
Ambient Groups and Mobility Types

Luca Cardelli1, Giorgio Ghelli2, and Andrew D. Gordon1

1 Microsoft Research
2 Pisa University

Abstract. We add name groups and group creation to the typed am-
bient calculus. Group creation is surprisingly interesting: it has the effect
of statically preventing certain communications, and can thus block the
accidental or malicious escape of capabilities that is a major concern in
practical systems. Moreover, ambient groups allow us to refine our earlier
work on type systems for ambient mobility. We present type systems in
which groups identify the set of ambients that a process may cross or
open.

1 Introduction

The Ambient Calculus is a process calculus based on local communication and
on process mobility. The basic, untyped, calculus can be decorated with static
information to restrict either local communication, or mobility, or both.

Exchange control systems can be used to restrict communication. In [CG99]
we have investigated exchange types, which subsume standard type systems for
processes and functions, but do not impose restrictions on mobility.

Mobility control systems can be used to restrict mobility. In [CGG99] we in-
vestigate immobility and locking annotations, which are simple predicates about
mobility.

The goal of this paper is to refine our previous work on mobility control,
by including in the type of a process static descriptions of the set of ambients
it may cross, and the set of ambients it may open. To do so, we adopt a new
construction of independent interest. Among the types, we introduce collections
of names that we call groups; names belong to groups in the same sense that
values belong to types.

To understand how name groups arise, consider a typical static property we
may want to express in a type system for the ambient calculus, informally:

The ambient named n can enter the ambient named m.

This could be expressed as a typing n : CanEnter(m) stating that n is a mem-
ber of the collection CanEnter(m) of names that can enter m. However, this
would bring us straight into the domain of dependent types, since the type
CanEnter(m) depends on the name m. Instead, we introduce type-level groups
of names, G, H, and restate our property as:

The name n belongs to group G; the name m belongs to group H. Any
ambient of group G can enter any ambient of group H.

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 333–347, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

334 L. Cardelli, G. Ghelli, and A.D. Gordon

This idea leads to typing judgments of the form:

process P may cross ambients of group G
process P may open ambients of group G

The former reduces to immobility assertions when a process can cross no groups;
the latter reduces to locking assertions, when members of a group can be opened
by no process [CGG99].

Among the processes, we then introduce an operation, (νG)P , for creating
new groups. Within P we can introduce new names of group G. The binders
for new groups, (νG), extrude in much the same way as binders for new na-
mes, (νn:G). Because of extrusion, group binders do not impede the mobility
of ambients that are enclosed in the initial scope of fresh groups. However, sim-
ple scoping restrictions prevent names of a fresh group from ever being received
outside the initial scope of the group.

Therefore, we obtain a flexible way of protecting the propagation of names.
This is to be contrasted with the situation in the untyped π-calculus and ambient
calculus, where names can (intentionally, accidentally, or maliciously) be extru-
ded arbitrarily far, by the automatic and unrestricted application of extrusion
rules.

We organise the paper as follows. In the remainder of this opening section we
review the basic untyped ambient calculus. Section 2 describes the typed ambient
calculus with groups—obtained by enriching our exchange type system [CG99]
with groups. Section 3 enriches the system of Section 2 to control ambient ope-
ning. In Section 4, we define a system in which the type of a process records both
the groups it may open and the groups it may cross. Section 5 formalizes safety
properties guaranteed by typing. Section 6 concludes and discusses related work.

A technical report contains proofs omitted from this paper [CGG00].

1.1 The Untyped Ambient Calculus (Review)

An ambient is a named boundary whose interior contains a collection of run-
ning processes, possibly including nested subambients. We explain the untyped
ambient calculus elsewhere [CG98] in detail, but here we introduce its central
features via a standard example: a[p[out a.in b.〈c〉]] | b[open p.(x).x[]].

Intuitively, this example represents a packet named p being sent from a ma-
chine a to a machine b. The example consists of the parallel composition (indica-
ted by the | operator) of two ambients, named a and b. The brackets [. . .] repre-
sent ambients’ boundaries. The process p[out a.in b.〈c〉] represents the packet, a
subambient of ambient a. The name of the packet ambient is p, and its interior is
the process out a.in b.〈c〉. This process consists of three sequential actions: exer-
cise the capability out a, exercise the capability in b, and then output the name c.
The effect of the two capabilities on the enclosing ambient p is to move p out of
a and into b, to reach the state: a[] | b[p[〈c〉] | open p.(x).x[]]. The interior of a is
now empty. The interior of b consists of two running processes, the subambient
p[〈c〉] and the process open p.(x).x[]. The latter is attempting to exercise the
open p capability. Previously it was blocked. Now that the p ambient is present,

Ambient Groups and Mobility Types 335

the effect of open p is to dissolve the ambient’s boundary. Hence, the interior of
b becomes the process 〈c〉 | (x).x[]. This is a composition of an output 〈c〉 with
an input (x).x[]. The input consumes the output, leaving c[] as the interior of b.
Hence, the final state of the whole example is a[] | b[c[]].

The 0 process represents inactivity; the notation a[] for an empty ambient
named a, used above, is actually short for a[0]. There are also replication and
restriction constructs. A replication !P behaves the same as an unlimited number
of parallel copies of P . A restriction (νn)P creates a new name n with scope P .

2 The Typed Ambient Calculus with Groups

We start with the typed ambient calculus of [CG99] and we add a new process
construct, (νG)P , to create a new group G with scope P . Correspondingly we
add a new type construct, G[T], for the type of names of group G that name
ambients that contain T exchanges.

The construct G[T] is actually a refinement of the construct Amb[T] of [CG99],
where Amb can now be seen as the group of all names. It is conceivable to intro-
duce a subtype ordering on groups, with Amb as the maximal element. However,
subtyping may help capabilities escape, particularly in the presence of a maximal
element; we do not consider these extensions in this paper.

We can now write, for example, the following typed process:

(νCh)(νMsg)(νc:Ch[Msg [Shh]])(νm:Msg [Shh])c[〈m〉 | (x:Msg [Shh]).x[]]

This creates two groups Ch and Msg and two names c and m belonging
to those groups. The types ensure that only messages, that is, names of type
Msg [Shh], can be exchanged inside an ambient named c, as happens in the rest
of the process. (The type Shh prohibits exchanges; names of type Msg [Shh] are
in group Msg , and name ambients in which exchanges are prohibited.)

The types of the ambient calculus with groups are the same as in [CG99],
except that G[T] replaces Amb[T]. We have types W for messages. Messages can
be either names of type G[T], or capabilities of type Cap[T]. We also have types
for processes, T , that classify processes according to the type of message tuples
they exchange (if any).

Types:

W ::= message type
G[T] ambient name in group G with T exchanges
Cap[T] capability unleashing T exchanges

S, T ::= exchange type
Shh no exchange
W1 × · · · ×Wk tuple exchange (1 is the null product)

Expressions (messages) and processes are also the same as in [CG99], except
that we add processes (νG)P and include the objective moves of [CGG99].

336 L. Cardelli, G. Ghelli, and A.D. Gordon

The movement primitives of the untyped calculus, illustrated by the process
p[out a.in b.〈c〉] from Section 1.1, are called subjective moves; the capabilities
out a and in b move the ambient p from the inside. In the typed calculus, we also
take objective moves as primitive. In an objective move goN.M [P], the capability
N moves an ambient M [P] from the outside by following the path encoded by N ,
and once there starts the ambient M [P]. In the untyped calculus, we can define
an objective move go N.M [P] to be short for the process (νk)k[N.M [out k.P]]
where k is not free in P . As we found in our previous work [CGG99], a primitive
typing rule for objective moves allows more refined typings than are possible
with only subjective moves.

Expressions and processes:

M, N ::= expression P, Q, R ::= process
n name (νG)P group creation
in M can enter M (νn:W)P restriction
out M can exit M 0 inactivity
open M can open M P | Q composition
ε null !P replication
M.M ′ path M [P] ambient

M.P action
(x1:W1, . . . , xk:Wk).P input
〈M1, . . . , Mk〉 output
go N.M [P] objective move

This grammar allows the formation of certain nonsensical processes, where
a capability is used in place of a name, as in (in n)[0], or vice versa, as in
(νn:W)n.0. Such garbled processes are not typable in any of our type systems.

In the processes (νG)P and (νn:W)P , the group G and the name n, respec-
tively, are bound, with scope P . In the process (x1:W1, . . . , xk:Wk).P , the names
x1, . . . , xk are bound, with scope P . We identify processes up to consistent ren-
aming of bound names and bound groups. We write fn(P) for the set of names
free in process P , and we write fg(P), fg(W), and fg(T) for the sets of groups
free in process P , message type W , and exchange type T , respectively.

The following tables describe the structural congruence rules and the reduc-
tion rules. The bottom four rules of structural congruence describe the extrusion
behavior of the (νG) binders. Side conditions on these rules prevent violation
of lexical scoping. The notation P{x1←M1, . . . , xk←Mk} used below in the re-
duction rule for I/O denotes the outcome of a capture-avoiding simultaneous
substitution, for each i ∈ 1..k, of the expression Mi for each free occurrence of
the corresponding name xi in the process P .

Structural Congruence:

P ≡ Q⇒ (νn:W)P ≡ (νn:W)Q P ≡ P
P ≡ Q⇒ (νG)P ≡ (νG)Q Q ≡ P ⇒ P ≡ Q
P ≡ Q⇒ P | R ≡ Q | R P ≡ Q, Q ≡ R⇒ P ≡ R

Ambient Groups and Mobility Types 337

P ≡ Q⇒ !P ≡ !Q
P ≡ Q⇒M [P] ≡M [Q] P | Q ≡ Q | P
P ≡ Q⇒M.P ≡M.Q (P | Q) | R ≡ P | (Q | R)
P ≡ Q⇒ go N.M [P] ≡ go N.M [Q]
P ≡ Q⇒ (x1:W1, . . . , xk:Wk).P ≡ (x1:W1, . . . , xk:Wk).Q

n1 6= n2 ⇒ (νn1:W1)(νn2:W2)P ≡ (νn2:W2)(νn1:W1)P
n /∈ fn(P)⇒ (νn:W)(P | Q) ≡ P | (νn:W)Q
n 6= m⇒ (νn:W)m[P] ≡ m[(νn:W)P]

P | 0 ≡ P !P ≡ P | !P
(νn:W)0 ≡ 0 ε.P ≡ P
(νG)0 ≡ 0 (M.M ′).P ≡M.M ′.P
!0 ≡ 0 go ε.M [P] ≡M [P]

(νG1)(νG2)P ≡ (νG2)(νG1)P
G /∈ fg(W)⇒ (νG)(νn:W)P ≡ (νn:W)(νG)P
G /∈ fg(P)⇒ (νG)(P | Q) ≡ P | (νG)Q
(νG)m[P] ≡ m[(νG)P]

Reduction:

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] P → Q⇒ (νG)P → (νG)Q
m[n[out m.P | Q] | R]→ n[P | Q] | m[R] P → Q⇒ (νn:W)P → (νn:W)Q
open n.P | n[Q]→ P | Q P → Q⇒ P | R→ Q | R
〈M1, . . . , Mk〉 | (x1:W1, . . . , xk:Wk).P P → Q⇒ n[P]→ n[Q]
→ P{x1←M1, . . . , xk←Mk} P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′

go (in m.N).n[P] | m[Q]→ m[go N.n[P] | Q]
m[go (out m.N).n[P] | Q]→ go N.n[P] | m[Q]

Next, we introduce the five basic judgments and the typing rules. Apart from
minor adaptations, the main novelty with respect to [CG99] is the rule with
conclusion E ` (νG)P : T . The assumptions of this rule are that E, G ` P : T
and G /∈ fg(T). The latter assumption prevents G from going out of scope in
the conclusion. Typing environments, E, are given by the grammar E ::= ∅ |
E, G | E, n:W . For each E, we inductively define dom(E) by the equations
dom(∅) = ∅, dom(E, G) = dom(E)∪ {G}, and dom(E, n:W) = dom(E)∪ {n}.

Judgments:

E ` � good environment
E `W good message type W

E ` T good exchange type T

E `M : W good expression M of message type W

E ` P : T good process P with exchange type T

338 L. Cardelli, G. Ghelli, and A.D. Gordon

Typing Rules:

∅ ` �
E `W n /∈ dom(E)

E, n:W ` �
E ` � G /∈ dom(E)

E, G ` �
G ∈ dom(E) E ` T

E ` G[T]
E ` T

E ` Cap[T]
E ` �

E ` Shh
E `W1 · · · E `Wk

E `W1 × · · · ×Wk

E′, n:W, E′′ ` �
E′, n:W, E′′ ` n : W

E ` Cap[T]
E ` ε : Cap[T]

E `M : Cap[T] E `M ′ : Cap[T]
E `M.M ′ : Cap[T]

E ` n : G[S] E ` T

E ` in n : Cap[T]
E ` n : G[S] E ` T

E ` out n : Cap[T]
E ` n : G[T]

E ` open n : Cap[T]

E `M : Cap[T] E ` P : T

E `M.P : T

E `M : G[S] E ` P : S E ` T

E `M [P] : T

E, n:G[S] ` P : T

E ` (νn:G[S])P : T

E, G ` P : T G /∈ fg(T)
E ` (νG)P : T

E ` T

E ` 0 : T

E ` P : T

E ` !P : T

E ` P : T E ` Q : T

E ` P | Q : T

E, n1:W1, . . . , nk:Wk ` P : W1 × · · · ×Wk

E ` (n1:W1, . . . , nk:Wk).P : W1 × · · · ×Wk

E `M1 : W1 · · · E `Mk : Wk

E ` 〈M1, . . . , Mk〉 : W1 × · · · ×Wk

E ` N : Cap[S′] E `M : G[S] E ` P : S E ` T

E ` go N.M [P] : T

We obtain a standard subject reduction result. A subtle point, though, is the
need to account for the appearance of new groups (G1, . . . , Gk, below) during
reduction. This is because reduction is defined up to structural congruence, and
structural congruence does not preserve the set of free groups of a process. The
culprit is the rule (νn:W)0 ≡ 0, in which groups free in W are not free in 0.

Theorem 1. If E ` P : T and either P ≡ Q or P → Q then there are G1, . . . ,
Gk such that G1, . . . , Gk, E ` Q : T .

3 Opening Control

In this section, to control usage of the open capability, we add attributes to
the ambient types, G[T], and the capability types, Cap[T], of the previous type
system. (In the next section, to control usage of the in and out capabilities, we
add further attributes.)

To control the opening of ambients, we formalize the constraint that the
name of any ambient opened by a process is in one of the groups G1, . . . , Gk,

Ambient Groups and Mobility Types 339

but in no others. To do so, we add an attribute ◦{G1, . . . , Gk} to ambient types,
which now take the form G[◦{G1, . . . , Gk}, T]. A name of this type is in group G,
and names ambients within which processes may exchange messages of type T
and may only open ambients in the groups G1, . . . , Gk. We need to add the same
attribute to capability types, which now take the form Cap[◦{G1, . . . , Gk}, T].
Exercising a capability of this type may unleash exchanges of type T and ope-
nings of ambients in groups G1, . . . , Gk. The typing judgment for processes ac-
quires the form E ` P : ◦{G1, . . . , Gk}, T . The pair ◦{G1, . . . , Gk}, T constrains
both the opening effects (what ambients the process opens) and the exchange
effects (what messages the process exchanges). We call such a pair an effect, and
introduce the metavariable F to range over effects. It is also convenient to intro-
duce metavariables G, H to range over finite sets of name groups. The following
table summarizes these metavariable conventions and our enhanced syntax for
types:

Group Sets and Types:

G,H ::= {G1, . . . , Gk} finite set of name groups
W ::= message type

G[F] ambient name in group G (contains processes
with F effects)

Cap[F] capability (unleashes F effects)
F ::= effect

◦H, T may open H, may exchange T

S, T ::= exchange type
Shh no exchange
W1 × · · · ×Wk tuple exchange

The following tables define the type system in detail. There are five basic
judgments as before. They have the same format except that the judgment E `
F , meaning that the effect F is good given environment E, replaces the previous
judgment E ` T . We omit the three rules for deriving good environments; they
are exactly as in the previous section. There are two main differences between
the other rules below and the rules of the previous section. First, effects, F ,
replace exchange types, T , throughout. Second, in the rule ascribing a type to
open n, the condition G ∈ H constrains the opening effect H of the capability
open n to include the group G, the group of the name n.

Judgments:

E ` � good environment
E `W good message type W

E ` F good effect F

E `M : W good expression M of message type W

E ` P : F good process P with F effects

340 L. Cardelli, G. Ghelli, and A.D. Gordon

Typing Rules:

G ∈ dom(E) E ` F

E ` G[F]
E ` F

E ` Cap[F]
H ⊆ dom(E) E ` �

E ` ◦H,Shh

H ⊆ dom(E) E `W1 · · · E `Wk

E ` ◦H, W1 × · · · ×Wk

E′, n:W, E′′ ` �
E′, n:W, E′′ ` n : W

E ` Cap[F]
E ` ε : Cap[F]

E `M : Cap[F] E `M ′ : Cap[F]
E `M.M ′ : Cap[F]

E ` n : G[F] E ` ◦H, T

E ` in n : Cap[◦H, T]
E ` n : G[F] E ` ◦H, T

E ` out n : Cap[◦H, T]

E ` n : G[◦H, T] G ∈ H
E ` open n : Cap[◦H, T]

E `M : Cap[F] E ` P : F

E `M.P : F

E `M : G[F] E ` P : F E ` F ′

E `M [P] : F ′
E, n:G[F] ` P : F ′

E ` (νn:G[F])P : F ′

E, G ` P : F G /∈ fg(F)
E ` (νG)P : F

E ` F

E ` 0 : F

E ` P : F

E ` !P : F

E ` P : F E ` Q : F

E ` P | Q : F

E, n1:W1, . . . , nk:Wk ` P : ◦H, W1 × · · · ×Wk

E ` (n1:W1, . . . , nk:Wk).P : ◦H, W1 × · · · ×Wk

E `M1 : W1 · · · E `Mk : Wk H ⊆ dom(E)
E ` 〈M1, . . . , Mk〉 : ◦H, W1 × · · · ×Wk

E ` N : Cap[◦H, T] E `M : G[F] E ` P : F E ` F ′

E ` go N.M [P] : F ′

Theorem 2. If E ` P : F and either P ≡ Q or P → Q then there are G1, . . . ,
Gk such that G1, . . . , Gk, E ` Q : F .

Here is a simple example of a typing derivable in this system:

G, n:G[◦{G},Shh] ` n[0] | open n.0 : ◦{G},Shh

This asserts that the whole process n[0] | open n.0 is well-typed and opens only
ambients in the group G.

On the other hand, one might expect the following variant to be derivable,
but it is not:

G, n:G[◦∅,Shh] 6` n[0] | open n.0 : ◦{G},Shh

This is because the typing rule for open n requires the effect unleashed by the
open n capability to be the same as the effect contained within the ambient n.

Ambient Groups and Mobility Types 341

But the opening effect ◦
∅ specified by the type G[◦∅,Shh] of n cannot be the

same as the effect unleashed by open n, because the rule also requires the latter
to at least include the group G of n.

We have not found this feature to be problematic, and indeed it has a positive
side-effect: the type G[◦G, T] of an ambient name n not only tells which opening
effects may happen inside the ambient, but also tells whether n may be opened
from outside: it is openable only if G ∈ G, since this is the only case when
open n.0 | n[P] can be well typed. Hence, the presence of G in the set G may
either mean that n is meant to be an ambient within which other ambients in
group G may be opened, or that it is meant to be an openable ambient.

4 Crossing Control

This section presents the third and final type system of the paper, obtained by
enriching the type system of Section 3 with attributes to control mobility.

Movement operators enable an ambient n to cross the boundary of another
ambient m either by entering it via an in m capability or by exiting it via
an out m capability. In the type system of this section, the type of n lists
those groups that may be crossed; the ambient n may only cross the boundary
of another ambient m if the group of m is included in this list. In our typed
calculus, there are two kinds of movement, subjective moves and objective moves.
Therefore, we separately list those groups that may be crossed by objective moves
and those groups that may be crossed by subjective moves.

We add new attributes to the syntax of ambient types, effects, and capability
types. An ambient type acquires the form G yG′[yG,◦H, T]. An ambient of this
type is in group G, may cross ambients in groups G′ by objective moves, may
cross ambients in groups G by subjective moves, may open ambients in groups
H, and may contain exchanges of type T . An effect, F , of a process is now of the
form yG,◦H, T . It asserts that the process may exercise in and out capabilities
to accomplish subjective moves across ambients in groups G, that the process
may open ambients in groups H, and that the process may exchange messages
of type T . Finally, a capability type retains the form Cap[F], but with the new
interpretation of F . Exercising a capability of this type may unleash F effects.

Types:

W ::= message type
G yG[F] ambient name in group G, crosses G objec-

tively, contains processes with F effects
Cap[F] capability (unleashes F effects)

F ::= effect
yG,◦H, T crosses G, opens H, exchanges T

S, T ::= exchange type
Shh no exchange
W1 × · · · ×Wk tuple exchange

342 L. Cardelli, G. Ghelli, and A.D. Gordon

The format of the five judgments making up the system is the same as in
Section 3. We omit the three rules defining good environments; they are as in
Section 2. There are two main changes to the previous system to control mobility.
First, the rules for typing in n and out n change to assign a type Cap[yG,◦H, T]
to the capabilities in n and out n only if G ∈ G where G is the group of
n. Second, the rule for objective moves changes to allow an objective move of
an ambient of type G yG′[F] by a capability of type Cap[yG,◦H, T] only if
G = G′.

Typing Rules:

G ∈ dom(E) G ⊆ dom(E) E ` F

E ` G yG[F]
E ` F

E ` Cap[F]

G ⊆ dom(E) H ⊆ dom(E) E ` �
E ` yG,◦H,Shh

G ⊆ dom(E) H ⊆ dom(E) E `W1 · · · E `Wk

E ` yG,◦H, W1 × · · · ×Wk

E′, n:W, E′′ ` �
E′, n:W, E′′ ` n : W

E ` Cap[F]
E ` ε : Cap[F]

E `M : Cap[F] E `M ′ : Cap[F]
E `M.M ′ : Cap[F]

E ` n : G yG′[F] E ` yG,◦H, T G ∈ G
E ` in n : Cap[yG,◦H, T]

E ` n : G yG′[F] E ` yG,◦H, T G ∈ G
E ` out n : Cap[yG,◦H, T]

E ` n : G yG′[yG,◦H, T] G ∈ H
E ` open n : Cap[yG,◦H, T]

E `M : Cap[F] E ` P : F

E `M.P : F

E `M : G yG[F] E ` P : F E ` F ′

E `M [P] : F ′
E, n:G yG[F] ` P : F ′

E ` (νn:G yG[F])P : F ′

E, G ` P : F G /∈ fg(F)
E ` (νG)P : F

E ` F

E ` 0 : F

E ` P : F

E ` !P : F

E ` P : F E ` Q : F

E ` P | Q : F

E, n1:W1, . . . , nk:Wk ` P : yG,◦H, W1 × · · · ×Wk

E ` (n1:W1, . . . , nk:Wk).P : yG,◦H, W1 × · · · ×Wk

E `M1 : W1 · · · E `Mk : Wk G ⊆ dom(E) H ⊆ dom(E)
E ` 〈M1, . . . , Mk〉 : yG,◦H, W1 × · · · ×Wk

E ` N : Cap[yG,◦H, T] E `M : G yG[F] E ` P : F E ` F ′

E ` go N.M [P] : F ′

Ambient Groups and Mobility Types 343

Theorem 3. If E ` P : F and either P ≡ Q or P → Q then there are G1, . . . ,
Gk such that G1, . . . , Gk, E ` Q : F .

Recall the untyped example from Section 1.1. Consider two groups G and H.
Let W = G y

∅[y∅,◦∅,Shh] and set P to be the example process:

P = a[p[out a.in b.〈c〉]] | b[open p.(x:W).x[]]

Let E = G, H, a:W, b:G y
∅[y{G},◦{H}, W], c:W, p:H y

∅[y{G},◦{H}, W].
Then we can derive the typings:

E ` out a.in b.〈c〉 : y{G},◦{H}, W
E ` open p.(x:W).x[] : y{G},◦{H}, W
E ` P : y

∅,◦∅,Shh

From the typings a, c : G y
∅[y∅,◦∅,Shh], we can tell that ambients a and

c are immobile ambients in which nothing is exchanged and that cannot be
opened. From the typings p:H y

∅[y{G},◦{H}, W], b:G y
∅[y{G},◦{H}, W], we

can tell that the ambients b and p cross only G ambients, open only H ambients,
and contain W exchanges; the typing of p also tells us it can be opened. This
is good, but is not fully satisfactory, since, if b were meant to be immobile, we
would like to express this immobility invariant in its type. However, since b opens
a subjectively mobile ambient, then b must be typed as if it were subjectively
mobile itself (by the rule for open).

As already observed in [CGG99], this problem can be solved by replacing the
subjective moves by objective moves. Let W = G y

∅[y∅,◦∅,Shh], again, and
set Q to be the example process with objective instead of subjective moves:

Q = a[go (out a.in b).p[〈c〉]] | b[open p.(x:W).x[]]

Let E = G, H, a:W, b:G y
∅[y∅,◦{H}, W], c:W, p:H y{G}[y∅,◦{H}, W], and

we can derive:

E ` out a.in b : Cap[y{G},◦∅,Shh]
E ` go (out a.in b).p[〈c〉] : y

∅,◦∅,Shh
E ` open p.(x:W).x[] : y

∅,◦{H}, W
E ` Q : y

∅,◦∅,Shh

The typings of a and c are unchanged, but the new typings of p and b are more
informative. We can tell from the typing p:H y{G}[y∅,◦{H}, W] that movement
of p is now due to objective rather than subjective moves. We can now tell from
the typing b:G y

∅[y∅,◦{H}, W] that the ambient b is immobile.
This example suggests that in some situations objective moves lead to more

informative typings than subjective moves. Still, subjective moves are essential
for moving ambients containing running processes. We need such ambients to
model mobile agents, for example.

344 L. Cardelli, G. Ghelli, and A.D. Gordon

5 Upper Bounds on Capabilities Imposed by Effects

Like most other type systems for concurrent calculi, ours does not guarantee
liveness, for example, the absence of deadlocks. Still, we may regard the effect
assigned to a process as a safety property: an upper bound on the capabilities
that may be exercised by the process, and hence on its behavior. We formalize
this idea in the setting of our third type system, and explain some consequences.

A similar analysis can be applied to the simpler type system of Section 3.
We say that a process P exercises a capability M , one of in n or out n or

open n, just if P ↓M may be derived by the following rules:

Exercising a capability: P ↓M where M ∈ {in n, out n, open n}
P ≡M.Q

P ↓M

P ↓M

P | Q ↓M

Q ↓M

P | Q ↓M

P ↓M n /∈ fn(M)
(νn:W)P ↓M

P ↓M

(νG)P ↓M

We begin by defining a fragment of a labelled transition system for the am-
bient calculus [GC99]. We say that a process P exercises a capability M , one
of in n or out n or open n, to leave residue P ′ just if the M -labelled transition
P

M−→ P ′ may be derived by the following rules:

Labelled Transitions: P
M−→ P ′ where M ∈ {in n, out n, open n}

P ≡M.Q

P
M−→ Q

P
M−→ P ′ m /∈ fn(M)

(νm:W)P M−→ (νm:W)P ′
P

M−→ P ′

(νG)P M−→ (νG)P ′

P
M−→ P ′

P | Q M−→ P ′ | Q
Q

M−→ Q′

P | Q M−→ P | Q′

The following asserts that the group of the name contained in any capability
exercised by a well-typed process is bounded by the effect assigned to the process.
It is a corollary of Theorem 3.

Theorem 4 (Effect Safety). Suppose that E ` P : yG,◦H, T .

(1) If P ↓ in n then E ` n : G yG′[F] for some type G yG′[F] with G ∈ G.
(2) If P ↓ out n then E ` n : G yG′[F] for some type G yG′[F] with G ∈ G.
(3) If P ↓ open n then E ` n : G yG′[F] for some type G yG′[F] with G ∈ H.

To explain the operational significance of this theorem, consider a name
m : H yH′[yG,◦H, T] and a well-typed ambient m[P]. Suppose that m[P] is
a subprocess of some well-typed process Q. We can show, by adapting standard
techniques [GC99], two connections between the M -labelled transitions of the
process P and the reductions immediately derivable from the whole process Q.

First, within Q, the ambient m[P] can cross the boundary of another ambient
named n of some group G only if either P

in n−→ P ′ or P
out n−→ P ′ for some P ′.

The typing rule for ambients implies that P must have effect yG,◦H, T . Part (1)

Ambient Groups and Mobility Types 345

or (2) of the theorem implies that the set G contains G. Second, suppose that
P includes a top-level ambient named n. The boundary of n can be dissolved
only if P

open n−→ P ′ for some P ′. Since P has effect yG,◦H, T , part (3) of the
theorem implies that the set H contains G. So the set G includes the groups of
all ambients that can be crossed by m[P], and the set H includes the groups of
all ambients that can be opened within m[P].

A corollary of Theorem 3 is that these bounds on ambient behavior apply not
just to ambients contained within Q, but to ambients contained in any process
reachable by a series of reductions from Q.

6 Conclusions

Our contribution is a new type system for tracking the behavior of mobile com-
putations. We introduced the idea of a name group. A name group represents a
collection of ambient names; ambient names belong to name groups in the same
sense that values belong to types. We studied the properties of a new process
operator (νG)P that lexically scopes groups. Using groups, our type system can
impose behavioral constraints like “this ambient crosses only ambients in one set
of groups, and only dissolves ambients in another set of groups”. Our previous
type system for mobility [CGG99] cannot express such constraints.

In the extended version of this paper [CGG00], we revisit an encoding of a
distributed programming language that we first reported in the technical report
version of our earlier work [CGG99]. In the encoding, ambients model both net-
work nodes and the threads that may migrate between the nodes. The encoding
can be typed in all three of the systems presented in this paper. The encoding
illustrates how ambient groups can be used to partition the set of ambient names
according to their intended usage, and how opening and crossing control allows
the programmer to state some of those programming invariants which are the
most interesting when programming mobile computation. For example, the ty-
ping allows threads to cross node boundaries, but not mistakenly the other way
round, and guarantees that neither threads nor nodes may be opened. We use
(νG) to make fresh groups for certain synchronization ambients in the encoding.
The benefit of (νG) is that we can be statically assured that these synchroniza-
tion ambients are known only to the processes we intend to synchronize, and
propagate no further.

Our groups are similar to the sorts used as static classifications of names in
the π-calculus [Mil99]. Our basic system of Section 2 is comparable to Milner’s
sort system for π, except that a new sort operator does not seem to have been
considered in the π-calculus literature. Another difference is that sorts in the
π-calculus are mutually recursive; we would have to add a recursion operator
to achieve a similar effect. Our systems of Sections 3 and 4 depend on groups
to constrain the opening and crossing behavior of processes. We are not aware
of any uses of Milner’s sorts to control process behavior beyond controlling the
sorts of communicated names.

346 L. Cardelli, G. Ghelli, and A.D. Gordon

Apart from Milner’s sorts, other static classifications of names occur in de-
rivatives of the π-calculus. We mention two examples. In the type system of
Abadi [Aba97] for the spi calculus, names are classified by three static secu-
rity levels—Public, Secret, and Any—to prevent insecure information flows. In
the flow analysis of Bodei, Degano, Nielson, and Nielson [BDNN98] for the π-
calculus, names are classified by static channels and binders, again with the
purpose of establishing security properties. (A similar flow analysis now exists
for the ambient calculus [NNHJ99].) Although there is a similarity between these
notions and groups, and indeed to sorts, nothing akin to our (νG) operator ap-
pears to have been studied.

There is a connection between name groups and the region variables in the
work of Tofte and Talpin [TT97] on region-based implementation of the λ-
calculus. The store is split into a set of stack-allocated regions, and the type
of each stored value is labelled with the region in which the value is stored. The
scoping construct letregion ρ in e allocates a fresh region, binds it to the region
variable ρ, evaluates e, and on completion, deallocates the region bound to ρ.
The constructs letregion ρ in e and (νG)P are similar in that they confer static
scopes on the region variable ρ and the group G, respectively. One difference is
that in our operational semantics (νG)P is simply a scoping construct; it allo-
cates no storage. Another is that scope extrusion laws do not seem to have been
explicitly investigated for letregion. Still, we can interpret letregion in terms of
(νG), and intend to report this in a future paper.

Levi and Sangiorgi’s type system for a generalization of the ambient calcu-
lus [LS00] can guarantee immobility and single-threadedness. It would be inte-
resting to consider extensions of their type system with groups.

Acknowledgements Silvano Dal Zilio commented on a draft of this paper. Ghelli
acknowledges the support of Microsoft Research during the writing of this paper.
The same author has also been partially supported by grants from the E.U.,
workgroups PASTEL and APPSEM, and by “Ministero dell’Università e della
Ricerca Scientifica e Tecnologica”, project INTERDATA.

References

[Aba97] M. Abadi. Secrecy by typing in security protocols. In Proceedings
TACS’97, LNCS 1281, pages 611–638. Springer, 1997.

[BDNN98] C. Bodei, P. Degano, F. Nielson, and H. Nielson. Control flow analysis
for the π-calculus. In Proceedings Concur’98, LNCS 1466, pages 84–98.
Springer, 1998.

[CG98] L. Cardelli and A. D. Gordon. Mobile ambients. In Proceedings FoS-
SaCS’98, LNCS 1378, pages 140–155. Springer, 1998. Accepted for publi-
cation in Theoretical Computer Science.

[CG99] L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proceedings
POPL’99, pages 79–92. ACM, 1999.

[CGG99] L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile am-
bients. In Proceedings ICALP’99, LNCS 1644, pages 230–239. Springer,
1999.

Ambient Groups and Mobility Types 347

[CGG00] L. Cardelli, G. Ghelli, and A. D. Gordon. Types for the ambient calculus.
Microsoft Research Technical Report, to appear.

[GC99] A. D. Gordon and L. Cardelli. Equational properties of mobile ambients.
In Proceedings FoSSaCS’99, LNCS 1578, pages 212–226. Springer, 1999.

[LS00] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Procee-
dings POPL’00, pages 352–364. ACM, 2000.

[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP,
1999.

[NNHJ99] F. Nielson, H.R. Nielson, R.R. Hansen, and J.G. Jensen. Validating fir-
ewalls in mobile ambients. In Proceedings Concur’99, LNCS 1664, pages
463–477. Springer, 1999.

[TT97] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109–176, 1997. Preliminary version in
Proceedings POPL’94.

	Introduction
	The Untyped Ambient Calculus (Review)

	The Typed Ambient Calculus with Groups
	Opening Control
	Crossing Control
	Upper Bounds on Capabilities Imposed by Effects
	Conclusions

