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Abstract. We study hardness of approximating several minimaximal
and maximinimal NP-optimization problems related to the minimum li-
near ordering problem (MINLOP). MINLOP is to find a minimum weight
acyclic tournament in a given arc-weighted complete digraph. MINLOP
is APX-hard but its unweighted version is polynomial time solvable. We
prove that, MIN-MAX-SUBDAG problem, which is a generalization of
MINLOP, and requires to find a minimum cardinality maximal acyclic
subdigraph of a given digraph, is, however APX-hard. Using results of
Hȧstad concerning hardness of approximating independence number of a
graph we then prove similar results concerning MAX-MIN-VC (respec-
tively, MAX-MIN-FVS) which requires to find a maximum cardinality
minimal vertex cover in a given graph (respectively, a maximum cardi-
nality minimal feedback vertex set in a given digraph). We also prove
APX-hardness of these and several related problems on various degree
bounded graphs and digraphs.

Keywords : NP-optimization problems, Minimaximal and maximini-
mal NP-optimization problems, Approximation algorithms, Hardness of
approximation, APX-hardness, L-reduction.

1 Introduction

In this paper we deal with hardness of approximating several minimum-maximal
and maximum-minimal NP-complete optimization problems on graphs as well
as related maximum/minimum problems. In general, for any given instance x of
such a problem, it is required to find a minimum (respectively, maximum) weight
(or, cardinality) maximal (respectively, minimal) feasible solution with respect
to a partial order on the set of feasible solutions of x. The terminology of mini-
maximal and maximinimal is apparently first used by Peters et.al. [18], though
the concept has received attention of many others, specially in connection with
many graph problems. For example, minimum chromatic number and its ma-
ximum version, the achromatic number [11,4]; maximum independent set and
minimaximal independent set (minimum independent dominating set) [12,13];
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minimum vertex cover and maximinimal vertex cover [17,19]; minimum domina-
ting set and maximinimal dominating set [16,5] and a recent systematic study
of minimaximal and maximinimal optimization problems by Manlove [19].

We are led to investigation of several such graph problems while considering
a generalization of the minimum linear ordering problem (MINLOP). Given a
complete digraph Gn = (V, An) on a set V = {v1, v2, . . . vn} of n vertices with
nonnegative integral arc weights, the MINLOP is to find an acyclic tournament
[10] on V with minimum total arc weight. This is a known NP-complete optimiza-
tion problem [9] and some results about approximation solutions and hardness of
approximability of MINLOP have been obtained in [20]. Two problems related
to MINLOP are the maximum acyclic subdigraph (MAX-SUBDAG) and the mi-
nimum feedback arc set (MIN-FAS) problems. Given a digraph G = (V, A), the
MAX-SUBDAG (respectively, MIN-FAS) problem is to find a subset of B ⊆ A
of maximum (respectively, minimum) cardinality such that (V, B) (respectively,
(V, A − B)) is an acyclic subdigraph (SUBDAG) of G. While MAX-SUBDAG
is APX-complete [17] and has a trivial 1

2 -approximation algorithm, MIN-FAS is
not known to be in APX, though it is APX-hard [14].

A generalization of MINLOP can be formulated as follows. Note that an
acyclic tournament on V is indeed a maximal SUBDAG of Gn (i.e., a SUBDAG of
Gn which is not contained in any SUBDAG of Gn). Thus we generalize MINLOP
as the minimum weight maximal SUBDAG (MIN-W-MAX-SUBDAG) problem
which requires to find a maximal SUBDAG of minimum total arc weight in
any given arc weighted digraph (which is not necessarily a complete digraph).
MIN-W-MAX-SUBDAG is thus APX-hard as its special case MINLOP is so. We
show that unweighted version (i.e., all arc weights 1) of MIN-W-MAX-SUBDAG,
called MIN-MAX-SUBDAG, is APX-hard even though MINLOP with constant
arc weight is solvable in polynomial time.

The complementary problem of MIN-MAX-SUBDAG is the maximum car-
dinality minimal feedback arc set (MAX-MIN-FAS) in which it is required to
find a minimal feedback arc set of maximum cardinality in a given digraph. The
vertex version of this is the maximum cardinality minimal feedback vertex set
(MAX-MIN-FVS). An NP-optimization problem related to MAX-MIN-FVS is
MAX-MIN-VC, in which it is required to find a minimal vertex cover of ma-
ximum cardinality in a given graph. Another related problem is the minimum
maximal independent set (MIN-MAX-IS) problem, where one is required to find
a maximal IS (or an independent dominating set) of minimum cardinality for
any given graph.

Since the decision versions of these optimization problems are NP-complete,
it is not possible to find optimal solutions in polynomial time, unless P=NP.
So a practical alternative is to find near optimal (or approximate) solutions in
polynomial time. However, it is not always possible to obtain such solutions
having desired approximation properties [2,12,15,17]. Thus it is of considerable
theoretical and practical interest to provide some qualitative explanation for this
by establishing results about hardness of obtaining such approximate solutions.
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In this paper, we shall establish several results about hardness of approxi-
mating such problems using the standard technique of reduction of one problem
to another. Due to restriction on the number of pages, we shall give outlines of
most of the lengthy proofs, details of which are in [21]. The paper is organized
as follows. In Section 2, we recall the relevant concepts about graphs, digraphs,
and approximation algorithms. In Section 3, we first prove APX-hardness of
MIN-MAX-SUBDAG for arbitrary digraph by reducing MAX-SUBDAG to it.
Then, using the results of Hȧstad concerning hardness of approximating MAX-
IS, we prove similar results about MAX-MIN-VC for arbitrary graphs and about
MAX-MIN-FVS for arbitrary digraphs. In Section 4, we prove APX-hardness of
MIN-FAS and MAX-SUBDAG for k-total-regular digraphs, for all k ≥ 4. Then
we show that MIN-MAX-SUBDAG is APX-hard for digraphs of maximum total
degree 12. We also prove that MAX-MIN-VC is k-approximable for all graphs
without any isolated vertex and having maximum degree k, k ≥ 1, MAX-MIN-
VC is APX-complete for all graphs of maximum degree 5, and MAX-MIN-FVS
is APX-hard for all digraphs of maximum total degree 10. In Section 5, we show
that, MIN-FVS is APX-complete for 6-regular graphs and MAX-MIN-FVS is
APX-hard for all graphs of maximum degree 9. Finally, in Section 6, we make
some concluding remarks.

2 Basic Concepts

We will denote a graph (i.e. an undirected graph) by G = (V, E) and a digraph
(i.e. a directed graph) by G = (V, A), where V = {v1, v2, . . . vn}, E is the edge
set and A is the arc set. An edge between vertices vi and vj will be denoted
by {vi, vj}, whereas an arc from vi to vj will be denoted by the ordered pair
(vi, vj). In an undirected graph G, degree of a vertex vi is denoted as d(vi) which
is the number of edges incident on vi in G, and G is called k-regular if each
vertex in G has degree k. In a digraph G, d+(vi) and d−(vi) are the number of
arcs in G having vi as the initial vertex and terminal vertex, respectively, and
d(vi), the total degree of vi is defined as d(vi) = d+(vi) + d−(vi). A digraph
G is k-total-regular if for each vertex vi, d(vi) = k. A path P (v1, vt) in G =
(V, E) (respectively, dipath in G = (V, A)) is a sequence of distinct vertices
(v1, v2, . . . , vt) such that {vi, vi+1} ∈ E (respectively, (vi, vi+1) ∈ A) for 1 ≤ i <
t. A path (respectively, dipath) P (v1, vt) is called a cycle (respectively, dicycle)
if v1 = vt.

A feedback arc set (FAS) (respectively a directed acyclic subgraph (SUBDAG))
in a digraph G = (V, A) is an arc set B ⊆ A such that the subdigraph (V, A−B)
(respectively (V, B)) is acyclic. Given a digraph G = (V, A), a minimal FAS (re-
spectively maximal SUBDAG) is an FAS (respectively SUBDAG) B ⊆ A which
does not contain (respectively is not contained in) another FAS (respectively
SUBDAG). Given a graph G = (V, E), C ⊆ V is called a vertex cover (VC)
if for each edge {vi, vj} ∈ E, C contains either vi or vj . A VC C is called a
minimal VC of G if no proper subset of C is also a VC of G. S ⊆ V is called an
feedback vertex set (FVS) of G if the subgraph/subdigraph G[V −S] induced by
the vertex set V − S is acyclic. Similarly a minimal FVS of G is defined.
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The precise formulation of the problems considered in this paper are as fol-
lows:
MAX-SUBDAG (respectively, MIN-FAS)
Instance - A digraph G = (V, A).
Solution - A SUBDAG (V, B) (respectively, an FAS B) of G.
Cost - m(x, B) = |B|.
Goal - max (respectively, min).

MAX-SUBDAG-k (respectively, MIN-FAS-k) is the problem of MAX-SUBDAG
(respectively, MIN-FAS) on k-total-regular digraphs.

MIN-W-FVS
Instance - A pair x = (G, w) where G is a graph/digraph and w assigns a non-
negative integer to each v ∈ V .
Solution - An FVS F of G.
Cost - m(x, F ) =

∑
v∈F w(v).

Goal - min.

MIN-FVS is the unweighted version of MIN-W-FVS, i.e. MIN-W-FAS with
w(v) = 1 for each v ∈ V . MIN-FVS-k is the problem of MIN-FVS on k-regular
(respectively k-total-regular) graphs (respectively digraphs).

MIN-MAX-SUBDAG (respectively, MAX-MIN-FAS)
Instance - Same as that of MAX-SUBDAG.
Solution - A maximal SUBDAG (V, B) (respectively, a minimal FAS B) of G.
Cost - m(x, B) = |B|.
Goal - min (respectively, max).

MIN-MAX-SUBDAG≤ k (respectively, MAX-MIN-FAS≤ k) is the problem of
MIN-MAX-SUBDAG (respectively, MAX-MIN-FAS) on digraphs of total degree
at most k.

MAX-MIN-FVS
Instance - Same as that of MIN-FVS.
Solution - A minimal FVS B of G.
Cost - m(x, B) = |B|.
Goal - max.

MAX-MIN-FVS-k is the problem of MAX-MIN-FVS on k-regular (respectively
k-total-regular) graphs (respectively digraphs) and MAX-MIN-FVS≤ k is the
problem of MAX-MIN-FVS on graphs (respectively digraphs) of degree (respec-
tively total-degree) at most k.

MAX-MIN-VC
Instance - A graph x = G = (V, E).
Solution - A minimal VC C of G.
Cost - m(x, C) = |C|.
Goal - max.
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MAX-MIN-VC≤ k is the problem of MAX-MIN-VC on graphs of degree at most
k.

Given an instance x of an NP optimization problem π and y ∈ sol(x), the
performance ratio of y with respect to x is defined by Rπ(x, y) = max {m(x,y)

m∗(x) ,
m∗(x)
m(x,y)} where m∗(x) is the optimum value.

A polynomial time algorithm A for an NP optimization problem π is called an
ε-approximate algorithm for π for some ε > 1 if Rπ(x, A(x)) ≤ ε for any instance
x of π, where A(x) is the solution for x given by A. The class APX is the set of
all NP optimization problems which have some ε-approximate algorithm.

An approximation algorithm A for an NP optimization problem π appro-
ximates the optimal cost within a factor of f(n) if, for all instances x of π, it
produces a solution A(x) in polynomial time such that Rπ(x, A(x)) ≤ f(|x|).

Among the approximation preserving reductions L-reduction [17] is the ea-
siest one to use. π1 is said to be L-reducible to π2 [17], in symbols π1 ≤L π2, if
there exist two functions f, g and two positive constants α, β such that:

1. For any x ∈ Iπ1 , f(x) ∈ Iπ2 is computable in polynomial time.
2. For any x ∈ Iπ1 and for any y ∈ solπ2(f(x)), g(x, y) ∈ solπ1(x) is compu-

table in polynomial time.
3. m∗

π2
(f(x)) ≤ α · m∗

π1
(x).

4. For any x ∈ Iπ1 and for any y ∈ solπ2(f(x)),
|m∗

π1
(x) − mπ1(x, g(x, y))| ≤ β · |m∗

π2
(f(x)) − mπ2(f(x), y)|.

We shall be using in this paper only the L-reduction though the hardness (or
completeness) in the class APX is defined in terms of PTAS-reduction (≤PTAS)
[6,2]. An NP optimization problem π is APX-hard if, for any π

′ ∈ APX, π
′ ≤PTAS

π, and problem π is APX-complete if π is APX-hard and π ∈ APX. However
it is well known that [7,15] for any two NP optimization problems π1 and π2, if
π1 ≤L π2 and π1 ∈ APX, then π1 ≤PTAS π2.

3 Hardness Results for Arbitrary Graphs/Digraphs

As already noted, MIN-W-MAX-SUBDAG is APX-hard, we now show that its
unweighted version MIN-MAX-SUBDAG is also APX-hard, even though the
unweighted version of MINLOP is solvable in polynomial time. For this it is
enough to prove the following theorem, as MAX-SUBDAG is APX-complete
[17].

Theorem 1. MAX-SUBDAG ≤L MIN-MAX-SUBDAG with α = 5 and β = 1.

Proof. (Outline) For each instance x = G = (V, A) of MAX-SUBDAG, we
construct in polynomial time an instance f(x) = G′ = (V ′, A′) of MIN-MAX-
SUBDAG and with each feasible solution (V ′, S′) of f(x), we associate a feasible
solution g(S′) = S = S′ ∩ A of x such that f and g satisfy the conditions of
L-reduction with α = 5 and β = 1.

Let K = {(vi, vj)|(vi, vj) ∈ A and (vj , vi) /∈ A}. For each arc (vi, vj) ∈ K, we
introduce a new vertex vij for the construction of G′. Construct G′ = (V ′, A′) as
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follows: V ′ = V ∪{vij |(vi, vj) ∈ K} and A′ = A∪{(vj , vi), (vj , vij), (vij , vj)|(vi, vj)
∈ K}. For an example, see Figure 1. Let k = |K| and p be the number of pairs
of vertices vi, vj ∈ V such that both (vi, vj), (vj , vi) ∈ A. Hence, p = |A−K|

2 .

G G’
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v v v v v

v v

v

v

v
1

12 23

3

4
4

23 34

24

Fig. 1. A digraph G and the corresponding digraph G′

It is not difficult to establish the following claims.
Claim 1 Let (V ′, S′) be a maximal SUBDAG of G′ and S = S′ ∩A. Then (V, S)
is a SUBDAG of G and |S′| = 3k + 2p − |S|.
Claim 2 If (V ′, S′

o) is a minimum maximal SUBDAG of G′, then (V, So) is a
maximum SUBDAG of G. Also |A| ≤ 2|So|.

Now |S′
o| = 3k + 2p − |So| ≤ 3(k + p) − |So| ≤ 6|So| − |So| = 5|So|. Also for

any maximal SUBDAG (V ′, S′) of G′, |So| − |S| = |S′| − |S′
o|. ut

Next we prove results about hardness of approximating MAX-MIN-VC and
MAX-MIN-FVS, using reducibility arguments and the results of Hȧstad [12]
concerning MAX-IS stated bellow.

Theorem 2. [Hȧstad] Unless NP=ZPP (respectively P=NP), for any ε > 0
there exists no polynomial time algorithm to approximate MAX-IS within a factor
of n1−ε (respectively n

1
2 −ε), where n is the number of vertices in an instance.

Regarding MAX-MIN-VC we have

Theorem 3. Unless NP = ZPP (respectively P=NP), for any ε > 0 there exists
no polynomial time algorithm to approximate MAX-MIN-VC within a factor of
1
2n

1
2 −ε (respectively 1

2n
1
4 −ε), where n is the number of vertices in an instance.

Proof. (Outline) Given an instance G = (V, E) of MAX-IS, we construct an in-
stance G′ = (V ′, E′) of MAX-MIN-VC, where V ′ = V ∪ [∪v∈V {v1, v2, . . . vn+1}]
and E′ = E ∪ {{v, v1}, {v, v2}, . . . {v, vn+1}|v ∈ V }. In other words, G′ is ob-
tained from G by introducing for each vertex v ∈ V , n + 1 additional vertices
v1, v2, . . . , vn+1 and adding (n+1) additional edges {v, v1}, {v, v2}, . . . {v, vn+1}
to the graph G.

We can establish the following claims without much difficulty.
Claim 1 A vertex cover S′ ⊆ V ′ of G′ is a minimal VC iff (a) for v ∈ S′ ∩ V ,
vi /∈ S′, for any 1 ≤ i ≤ n + 1, and (b) for v ∈ V − S′, {v1, v2, . . . vn+1} ⊆ S′.
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Fig. 2. An instance G of MAX-IS and the corresponding instance G′ of MIN-MAX-VC

From the Claim 1 it follows that for any minimal VC S′ ⊆ V ′ of G′, there
exists a set S ⊆ V such that S′ = (V − S) ∪ [∪v∈S{v1, v2, . . . , vn+1}].

Claim 2 Let S be a maximal IS of G. Then S′ = (V −S)∪[∪v∈S{v1, v2, . . . , vn+1}]
is a minimal VC of G′.

Claim 3 Let S′ be a minimal VC in G′. If V − S′ is not a maximal IS of G,
then there exists a minimal VC S′′ of G′ such that V − S′′ is a maximal IS of G
and moreover,
(a) |S′′| > |S′|
(b) |V − S′′| > |V − S′| and
(c) |S′′| = n(|V − S′′| + 1).
Proof. Note that, for any VC S′ of G′, V ∩S′ is a VC of G. Hence V −S′ = V −
(V ∩S′) is an independent set of G. Let S′ be a minimal VC of G′ for which V −S′

is not a maximal independent set of G. Then we can always extend (V −S′) to a
unique maximal IS S of G (in polynomial time) by introducing vertices of G one
by one in the order v1, v2, . . . , vn while mentaining the independence property.
Hence S ⊃ (V − S′). By Claim 2, S′′ = (V − S) ∪ [∪v∈S{v1, v2, . . . , vn+1}] is a
minimal VC of G′ and |S′′| = n(|S| + 1). Now we show that S = V − S′′. For
this first note that S ⊆ V as S is a maximal independent set of G. Next, let
u ∈ S, then from the definition of S′′ it follows that u /∈ S′′, so u ∈ V − S′′.
Hence S ⊆ V − S′′. Also, if u ∈ V − S′′, then u /∈ S′′, i.e. u /∈ V − S, so u ∈ S.
Hence S ⊇ V − S′′. Thus S = V − S′′. From this it follows that V − S′′ is a
maximal independent set of G.

From Claim 1, we have |S′| = |V ∩ S′| + (n + 1)|V − (V ∩ S′)| = n(n + 1) −
n|V ∩S′| = n+n|V −S′| = n(|V −S′|+1). Since |S| > |V −S′′|, it follows that
|S′′| > |S′|. Also (b) and (c) follow from the fact that S = V − S′′. ut
Claim 4 S ⊆ V is a maximum IS of G iff S′ = (V −S)∪ [∪v∈S{v1, v2, . . . , vn+1}]
is a maximum minimal VC of G′.
Proof. Let S be a maximum IS of G. By Claim 2, S′ is a minimal VC of G′.
If S′ is not a maximum minimal VC of G′, then using Claim 3 there exists a
minimal VC S′′ of G′ such that |S′′| > |S′|, S = V −S′′ is a maximal IS of G and
|S′′| = n(|S| + 1). As |S′| < |S′′|, |S′| = n + n|S| and |S′′| = n + n|S|, it follows
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that |S| < |S|, which is a contradiction. Hence S′ is a maximum cardinality
minimal VC in G.

Let S′ be a maximum minimal VC of G′. Then by Claim 3, S = V − S′

is a maximal IS of G and |S′| = n(|S| + 1). We claim that S is a maximum
IS in G. Suppose there exists a maximal IS S∗ ⊆ V of G with |S∗| > |S|.
By Claim 2, Ŝ = (V − S∗) ∪ [∪v∈S∗{v1, v2, . . . , vn+1}] is a minimal VC in G′

and |Ŝ| = n(|S∗| + 1). Since |S∗| > |S|, it follows that |Ŝ| > |S′|, which is a
contradiction. Hence, S is a maximum IS of G. ut

Let α(G) denote the independence number and β(G) denote the size of a
maximum minimal VC in G. Hence, from Claim 4, we have β(G′) = n(α(G)+1).
Now let S′ be any minimal VC of G′. If V −S′ is a maximal IS of G then to S′ we
associate S = V −S′ as the feasible solution of MAX-IS for G. If V −S′ is not a
maximal IS of G then let S′′ be the minimal VC of G′ corresponding to S′ as in
Claim 3, so that S = V − S′′ is a maximal IS of G and |S′| < |S′′| = n(|S| + 1).
To this minimal VC S′ of G′ we associate S as the feasible solution of MAX-IS
for G. Hence for any minimal VC S′ of G′ we have

α(G)
|S| =

nα(G)
n|S| =

β(G′) − n

|S′′| − n
=

β(G′)
|S′′| − n

− n

|S′′| − n

=
β(G′)
|S′′| · |S′′|

|S′′| − n
− 1

|S| =
β(G′)
|S′′| · n(|S| + n)

n|S| − 1
|S|

=
β(G′)
|S′′| +

1
|S| (

β(G′)
|S′′| − 1)

≤ β(G′)
|S′′| +

β(G′)
|S′′| − 1 (since

β(G′)
|S′′| ≥ 1 and |S| ≥ 1)

< 2
β(G′)
|S′′| ≤ 2

β(G′)
|S′|

Let N be the number of vertices in G′. Since N = n2 + 2n and N ≤ 2n2, for

n > 2. Now, for any ε > 0, n1−ε ≥ N
1
2 (1−ε)

2
1
2 (1−ε)

≥ 1
2N

1
2 (1−ε) · 2 1

2+ ε
2 ≥ 1

2N
1
2 (1−ε), and

n
1
2 −ε ≥ 1

2N
1
4 (1−2ε). Hence by, Theorem 2, the result follows. ut

Regarding MAX-MIN-FVS, we have similar results.

Theorem 4. Unless NP=ZPP (respectively P=NP), for any ε > 0, there exists
no polynomial time algorithm to approximate MAX-MIN-FVS within a factor of
1
4n

1
2 −ε (respectively 1

4n
1
4 −ε), where n is the number of vertices in an instance.

Proof. (Outline) We prove this by a reduction from MAX-MIN-VC to MAX-
MIN-FVS as follows.

Let G = (V, E) be a graph (an instance of MAX-MIN-VC). Construct an
instance G′ = (V ′, A′) of MAX-MIN-FVS from G with V ′ = ∪vi∈V {v1

i , v2
i } and

A′ = [∪vi∈V {(v1
i , v2

i )}] ∪ [∪{vi,vj}∈E{(v2
i , v1

j ), (v2
j , v1

i )}]. In other words, for each
vi ∈ V , G′ has 2 vertices v1

i , v2
i and an arcs (v1

i , v2
i ). Also for each {vi, vj} ∈ E

G′ has (v2
i , v1

j ) and (v2
j , v1

i ). Hence, G′ has 2n vertices and n + 2m arcs.
We can easily establish the following claims.
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Claim 1 For any C ⊆ V ,
(1) C is a VC of G iff F = {v1

i |vi ∈ C} is an FVS of G′.
(2) C is a minimal VC of G iff F is a minimal FVS of G′.
Claim 2 Let F be any minimal FVS of G′. Then
(1) for any vi ∈ V , F ∩ {v1

i , v2
i } is either empty or singleton.

(2) for any vi ∈ V such that F ∩ {v1
i , v2

i } 6= φ, F ′ = F − {v1
i , v2

i } + v1
i is also a

minimal FVS of G′.
(3) There is a minimal FVS F ′ of G′ such that |F ′| = |F | and F ′ = {v1

i |vi ∈ C}
for some minimal VC C of G such that |C| = |F ′|.

Now let Fo be a maximum minimal FVS of G′ and F be any minimal FVS of
G′. By Claim 2, without loss of generality we can assume that every vertex in Fo

(respectively, in F ) is v1
i for some vi ∈ V . Also by Claim 2, Co = {vi|v1

i ∈ Fo},
(respectively, C = {vi|v1

i ∈ F}) is a maximum minimal VC (respectively, mininal
VC) of G, and |Co| = |Fo| (respectively, |C| = |F |). Hence |Co|

|C| = |Fo|
|F | .

Let N = |V ′|. Then N = 2n. Now 1
2n

1
2 −ε = 1

2
(2n)

1
2 −ε

2
1
2 −ε

= 1
4N

1
2 −ε · 2

1
2+ε ≥

1
4N

1
2 −ε. Hence by, Theorem 3, the result follows. ut

4 Hardness Results for Bounded Degree Digraphs

We know that MIN-FAS is APX-hard [14] and MAX-SUBDAG is APX-complete
[17] for general digraphs. In this section, we show that these problems remain
APX-hard even for k-total-regular digraphs for all k ≥ 4. We also show that
MIN-MAX-SUBDAG (respectively, MAX-MIN-VC) is APX-hard for digraphs of
maximum total degree 12 (respectively, graphs of maximum degree 5). Regarding
MIN-FAS, we first prove the following.

Lemma 1. MIN-FAS-k ≤L MIN-FAS-(k + 1), for all k ≥ 1.

Proof. We construct in polynomial time, from a k-total-regular digraph G =
(V, A), a (k + 1)-total-regular digraph G′ = (V ′, A′) where V ′ = V 1 ∪ V 2 where
V i = {vi|v ∈ V } for i = 1, 2 and A′ = A1 ∪ A2 ∪ B where Ai = {(ui, vi)|(u, v) ∈
A} for i = 1, 2 and B = {(v1, v2)|v ∈ V }. From a minimal FAS S′ of G′ construct
a minimal FAS S of G as follows: S = {(u, v)|(u1, v1) ∈ S1} where without loss
of generality we assume that S′ = S1 ∪ S2 with S1 and S2 are minimal FASs of
G1 = (V 1, A1) and G2 = (V 2, A2) respectively and |S1| ≤ |S2|. It is easy to see
that, if S′

o is a minimum FAS of G′, then the corresponding So is a minimum
FAS of G and |S′

o| = 2|So|. Further, for any minimal FAS S′ = S1 ∪ S2 of
G′, with |S1| ≤ |S2|, |S′| − |S′

o| = |S′| + |So| − 2|So| ≥ 2(|S′| − |So|) so that
|S| − |So| ≤ 1

2 (|S′| − |S′
o|). Thus, the two inequalities of L-reduction hold with

α = 1 and β = 1
2 . ut

We now have the following.

Theorem 5. MIN-FAS-k is APX-hard for all k ≥ 4.

Proof. (Outline) By Lemma 1, it is enough to show that MIN-FAS-4 is APX-
hard. For this we show that MIN-VC-3 ≤L MIN-FAS-4.
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We construct in polynomial time, from any 3-regular graph G = (V, E) a
4-total-regular digraph G′ = (V ′, A′) as defined in the proof of Theorem 4. For
any FAS F of G′, we associate a VC C of G defined as C = {v| either (u2, v1) ∈
F or (v1, v2) ∈ F}.

Further, C is a VC of G with |C| ≤ |F |. For every edge {u, v} ∈ E, as
(u1, u2, v1, v2, u1) is a cycle in G′, F must contain at least one arc from this
cycle, and so, C must contain either u or v. Hence, C is a VC of G, and by the
construction of C from F , |C| ≤ |F |.

Also, it can be easily shown that if Fo is a minimum FAS of G′, then the
associated VC Co of G is a minimum VC of G and |Fo| = |Co|, and for any
FAS F of G′, |C| − |Co| ≤ |F | − |Fo|. So the transformation from G to G′ is an
L-reduction with α = 1 and β = 1. ut

Similarly, for MAX-SUBDAG, we first prove the following.

Lemma 2. MAX-SUBDAG-k ≤L MAX-SUBDAG-(k+1).

Proof. Similar to the proof of Lemma 1. ut
We now prove the following.

Theorem 6. MAX-SUBDAG-k is APX-complete for any k ≥ 4.

Proof. By Lemma 2, it is enough to show that MAX-SUBDAG-4 is APX-hard.
For this we show that MIN-VC-3 ≤L MAX-SUBDAG-4 and the reduction given
in the proof of Theorem 5 is in fact an L-reduction from MIN-VC-3 to MAX-
SUBDAG-4 with α = 1 and β = 1. ut

Regarding MIN-MAX-SUBDAG, we have the following easy theorem.

Theorem 7. MIN-MAX-SUBDAG≤12 is APX-hard.

Proof. In the proof of Theorem 1, we constructed an instance G′ of MIN-MAX-
SUBDAG from an instance G of MAX-SUBDAG in such a way that if G is
4-regular then, every vertex in G′ is of total degree at most 12. Since MAX-
SUBDAG-4 is APX-complete, the result follows. ut

Next we shall consider MAX-MIN-VC. First we have the following two simple
lemmas.

Lemma 3. For any 3-regular graph G = (V, E) and any maximal IS I in G,
|I| ≥ 1

4 |V |.

Lemma 4. MAX-MIN-VC is k-approximable for graphs of maximum degree k,
k ≥ 1, and having no isolated vertex.

Proof. Any minimal VC for such a graph is k-approximable. ut
Now we have

Theorem 8. MAX-MIN-VC≤5 is APX-complete.
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Proof. Since MAX-MIN-VC is in class APX for bounded degree graphs (Lemma
4) and MAX-IS-3 is APX-complete [1], it is enough to show that MAX-IS-3 ≤L

MAX-MIN-VC≤5.
Let G = (V, E) be a 3-regular graph. From G construct G′ = (V ′, E′) of de-

gree at most 5 as follows: V ′ = V ∪[∪v∈V {v1, v2}] and E′ = E∪[∪v∈v{{v, v1}, {v,
v2}}].

By using the arguments given in the proof of Theorem 3, it can be proved
that any minimal VC C of G′ is of the form C = (V − I) ∪ [∪v∈I{v1, v2}], for
some IS I of G where I = V − (C ∩V ) and |C| = |I|+n. Also, Co is a maximum
minimal VC of G′ iff the associated Io is a maximum IS of G, with |Co| = |Io|+n.

Now, |Co| = |Io| + n ≤ |Io| + 4|Io| = 5|Io| (by Lemma 3), so that, the first
inequality of L-reduction holds with α = 5. Next, for any minimal VC C of G′,
|Co| − |C| = |Io| + n − |I| − n = |Io| − |I|, so that, the second inequality of
L-reduction holds with β = 1. ut

Theorem 9. MAX-MIN-FVS≤10 is APX-hard.

Proof. In the proof of Theorem 4, we constructed an instance G′ of MAX-MIN-
FVS from an instance G of MAX-MIN-VC in such a way that if G is of degree
at most 5, then G′ is of total-degree at most 10. Since MAX-MIN-VC≤ 5 is
APX-complete it follows that MAX-MIN-FVS≤10 is APX-hard. ut

5 Hardness Results for Bounded Degree Graphs

In this section we establish APX-hardness of MIN-FVS and MAX-MIN-FVS for
certain restricted class of undirected graphs. Regarding MIN-FVS, it is known
that it can be solved in polynomial time for all graphs of maximum degree 3 [22],
but it is not known whether MIN-FVS is NP-complete for graphs of maximum
degree 4 or 5. However, it is easy to show that [8] MIN-W-FVS≤4 is NP-complete
and also APX-complete.

Next we show that MIN-FVS-6 is APX-complete.

Theorem 10. MIN-FVS-6 is APX-complete.

Proof. (Outline) As MIN-FVS is in class APX [3], it is enough to show that
MIN-FVS-6 is APX-hard. Towards this we will show that MIN-VC-3 ≤L MIN-
FVS-6.

Let G = (V, E) be a 3-regular graph. From G construct a 6-regular graph
G′ = (V ′, E′) as follows: For every edge {vi, vj} ∈ E, let Vij = {v1

ij , v
2
ij , v

3
ij , v

4
ij , v

5
ij ,

v6
ij , v

7
ij} be the set of seven new vertices and Hij = (Vij , Eij) be the graph ob-

tained from the complete graph on Vij by removing the edge {v1
ij , v

7
ij}. Now

V ′ = V ∪ [∪{vi,vj}∈EVij ] and E′ = E ∪{vi,vj}∈E [Eij ∪ {{vi, v
1
ij}, {v7

ij , vj}}], see
Figure 3. Clearly G′ is 6-regular.

Let F be an FVS of G′. Then F contains at least 4 vertices from Vij . The
following claims can be easily established.
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Fig. 3. An edge {vi, vj} ∈ E and corresponding subgraph in G′.

Claim 1 Let F be any FVS of G′ containing exactly 4 vertices from Vij for some
{vi, vj} ∈ E. Then F must contain either vi or vj .

To an FVS F of G′, we associate the set C of vertices in G defined as
C = (F ∩ V ) ∪ {vi | |F ∩ Vij | ≥ 5 and i < j}.
Claim 2 C is a VC of G and |F | ≥ |C| + 4|E| = |C| + 6n.
Proof. If C is not a VC of G, then there exists {vi, vj} ∈ E such that C∩{vi, vj} =
φ. By the definition of C, it follows that |F ∩ Vij | ≤ 4 and F ∩ {vi, vj} = φ. If
|F ∩ Vij | < 4, then F is not an FVS of G′, so |F ∩ Vij | = 4. By Claim 1, F must
contain either vi or vj . Otherwise F can not be an FVS of G′. This contradicts
that F ∩ {vi, vj} = φ. Hence, C is a VC of G.

Now |F | = 4|E| + |F ∩ V | + |{vi | |F ∩ Vij | ≥ 5, i < j}|, as F contains at
least 4 vertices from Vij for each {vi, vj} ∈ E, and for the edges {vi, vj} ∈ E
such that |F ∩Vij | ≥ 5, F contains at least one more vertex from Vij in addition
to 4 vertices already considered. Hence, |F | ≥ |C| + 4|E| = |C| + 6n as G is a
3-regular and |E| = 3

2n. ut
Claim 3 For any VC C in G, the set F = C ∪ {v2

ij , v
3
ij , v

4
ij , v

5
ij}|{vi, vj} ∈ E} is

an FVS of G′ such that C = F ∩ V and |F | = |C| + 6n.
Claim 4 If Fo is a minimum FVS of G′, then the associated set Co is a minimum
VC of G and |Fo| = |Co| + n.

Now, |Fo| = |Co|+6n ≤ |Co|+12|Co| = 13|Co| (as any VC in a 3-regular graph
contains at least n

2 vertices). Hence, the first inequality of L-reduction holds with
α = 13. Next, for any FVS F of G′, |F |−|Fo| ≥ |C|+6n−|Co|−6n = |C|−|Co|.
So the second inequality of L-reduction holds with β = 1. ut

Next we shall consider MAX-MIN-FVS. Before that we note the following.

Lemma 5. For any FVS F of a 6-regular graph G = (V, E), |F | > 2
5n.

Finally, we have,

Theorem 11. MAX-MIN-FVS≤9 is APX-hard.

Proof. Let G = (V, E) be a 6-regular graph. Construct a graph G′ = (V ′, E′)
of degree at most 9 as follows: V ′ = V ∪ {v1, v2, v3|v ∈ V } and E′ = E ∪
{(v, v1), (v, v2), (v, v3), (v1, v2), (v1, v3) |v ∈ V } (see Figure 4). Let F be any
minimal FVS of G′. Note that, for any v ∈ V − F , F contains either v1 or both
v2 and v3. Further, if v ∈ F ∩ V , then F ∩ {v1, v2, v3} = φ. To F we associate
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v

v v

vv

1

23

Fig. 4. a vertex v in G and its corresponding neighbors in G′

C = F ∩ V , which is clearly an FVS of G. Note that |F | ≤ |C| + 2|V − F | =
|C| + 2|V − C| = 2n − |C|.

Let Fo be a maximum minimal FVS of G′. Then |Fo| = 2n − |Co| where
Co = Fo ∩ V . For, if |Fo| < 2n − |Co|, then F = Co ∪ {{v2, v3}|v ∈ V − Co} is
a minimal FVS of G′ with |F | = 2n − |Co| > |Fo| contradicting our assumption
that Fo is a maximum minimal FVS of G′. Also note that Co is a minimum FVS
of G.

Now, |Fo| = 2n − |Co| < 5|Co| − |Co| = 4|Co|, (by previous Lemma). So, the
first inequality of L-reduction holds with α = 4. Next, for any minimal FVS F
of G′, |Fo| − |F | ≥ 2n − |Co| − 2n + |C| = |C| − |Co|. So the second inequality of
L-reduction holds with β = 1. ut

6 Concluding Remarks

In this paper we have established hardness results for several NP-optimization
problems related to MINLOP. These problems are variations or generalizations
of well-known NP-optimization problems on graphs/digraphs. While for MAX-
MIN-VC and MAX-MIN-FVS we have established strong results like those of
Hȧstad [12] concerning MAX-IS and MAX-CLIQUE, for others we have just
shown them to be APX-hard. Whether strong results about hardness of appro-
ximating such problems can be obtained is worth investigating. Despite such
negative results, efforts may be made to obtain useful positive results giving
efficient algorithms which may be f(n)-approximate for suitable function f(n).
Also, we do not have any results about MAX-MIN-FAS problem similar to MAX-
MIN-FVS. These and other relavent issues concerning these problems are being
pursued.

Acknowledgment: The authors thank C. R. Subramanian for a careful reading
of an earlier draft and the anonymous referees for their comments and criticisms.
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