parallel and vertical tile compositions.

Tile logic. Tile logic extends rewriting logic (in the unconditional case) by tak-
ing into account state changes with side effects and rewriting synchronization.
Basically, a set of rules describes the behaviour of certain (partially specified, in
the sense that can contain variables) configurations, which may interact through
their interfaces. Then, the behaviour of a system as a whole consists of a co-
ordinated evolution of its sub-systems. The name ‘tile’ is due to the graphical
representation of such rules, which have the form

◦ s //

a
��

α

initial input interface ◦
b

��

initial output interface

◦
s′

//final input interface ◦ final output interface

also written α : s
a−→
b

s′, stating that the initial configuration s of the system
evolves to the final configuration s′ via the tile α, producing the effect b, which
can be observed by the rest of the system. However, such a step is allowed
only if the subcomponents of s (i.e., the arguments of the context s) evolve to
the subcomponents of s′, producing the effect a, which acts as the trigger of α.
Triggers and effects are called observations and tile vertices are called interfaces.
The arrows s, a, b and s′ give the border of α.

Tiles are a natural model for reactive systems that are compositional in space
– the behaviour of structured states can be defined as a coordination of the
activities of the subcomponents – and compositional in time, as they offer a
powerful framework for modelling the composition of computations. Indeed, tiles
can be composed horizontally, vertically, and in parallel to generate larger steps.
The operation of parallel composition corresponds to building concurrent steps,
where two (or more) disjoint configurations can concurrently evolve. Of course,
the border of a concurrent step is the parallel composition of the borders of each
component of the step. Horizontal composition yields rewriting synchronization:
the effect of the first tile provides the trigger for the second tile, and the resulting
tile expresses the synchronized behaviour of both. Vertical composition models
the execution of a sequence of steps starting from an initial configuration. It
corresponds to sequential composition of computations. The three compositions
are illustrated in Figure 1.

Given a set of basic tiles, the associated tile logic is obtained by adding some
canonical ‘auxiliary’ tiles and then closing by composition – horizontally, verti-
cally, and in parallel – both auxiliary and basic tiles. As an example, auxiliary
tiles may be introduced that accommodate isomorphic transformations of inter-
faces, yielding consistent rearrangements of configurations and observations.

Open Ended Systems, Dynamic Bisimulation and Tile Logic 443

Tile logic deals with algebraic structures on configurations that can be dif-
ferent from the ordinary, tree-like presentation of terms, as e.g., term graphs,
partitions, preorders, relations, net processes. In fact, all these structures give rise
to monoidal categories and, therefore, possess the two basic operations needed
by tile configurations – the monoidal tensor product gives the parallel composi-
tion and the sequential composition of the category represents the application of
a context to its arguments. In this paper we shall use (monoidal) categories in a
very elementary way, i.e., just for representing terms and substitution diagram-
matically as abstract arrows (from the arguments to the result). In particular we
shall consider neither the categorical models of tile logic (expressed by suitable
monoidal double categories [12,6]), nor the axiomatized proof terms decorating
tile sequents. Varying the algebraic structure of configurations and observations
tiles can model many different aspects of dynamic systems, ranging from syn-
chronization of net transitions [7], to causal dependencies for located calculi and
finitely branching approaches for name-passing calculi [11], to actor systems [21].
In addition, tile logic allows one to reason about terms with variables as Larsen
and Xinxin’s context systems [14], while sos formats work for ground terms only.

Several formats for tiles have been defined where the structure of configura-
tions is given by the term algebra over a signature. Namely, (1) the monoidal
tile format [17], which has monoidal structures of both configurations and ob-
servations; (2) the algebraic tile format [12], which has a cartesian structure of
configurations but only a monoidal structure of observations; and (3) the term
tile format [6,4], which has cartesian structures of both configurations and ob-
servations. Although none of them ensures that tile bisimilarity is a congruence,
by restricting these formats one can easily recover either the De Simone, or the
positive gsos, or the zyft format. Here, we shall focus only on the monoidal
and term tile formats, showing that it is always possible to manage dynamic
bisimulation via ordinary tile bisimulation by extending the vertical signature
with a finite number of operators determined from the signature of configura-
tions. In particular, for each operator f of the horizontal signature we shall add
the observation f̃ and the tile

· id //

id
��

·
f̃

��·
f

// ·

where id denotes identity in the appropriate category. Such a tile can then be
applied to any configuration, embedding it in context f and producing effect
f̃ , which can now be observed in the ordinary bisimulation game. As we shall
see, the congruence proof for bisimilarity in the enriched systems can be carried
out as an abstract tile pasting. Moreover, such bisimilarity coincides with the
dynamic bisimilarity on the original system.

The idea of allowing contexts as observations has been at the basis of the pro-
moted tyft/tyxt format [1], designed for dealing with higher order languages.
We think that such an extension can be carried out in a natural way in the
abstract framework provided by tile logic.

444 R. Bruni, U. Montanari, and V. Sassone

Structure of the paper. In Section 1 we fix the notation, recall the most
diffused rule formats for transition system specifications, and motivate dynamic
bisimulation. In Section 2 we summarize the tile formats which we focus on.
Section 3 introduces syntactical constraints on basic tiles that guarantee the
‘bisimilarity as a congruence’ property. Section 4 presents our main results: a
finitary presentation of dynamic bisimulation via monoidal and term tile systems.

1 Bisimulation and SOS Formats

The notion of bisimulation dates back to the pioneering work of David Park and
Robin Milner [18,22] on process algebras and provides the standard framework
to express behavioural equivalences of complex dynamical systems.

Definition 1. A labeled transition system (lts) is a triple L = (S, Λ, →), where
S is a set of states, Λ is a set of labels, and → is a ternary relation

→ ⊆ S × Λ × S

We let s, t, s′, t′... range over S and a, b, c, ... range over Λ. For 〈s, a, s′〉 ∈ →
we use the notation s

a−→ s′.

Definition 2. For L = (S, Λ, →) a lts, a bisimulation on L is a symmetric,
reflexive relation ∼ ⊆ S × S such that if s ∼ t, then for any transition s

a−→ s′

there exists a transition t
a−→ t′ with s′ ∼ t′.

We denote by ' the largest bisimulation and call it bisimilarity, and we say
that two states s and t are bisimilar whenever s ' t or, equivalently, whenever
there exists a bisimulation ∼ such that s ∼ t.

In this paper we shall consider lts whose states are terms over a given
signature Σ. Although our results are easily extended to many-sorted signatures,
for simplicity we focus on the one-sorted case. A one-sorted signature is a set
Σ of operators together with an arity function arΣ :Σ → N assigning to each
operator the number of arguments it takes. The subset of Σ consisting of the
operators of arity n is denoted by Σn. Operators in Σ0 are called constants. We
denote by TΣ(X) the term algebra over Σ and variables in X (with X and Σ
disjoint). We use TΣ for TΣ(∅), the term algebra over Σ. For t ∈ TΣ(X), we
write var(t) for the set of variables that appear in t. Term t is said closed or also
ground if var(t) = ∅. We use a for a constant a() ∈ TΣ(X).

A substitution is a mapping σ:X → TΣ(X). It is closed if each variable is
mapped into a closed term. Substitutions extend to mappings from terms to
terms as usual: σ(t) is the term obtained by concurrently replacing all occur-
rences of variables x in t by σ(x). The substitution mapping xi to ti for i ∈ [1, n]
is denoted by [t1/x1, ..., tn/xn]. Substitution σ′ can be applied elementwise to
substitution σ = [t1/x1, ..., tn/xn] yielding the composed substitution

σ;σ′ = σ′([t1/x1, ..., tn/xn]) = [σ′(t1)/x1, ..., σ
′(tn)/xn].

Open Ended Systems, Dynamic Bisimulation and Tile Logic 445

A context t = C[x1, ., xn] denotes a term in which at most the distinct vari-
ables x1, ..., xn appear. The term C[t1, ..., tn] is then obtained by applying the
substitution [t1/x1, ..., tn/xn] to C[x1, ., xn]. A context can therefore be regarded
as a function from n terms to 1. Notice that the xi may as well not appear in
C[x1, ..., xn]. For example, the context x2[x1, x2, x3] is a substitution from three
arguments to one, which is the projection on the second argument.

A term is linear if each variable occurs at most once in it. Similarly, σ =
[t1/x1, ..., tn/xn] is linear if each ti is linear and var(ti) ∩ var(tj) = ∅ for i 6= j.

Substitutions and their composition ; form a (cartesian) category SubsΣ ,
with linear substitutions forming a monoidal subcategory. An alternative pre-
sentation of SubsΣ can be obtained resorting to algebraic theories. An algebraic
theory [15] is a cartesian category having ‘underlined’ natural numbers as ob-
jects. The free algebraic theory associated to a signature Σ is denoted by Th[Σ]:
the arrows from m to n are in a one-to-one correspondence with n-tuples of terms
of the free Σ-algebra with (at most) m variables, and composition of arrows is
term substitution. In particular, Th[Σ] is isomorphic to SubsΣ , and the arrows
from 0 to 1 are in bijective correspondence with the closed terms over Σ. As
a matter of notation, we assume a standard naming of the m input variables,
namely x1, ..., xm. When composing two arrows ~s:m → k and ~t: k → n, the
resulting term ~s;~t is obtained by replacing each occurrence of xi in ~t by the
i-th term of the tuple ~s, for i ∈ [1, k]. For example, constants a, b in Σ are
arrows from 0 to 1, a binary operator f(x1, x2) defines an arrow from 2 to 1, and
the composition 〈a, b〉; 〈f(x1, x2), x1〉; f(x2, x1), where the angle brackets denote
term tupling, yields the term f(a, f(a, b)), which is an arrow from 0 to 1. In fact,

〈a, b〉; 〈f(x1, x2), x1〉; f(x2, x1) = 〈f(a, b), a〉; f(x2, x1) = f(a, f(a, b))

Monoidal theories stay to algebraic theories as linear substitutions stay to
generic substitutions. More precisely, in monoidal theories variables can be nei-
ther duplicated (as e.g. in f(x1, x1)) nor projected. Even though terms are for-
mally annotated with the variables on which they are built, when no confusion
can arise, we avoid such annotations, and also the use of angle brackets.

lts defined over closed terms of a given signature Σ and label alphabet Λ can
be conveniently specified as collections of inductive proof rules, called transition
system specifications. A transition rule α has the form

α :
s1

a1−→ t1 ... sn
an−→ tn

s
a−→ t

where the si, ti, s and t range over TΣ(X) and the ai, a range over Λ. Transitions
in the upper part of the rule are called premises, the one in the lower part
conclusion. The rule α is closed if it does not contain variables. A transition
system specification (tss) is a set of transition rules.

A proof of a closed transition rule H/s
a−→ t with H a set of (closed) premises,

is a well-founded, upwardly branching tree whose nodes are labeled by closed
transitions, the root is labeled by s

a−→ t and if Hr is the set of labels for the

446 R. Bruni, U. Montanari, and V. Sassone

nodes above a node r with label sr
ar−→ tr then either Hr/sr

ar−→ tr is a closed
rule that can be obtained as an instance of a rule in the tss, or sr

ar−→ tr ∈ H
and Hr = ∅. A proof of a closed transition s

a−→ t is a proof of ∅/s
a−→ t. The

lts associated to a tss consists of the set of provable closed transitions.
Among the formats that guarantee the fundamental property of ‘bisimilarity

as congruence’ on the associated lts we shall in the following recall the De
Simone, the gsos and the tyft formats. We remind that an equivalence relation
R over TΣ is a congruence if it respects the algebraic structure of states given
by Σ, i.e. if for all f ∈ Σ

si R ti, for i ∈ [1, ar(f)], implies f(s1, ..., sar(f)) R f(t1, ..., tar(f)).

Definition 3. Let Σ be a signature and Λ an alphabet of observations. A tran-
sition rule is in De Simone format if it has the form

{xi
ai−→ yi | i ∈ I}

f(x1, ..., xn) a−→ t

where the ai and a are labels in Λ, f is a n-ary operator, I ⊆ {1, ..n} and the
variables xi and yi are all distinct and form the set V . Moreover, the target
t ∈ TΣ(V) does not contain xi for i ∈ I and is linear. A tss is in De Simone
format if all its rule are in such form.

Observe that the source of the conclusion of a rule in De Simone format con-
sists of a single function symbol. This fact is crucial in the proof that bisimilarity
is a congruence for tss specified in De Simone format.

The positive gsos format [3] extends De Simone rules in several ways: (1)
multiple testings of the same argument (the xi) are allowed in the premises; (2)
tested arguments can appear in the target t of the conclusion; (3) the target t
of the conclusion can be a non-linear context (variables can be used more than
once). The tyft format [13] further generalizes the gsos, by allowing generic
terms ti as sources of the transitions in the premises. Notice however that the
main restriction about the source of the conclusion still persists: allowing con-
clusions of the form C[x1, ..., xn] a−→ t could compromise the ‘bisimilarity as
congruence’ property as the following example illustrates.

Example 1. Consider a process algebra over the signature Σ = {nil, α. , ᾱ. , | }
with α ranging over a suitable set of channels A, where nil is the empty agent, α.
and ᾱ. are two complementary unary operator for action prefix (on the channel
α) and | is a binary parallel composition operator. If we consider the tts
consisting of the axiom λ.x1 | λ̄.x2

τ−→ x1 | x2 plus the usual rules that propagate
the τ through the | operator (asynchronously), then it is obvious that α.nil '
ᾱ.nil. However, if put in the context x1 | ᾱ.nil, then α.nil | ᾱ.nil

τ−→ nil | nil,
while ᾱ.nil | ᾱ.nil cannot move. Hence α.nil | ᾱ.nil 6' ᾱ.nil | ᾱ.nil.

Dynamic bisimulation has been defined to reproduce the effect of run-time re-
configuration in open ended systems. It extends the ordinary bisimulation-game
by allowing moves that put the states under comparison in the same context.

Open Ended Systems, Dynamic Bisimulation and Tile Logic 447

Definition 4. Given a lts L = (TΣ , Λ,→), a dynamic bisimulation on L is a
symmetric, reflexive relation ∼d ⊆ TΣ × TΣ such that if s ∼d t then for any
unary context C[] (including the identity) and transition C[s] a−→ s′ there exists
a transition C[t] a−→ t′ with s′ ∼d t′.

Two states s and t are dynamic bisimilar, written s 'd t, if there exists a
dynamic bisimulation ∼d such that s ∼d t. Thus, w.r.t. Example 1, we have, e.g.,
α.nil 6'd ᾱ.nil. Dynamic bisimilarity is the coarsest congruence which is also a
bisimulation. Note that context moves cannot be ‘observed’: they are part of the
game but not of the lts. Even if not remarked in [20], dynamic bisimulation can
however be recasted in ordinary bisimulation over an extended system. Observe
that the dynamic extension is an infinitary construction on the lts and is not
expressed at the level of the tss, i.e., it remains at the ‘meta-level ’.

Definition 5. Given a lts L = (TΣ , Λ,→), its dynamic extension L̂ is the lts

(TΣ , Λ,→ ∪ ⇒), where s
C[]

//
// C[s] for all s ∈ TΣ and unary contexts C[].

Proposition 1. s 'd t in L iff s ' t in L̂.

The proof of Proposition 1 relies on the fact that if s makes a move C[],
then t can always simulate such move in a unique way.

2 Tile Formats

A tiles system is a tuple R = (H,V, N, R) where H and V are monoidal categories
with the same set of objects OH = OV , N is the set of rule names and R:N →
H × V × V × H is a function such that for all α ∈ N , if R(α) = 〈s, a, b, t〉, then
we have s:x → y, a:x → z, b: y → w, and t: z → w for suitable objects x, y, z
and w. We shall write such rule either as the sequent α: s a−→

b
t, or as the tile

x
s //

a
��

α

y

b
��

z
t

// w

thus making explicit the source and target of each arrow. The category H is
called horizontal and its arrows configurations. The category V is called vertical
and its arrows observations. The objects of H and V are called interfaces.

Starting from the basic tiles R(α) of the system, more complex tiles can
be constructed via horizontal, vertical and parallel composition. Moreover, the
horizontal and vertical identities are always added to the system and composed
with the basic tiles. All this is illustrated in Figure 2. Depending on the chosen
tile format, H and V must satisfy certain constraints and suitable auxiliary tiles
are added and composed with basic tiles and identities in all the possible ways.
The set of resulting tiles (called flat sequents) define the flat tile logic associated
to R. We say that s

a−→
b

t is entailed by the logic, written R ` s
a−→
b

t, if the

sequent s
a−→
b

t can be expressed as the composition of basic and auxiliary tiles.

448 R. Bruni, U. Montanari, and V. Sassone

s
a−→
b

t h
b−→
c

f

s; h a−→
c

t; f

s
a−→
b

t t
c−→
d

h

s
a;c−→
b;d

h

s
a−→
b

t h
c−→
d

f

s ⊗ h
a⊗c−→
b⊗d

t ⊗ f

t: x → y ∈ H
t

x−→
y

t

a: x → z ∈ V
x

a−→
a

z

Figure 2.

Definition 6. Let R = (H,V, N, R) be a tile system. A symmetric relation ∼t

on configurations is called tile bisimulation if whenever s ∼t t and R ` s
a−→
b

s′,

then there exists t′ such that R ` t
a−→
b

t′ and s′ ∼t t′.

The maximal tile bisimulation is denoted by 't, and two configurations s
and t are said to be tile bisimilar if s 't t.

We are particularly interested in considering tiles systems where the monoidal
categories of configurations and observations are freely generated from suitable
horizontal and vertical signatures, respectively, i.e., they are categories of sub-
stitutions, as discussed in the previous section.

The tile format proposed in the original presentation of tiles [12] is the so-
called algebraic tile format that recollected the perspective of ordinary tss: con-
figurations are terms over a certain signature, and observations are the arrows
of the monoidal category freely generated by certain labels (regarded as unary
operators). Auxiliary tiles lift the horizontal cartesian structure to the horizontal
composition of tiles. In the algebraic tile format basic tiles have the form:

n s //

a1⊗···⊗an
��

1
a

��
n

t
// 1

where the ai and a can be either labels (viewed as arrows from 1 to 1) or
identities and s, t ∈ TΣ({x1, ..., xn}). The idea is that each interface represents
an ordered sequence of variables; therefore each variable is completely identified
by its position in the tuple, and a standard naming x1, ..., xn of the variables can
be assumed for all interfaces. A typical auxiliary tile for the algebraic format is

1
〈x1,x1〉

//

a
��

2
a⊗a

��

1 〈x1,x1〉
// 2

that duplicates the observation a (trigger of the tile) propagating it to two
instances of the unique variable in the initial interface. We refer to [12] for more
details. The algebraic tile format corresponds to sos rules of the form

{xi
ai−→ yi | i ∈ I}

C[x1, ..., xn] a−→ D[y1, ..., yn]

Open Ended Systems, Dynamic Bisimulation and Tile Logic 449

where I ⊆ {1, ..., n}, C[x1, ..., xn] and D[y1, ..., yn] are contexts (corresponding
to s and t in the tile), and all the yi and xi are different if i ∈ I, but yi = xi

otherwise. The correspondence follows since for all closed terms s and t and for

any label a, R ` s
id0−→
a

t if and only if the lts associated to the sos specification

includes the transition t
a−→ s.

The algebraic tile format is not uniform in the two dimensions, since H is
cartesian, whereas V is only monoidal (non symmetric). Since our idea is to ob-
serve contexts by replicating (part of) the horizontal structure in the vertical
dimension, we prefer (1) to renounce to the cartesian structure altogether, re-
sorting to the simpler monoidal tile format [17] where only linear contexts are
allowed, or (2) consider the more general term tile format [4], where also V is
cartesian. Notice that monoidal theories suffice for expressing all closed terms,
even though, as explained in [5], the term tile format is more expressive.

Since in all tile formats the categories of configurations and observations are
freely generated by the horizontal signature Σ and by (the signature associated
to) the set of labels Λ, monoidal/algebraic/term tile systems are usually repre-
sented as tuples of the form R = (Σ, Λ, N, R).

According to the term tile format each basic tile has the form:

n
~h //

~v ��

m

u
��

k
g

// 1

with ~h ∈ TΣH(Xn)m, g ∈ TΣH(Xk), ~v ∈ TΣV(Xn)k, and u ∈ TΣV(Xm), where
Xi = {x1, ..., xi} is a chosen set of variables, ΣH is the horizontal signature of
configurations and ΣV is the vertical signature of observations. Of course, if Λ
contains only elementary actions, regarded as unary operators, then m = 1. We

present tiles more concisely as logic sequents n / ~h
~v //
u

g , where the number of
variables in the ‘upper-left’ corner of the tile is made explicit (the values m and k

can be recovered from the lengths of ~h and ~v). Again, a standard naming for the
variables in the interfaces is assumed. For example, if the variable xi appears in
the effect u of the above rule, then the effect u depends on the ith component hi of
the initial configuration. Analogously for the remaining connections. As already
remarked, the same variable xi denotes the ith element of different interfaces
when used in each of the four border-arrows of the tile (as a matter of fact, only
the occurrences of xi in ~h and in ~v denote the same element of the initial input
interface n).

Auxiliary tiles for term tile systems consist of all term tiles n / h
v //
u

g

such that h, g, u and v are terms over the empty signature – and therefore also
terms of TΣV(X) and TΣH(X) – such that h;u = v; g, i.e., all tiles that perform
consistent rearrangements of a generic interface in the two dimensions. A typical

auxiliary term tile is 1 / x1
x1 //

x1,x1
x1, x1 that consistently duplicates the unary

interface. Observe that term tile format extends the positive gsos format.

450 R. Bruni, U. Montanari, and V. Sassone

An interesting question concerns suitable restrictions of the monoidal and
term tile formats such that tile bisimilarity yields a congruence. Two main prop-
erties have been investigated in the literature for obtaining tile bisimilarity con-
gruences: the basic source and the tile decomposition. Tile decomposition has a
completely abstract formulation that applies to all tile systems.

Definition 7. A tile system R = (H,V, N, R) enjoys the decomposition prop-
erty if for all arrows s:x → y ∈ H and for all sequents s

a−→
b

t entailed by R

– if s = s1; s2 then there exists c ∈ V and t1, t2 ∈ H such that R ` s1
a−→
c

t1,

R ` s2
c−→
b

t2 and t = t1; t2;

– if s = s1 ⊗ s2 then there exists a1, a2, b1, b2 ∈ V and t1, t2 ∈ H such that
R ` s1

a1−→
b1

t1, R ` s2
a2−→
b2

t2, a = a1 ⊗ a2, b = b1 ⊗ b2 and t = t1 ⊗ t2;

Proposition 2. If R enjoys the decomposition property, then tile bisimilarity
is a congruence (w.r.t. the operations of the horizontal category, i.e., sequential
and parallel composition).

Even though we did not address it explicitly, all the definitions we have
given for tiles apply also to the case of term algebras modulo structural axioms
(e.g., associativity and commutativity of parallel composition in ccs) and all
our results can be immediately extended.

3 Basic Source

The results in this section mildly extend those of [12]. Since in this paper we
consider equivalences on closed terms, we refine the notion of tile bisimulation
to ground tile bisimulation.

Definition 8. Let R = (ΣH, ΣV, N, R) be a monoidal (resp. term) tile system.
A symmetric relation ∼g on closed configurations (i.e., elements of TΣH) is

called ground tile bisimulation if whenever s ∼g t and R ` s
id0−→
a

s′, then there

exists t′ such that R ` t
id0−→
a

t′ and s′ ∼g t′.

Ground tile bisimulation is the exact counterpart of ordinary bisimulation
for lts. It differs from tile bisimulation in that is not defined on contexts. (Since
ground terms need no trigger, ground bisimulation tests only the effects they
can produce.) The maximal ground tile bisimulation is denoted by 'g, and two
closed configurations s and t are said to be ground tile bisimilar if s 'g t. In
fact we are interested in the lts associated to tile systems.

Definition 9. For R = (ΣH, ΣV, N, R) a monoidal/term tile system, the lts

associated to R is LR = (TΣH , TΣV({x1}),→) where s
a−→ t iff R ` s

id0−→
a

t.

Open Ended Systems, Dynamic Bisimulation and Tile Logic 451

The decomposition property can be refined and related to the ‘tile bisimilarity
as congruence’ property.

Definition 10. A term (resp. monoidal) tile system R enjoys the ground de-

composition property if for any s ∈ TΣH and any sequent R ` C[s1]
id0−→
b

t with
C a unary (resp. linear unary) context and s1 a ground term such that s = C[s1],
then there exists an observation c, a ground term t1 and a (resp. linear) context

D such that R ` s1
id0−→
c

t1 and R ` C[x1]
c−→
b

D[x1], with t = D[t1].

Theorem 1. Let R = (ΣH, ΣV, N, R) be a term tile system. The ground de-
composition property implies that ground tile bisimilarity on R is a congruence.

Proof. Standard. Define the congruence '̂g as the minimal relation such that if
s 'g t and C[x1] is a unary context then C[s] '̂g C[t]. Obviously 'g⊆ '̂g. We
then show that '̂g is a ground tile bisimulation and, therefore, coincides with
ground tile bisimilarity. In fact, let C[s] 'g C[t] for s, t ∈ TΣH with s 'g t and

C[x1] a unary context. By ground decomposition we have that if R ` C[s]
id0−→
a

s′,
there exist s1 ∈ TΣH , an observation b and a unary context D[x1] such that R `
s

id0−→
b

s1, R ` C[x1]
b−→
a

D[x1] and s′ = D[s1]. Since s 'g t then R ` t
id0−→
b

t1
for some t1 ∈ TΣH with s1 'g t1. By horizontal composition of tiles we then

have R ` C[t]
id0−→
a

D[t1]. By definition of '̂g we have that D[s1] '̂g D[t1]. 2

Theorem 2. Given a monoidal tile system R = (Σ, Λ, N, R), the ground de-
composition property implies that ground tile bisimilarity is a congruence.

Proof. Similar to the proof of Theorem 1, but requires '̂g to be the minimal
relation such that if s 'g t and C[x1] is a linear (rather than generic) unary
context then C[s] '̂g C[t]. Observe that the congruence property then holds for
generic contexts. In fact, if D[] is not linear, let D′[x1, x2, ..., xn] be the linear
context obtained from D[] by replacing each occurrence of the hole ‘ ’ by a
different variable xi. Then given any two closed terms s and t we have

D[s] = D′[s, s, ..., s
︸ ︷︷ ︸

n

]'̂gD
′[t, s, ..., s

︸ ︷︷ ︸
n−1

]'̂gD
′[t, t, s, ..., s

︸ ︷︷ ︸
n−2

]'̂g · · · '̂gD
′[t, t, ..., t
︸ ︷︷ ︸

n

] = D[t]

since all contexts D′[, s, ..., s], D′[t, , s, ..., s], . . . , D′[t, ..., t,] are linear. 2

The ground decomposition property can be enforced by syntactical con-
straints on basic tiles. A tile system verifies the basic source property if the
initial configuration of each basic tile consists of a single operator, rather than a
generic context.

Proposition 3. If a monoidal (resp. term) tile system R enjoys the basic source
property, then the ground tile bisimilarity on R is a congruence.

452 R. Bruni, U. Montanari, and V. Sassone

The proof of Proposition 3 consists of two steps: we first prove that basic
source implies ground tile decomposition and then we conclude by exploiting
Theorems 1 and 2. Although Theorems 1 and 2 hold also when structural axioms
are imposed on configurations, this is not necessarily the case for Proposition 3,
as the first part of the argument above may fail. We remark that for the monoidal
tile format the proof coincides with that for the De Simone format, since the
two formats are essentially the same.

4 Dynamic Tile Bisimulation

When the basic source property is not satisfied we are likely to have bisimilari-
ties that are not congruences. This consideration applies to all the most diffused
formats, unless the specification contains enough rules to distinguish context
dependent redexes. For example, Corradini and Heckel in joint work with the
second author [8] suggested one may deal with this situation via a closure opera-
tion on the tss rules. And Sewell in [24] when passing from reduction systems to
transition systems performs such a closure by adding a transition labeled with
C for each state s and context C which s can react with in order to perform a
reduction. However, such closures are expressed at a meta-level, as they are not
handled by adding rules to the original specification. Therefore, from a differ-
ent perspective, dynamic bisimilarity is more satisfactory, since it allows for a
concise definition of the congruence one is looking for.

Tiles have the expressive power to reconcile finitary system specifications
and dynamic bisimulation within the same perspective, i.e., by adding suitable
auxiliary tiles. Moreover, the closure w.r.t. all contexts can be expressed simply
by adding just as many basic tiles as the operators in the signature. Hence, if
the signature is finite, so are the additional auxiliary tiles needed.

Definition 11. Given a term (resp. monoidal) tile system R = (ΣH, ΣV, N, R)
its dynamic extension R̂ is obtained by adding for all n and for any operator
f ∈ ΣH

n the auxiliary operator f̃ to ΣV
n and the following auxiliary tiles.

n
x1,.,xn //

x1,.,xn
��

n

f̃(x1,.,xn)��
n

f(x1,.,xn)
// 1

n
f(x1,.,xn)

//

f̃(x1,.,xn)
��

1
x1

��

1
x1

// 1

For t a generic horizontal context, we let t̃ denote the corresponding vertical
context on the extended signature, which is obtained by replacing each operator
f that appears in t by its vertical counterpart f̃ , leaving variables unchanged.
For the proof of the main theorem we need the following technical lemmas that
require some acquaintance with the term tile format. A corresponding lemma
can be proved for the monoidal tile format, by considering linear contexts only.

Lemma 1. Given a term tile system R = (ΣH, ΣV, N, R), for each context

t:n → 1 we have R̂ ` n / x1, ..., xn
x1,...,xn //

t̃
t .

Open Ended Systems, Dynamic Bisimulation and Tile Logic 453

Proof. The proof proceeds by induction on the (maximum) depth m of the
tree-like representation of t. The base case m = 0 is trivial. If m > 1 then
t = f(t1, ..., tk), where f is a k-ary operator of ΣH and t1, ..., tk are context
with (maximum) depth strictly less than m. Then we can apply the inductive

hypothesis to conclude that n / x1, ..., xn
x1,...,xn //

t̃i

ti for i ∈ [1, k]. Composing

in parallel such sequents we get k · n / x1, ..., xk·n
x1,...,xk·n //
s̃1,...,s̃k

s1, ..., sk, where

si = ti[xn·(i−1)+1/x1, . . . , xn·(i−1)+n/xn], i.e., the si are the ti with the variables
suitably renamed according to the initial input interface. Then we can horizon-
tally compose with the auxiliary tile of term tile systems that makes k copies of n

inputs n/ x1, ., xn, ..., x1, ., xn
x1,.,xn,...,x1,.,xn //

x1,...,xk·n
x1, ., xk·n, obtaining the sequent

α = n/ x1, ..., xn
x1,...,xn //

t̃1,...,t̃k

t1, ..., tk . Finally we can compose it with the auxiliary

sequent of the extended system β = k / x1, ..., xk
x1,...,xk //

f̃(x1,...,xk)
f(x1, ..., xk) as in

· //

��
α

· //

��
γ

·
��· //

��
δ

· //

��
β

·
��· // · // ·

where γ is the horizontal identity for the effect of α and δ is the vertical
identity for the final configuration of α. The composition yields the sequent

n / x1, ..., xn
x1,...,xn //

f̃(t̃1,...,t̃k)
f(t1, ..., tk) = n / x1, ..., xn

x1,...,xn //

t̃
t and concludes

the proof. 2

A similar argument shows the following lemma.

Lemma 2. Given a term tile system R = (ΣH, ΣV, N, R), for each context

t:n → 1 we have R̂ ` n / t
t̃ //

x1
x1 .

Theorem 3. Let R = (ΣH, ΣV, N, R) be a term tile system. The ground tile
bisimilarity defined on R̂ defines a congruence for R.

Proof. First notice that the auxiliary tiles do not influence the definition of
ground tile bisimilarity, which deals only with null triggers. Then, we prove
that R̂ enjoys the ground decomposition property from which we get the ex-
pected ‘bisimilarity as a congruence’ property. In fact, given a generic sequent

α:C[s]
id0−→
a

t entailed by R̂, we can always construct two tiles with source s and
C[x1] respectively that decompose α, as illustrated in Figure 3. 2

454 R. Bruni, U. Montanari, and V. Sassone

· s //

id
��

· id //

id
��

·
C̃��

C // ·
id

��· s //

id
��

α

· C // ·
a
��

id // ·
a

��·
t

// ·
id

// ·
Figure 3.

Theorem 4. Ground tile bisimilarity on R̂, denoted by 'ĝ, coincides with the
dynamic bisimilarity on LR.

Proof. We must show that LR̂ = L̂R. The inclusion LR̂ ⊇ L̂R follows directly
from the technical lemmas above, whilst the inclusion LR̂ ⊆ L̂R is more involved.
The key point is showing that if an auxiliary ‘context’ tile gives rise to a new
transitions, its label f̃ appears manifestly, i.e., the use of auxiliary tiles cannot
be ‘hidden’ inside the proof to originate unexpected reactions. To show this,

let R ` s
id0−→
a

t and suppose that the proof of s
id0−→
a

t contains the auxiliary

tile α = ~x
~x−→

f̃(~x)
f(~x), for some operator f . We proceed by induction on the

number k of such auxiliary tiles and then by case analysis. If k = 0 then s
a−→

t ∈ LR ⊆ L̂R. If k > 1 then we take one such auxiliary tile α in the proof
and examine the following three cases: (1) the effect of α is propagated to the
final effect a = A[f̃(~a)] and thus can be observed; (2) the tile α is horizontally

composed with β = f(~x)
f̃(~x)−→
x1

x1 and thus does not appear in a; (3) the effect f̃ is
vertically composed with other effects that override it. In case (1), α corresponds
to a context move in L̂R. In case (2), the composition of α with β yields the
vertical identity on f which is of course entailed in R. Finally, in case (3), the
effect f̃ can only be overridden because of structural axioms on observations,
and in particular those involving projections. But then it can be shown that
if projections are used that throw f̃ away, then also the result of applying the
context f in the intermediate state is thrown away in the proof. Therefore, we
can always reduce to a proof with k − 1 auxiliary tiles for adding contexts and
conclude the proof by inductive hypothesis. 2

For monoidal tile systems the proof simplifies considerably, since case (3)
cannot occur. We remark that if observations are subject to structural axioms
(e.g., b; a = a for all observations b), then such axioms must not be extended to
the f̃ , otherwise the case (3) of the proof could be compromised.

Example 2. Let us take again the process algebra of Example 1, with | asso-
ciative (but neither commutative nor with unit). Then α.nil | ᾱ.nil 'g β.nil |
β̄.nil 6'ĝ α.nil | ᾱ.nil. While, e.g., tα 'g tβ 'ĝ tα for tλ = nil | λ.nil | λ̄.nil | nil.

Open Ended Systems, Dynamic Bisimulation and Tile Logic 455

Concluding Remarks

We have proposed tile logic as a compositional framework suitable to deal with
open ended systems, dynamic bisimulation and structural axioms on states. Such
characteristics follows naturally from the abstract ‘geometrical’ concepts which
tile configurations and observations are based on. In particular, the winning fea-
ture, is the possibility of exploiting the analogy between horizontal and vertical
arrows, making observations out of contexts. Moreover, dynamic bisimulation is
handled via a finitary enrichment of the specification and the congruence proof
has a simple pictorial representation that exploits ground decomposition.

Following the lines suggested in this paper, one could limit run-time recon-
figuration either to a sub-class of contexts or to a sub-class of configurations.
Although we have not discussed the issue here, tile logic can deal with trace
semantics as well.

References

1. K. Bernstein. A congruence theorem for structured operational semantics of higher-
order languages. In Proc. 13th LICS, IEEE Press, 1998.

2. G. Berry and G. Boudol. The chemical abstract machine. Theoret. Comput. Sci.,
96(1):217–248, 1992.

3. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of the
ACM, 42(1):232–268, 1995.

4. R. Bruni, J. Meseguer, and U. Montanari. Process and term tile logic. Technical
Report SRI-CSL-98-06. SRI International, 1998.

5. R. Bruni, J. Meseguer, and U. Montanari. Executable tile specifications for process
calculi. In Proc. FASE’99, vol. 1577 of LNCS, pages 60–76, Springer, 1999.

6. R. Bruni, J. Meseguer, and U. Montanari. Symmetric monoidal and cartesian
double categories as a semantic framework for tile logic. Mathematical Structures
in Computer Science, 2000. To appear.

7. R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and individual
token approaches. Information and Computation, 156:46–89, 2000.

8. A. Corradini, R. Heckel, and U. Montanari. From SOS specifications to structured
coalgebras: how to make bisimulation a congruence. In Proc. CMCS’99, vol. 19 of
Elect. Notes in Th. Comput. Sci., Elsevier Science, 1999.

9. A. Corradini and U. Montanari. An algebraic semantics for structured transition
systems and its application to logic programs. Th. Comput. Sci., 103:51–106, 1992.

10. R. De Simone. Higher level synchronizing devices in MEIJE–SCCS. Theoret.
Comput. Sci., 37:245–267, 1985.

11. G.L. Ferrari and U. Montanari. Tile formats for located and mobile systems.
Information and Computation, 156:173–235, 2000.

12. F. Gadducci and U. Montanari. The tile model. In Proof, Language and Interaction:
Essays in Honour of Robin Milner, MIT Press, 2000. To appear.

13. J.F. Groote and F. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Information and Computation, 100:202–260, 1992.

14. K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of
contexts. In Proc. ICALP’90, vol. 443 of LNCS, pages 526–539, Springer, 1990.

456 R. Bruni, U. Montanari, and V. Sassone

15. F.W. Lawvere. Functorial semantics of algebraic theories. Proc. National Academy
of Science, 50:869–872, 1963.

16. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoret.
Comput. Sci., 96:73–155, 1992.

17. J. Meseguer and U. Montanari. Mapping tile logic into rewriting logic. In Proc.
WADT’97, vol. 1376 of Lect. Notes in Comput. Sci., pages 62–91, Springer, 1998.

18. R. Milner. A Calculus of Communicating Systems, vol. 92 of LNCS Springer, 1980.
19. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and

II). Information and Computation, 100:1–77, 1992.
20. U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation

for CCS. Fundamenta Informaticae, 16:171–196, 1992.
21. U. Montanari and C. Talcott. Can actors and π-agents live together? In Proc.

HOOTS’97, vol. 10 of Elect. Notes in Th. Comput. Sci., Elsevier Science, 1998.
22. D. Park. Concurrency and automata on infinite sequences. In Proc. 5th G-I

Conference, vol. 104 of Lect. Notes in Comput. Sci., pages 167–183, Springer, 1981.
23. G. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Aarhus University, Computer Science Department, 1981.
24. P. Sewell. From rewrite rules to bisimulation congruences. In Proc. CONCUR’98,

vol. 1466 of Lect. Notes in Comput. Sci., pages 269–284, Springer, 1998.

	Introduction
	Bisimulation and SOS Formats
	Tile Formats
	Basic Source
	Dynamic Tile Bisimulation
	Concluding Remarks
	References

