
An Adaptive Load Balancing Algorithm for

Large Data Parallel Processing with

Communication Delay

Kenji Imasaki and Jemal H. Abawajy

Carleton University, Ottawa, Canada,

fkenji,abawjemg@carleton.ca,
http://www.scs.carleton.ca/

Abstract. Achieving good load balance in cluster environment is diÆ-

cult due to its dynamic nature. Besides, the data to be processed may

be transfered from geographically distant sites at a ÿuctuating transfer

rate. This paper proposes a load balancing algorithm to deal with such

ÿuctuating transfer rate. The novelty of the algorithm is to use buddy

concept in processing node grouping and the data distribution statistics

obtained at the source sites. We use single join processing in database

query processing as its application.

1 Introduction

Cluster computing technology is now fully blossomed due to the technology ad-
vances in processors, memory and high speed network. In a cluster, processing
nodes, which are built from commodity products, are connected by LAN and
heterogeneous in nature. There are interactive users who log-in/out from time
to time so that it creates dynamic load changes and makes it diÆcult for appli-
cations to achieve its maximum performance.

Examples of such applications can be run on clusters are scientiÿc computing
and database processing. The input data for these applications such as measured
data from sensors or XML structured database data, are large in size and may
reside geographically remote site. Thus, the data has to be transfered to the
cluster prior to the processing. The data transfer rate is unpredictable since it
source site may be distant from the cluster and the connection between them
may not be stable. At the same time, the applications should be parallelized
because of their huge data sizes.

As a result, it is important to develop a good load balancing algorithm on
a cluster to cope with data transfer rate þuctuation and dynamic load change
within the cluster. The purpose of the algorithm is to minimize the response
time and maximize the system utilization. In this paper, we will present an load
balancing algorithm to deal with þuctuating data transfer rate and dynamic load
changes. The novelty of the algorithm is to use buddy concept in processing node
grouping and the data distribution statistics obtained at the source sites. The

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 242−247, 2003.
 Springer-Verlag Berlin Heidelberg 2003



data is very helpful in the load balancing decision. We use single join processing
in database query processing as its application.

This paper is organized as follows: Section 2 describes related work. Section
3 presents our load balancing algorithm with system architecture description.
Section 4 will conclude the paper.

2 Related Work

The ÿuctuating data transfer rate problem is tackled in database query process-
ing area. Several data integration systems [2] [3] [4] [5], which process queries over
geographically distributed databases, have been developed. Most of the research
have been concentrating in developing algorithms to deal with the ÿuctuating
data transfer rate. Amsaleg et al. [1] proposed query scrambling in which the
sub-query are "scrambled" according to the arrival rate of the data. Urhan [12]
proposed XJoin in which several kinds of joins are executed while arriving data
is stalled.

Single join processing, which is dealt in this paper, is a classic problem in
the database query processing. Hash join based algorithms are the best algo-
rithm [11]. To deal with data skew, several load sharing/balancing algorithms
are proposed. Their comparison is summarized by Hua et al.[6].

Imasaki et al. proposed adaptive single hash join algorithms [7] [8] and mul-
tiple join algorithms [9] [10] on a workstation cluster. Their algorithms are called
chunk-HJ which combines a chunking method with hash join to manage dynamic
changes that occur in cluster environment.

3 Load Balancing Algorithms

This section þrst explains the query processing architecture that we used and
then introduces the load balancing algorithm on the architecture.

3.1 The Query Processing Architecture

The query processing architecture which is dealt in this paper is shown in Figure
1. We assume processing relations are distributed over the Internet. A Database
Management System (DBMS) is running on a remote site and reads relations
from the database according to users' requests.

We use a cluster (called main cluster) to process queries submitted by users
within the cluster. The main cluster with a large number of processing nodes is
responsible for the query processing. The Query Manager (QM) runs on one of
the processing nodes and is responsible for executing queries. The Join Manager
(JM) is responsible for executing joins. Processing nodes (P) within the main
cluster are divided into several buddies. The JM decides the work distribution
among the buddies. The function of the buddy will be explained later in detail.
The buddy manager (BM) is invoked for each buddy and is responsible for work
distribution among processing nodes within the buddy.

243An Adaptive Load Balancing Algorithm for Large Data Parallel Processing



P

BM

P P P

JM

QM

JM

P

BM

P P P

buddy buddy

Main Cluster

1

2

3

InternetDBMS

Source site

Fig. 1. The Query Processing Architecture

3.2 The Proposed Algorithm

The proposed algorithm for single join processing is explained by using the no-
tation given in Table 1. The algorithm is divided into three parts as follows:

Interaction between source site and QM/JM ('1' in Figure 1)

1. Source sites (DBMSR and DBMSS) start reading Ri and Si, apply prede-
termined hash function to them and get Rh and Sh.

2. After reading sampleSize of R and S, DBMSs start sending the bucket dis-
tribution statistics to JM.

3. JM decides the BG assignments from Rh and Sh using bucket distribution
statistics and load balancing consideration and let the source sites know the
decision.

4. Source sites (DBMSR and DBMSS) send buckets which belongs to the
same BG together to JM.

Interaction between JM and BM ('2' in Figure 1) JM controls the load
balancing among BMs by changing the number of processing nodes for each
buddy at a certain interval based on the amount of work the buddy will process
in future. There are two kinds of such statistics: BGarrived

x and BGsource
x . Their

relationship is shown in Figure 2, together with BGpast
x in the case of the number

of BGs is 4. In this ÿgure, the number of tuples that belongs to BG1 (BG
arrived
1

)
is small right now. However, it will increase in the future as BGsource

1
is rather

large. The amount of this time delay for the increase depends on the transfer
speed of the network between the source site and the main cluster.

Thus, the number of processing nodes for BGx (px) is decided assuming p

processing nodes are available as follows:
parrived = x ÿ p

244 K. Imasaki and J.H. Abawajy



R,S two relations involved in the join

DBMSR DBMS for relation R

DBMSS DBMS for relation S

Ri
ith R segment

Rh hth R hash bucket after applying the hash function

BGx a bucket group which consist of several R/S buckets

BGi
x ith segment of BGx; the unit for work allocation

sampleSize sampling size

p the total number of available processing nodes

px the number of processing nodes for a buddy

parrived the total number of processing nodes for arrived data

psource the total number of processing nodes for source data

parrivedx the number of processing nodes for a buddy for arrived data

psourcex the number of processing nodes for a buddy for source data

BGpast
x the processed part of BGx

BGarrived
x the arrived part of BGx

BGsource
x BGx at the source site

Table 1. Notation used in algorithm description

psource = (1ÿ x) þ p

px = (BGarrived

x
)=(
X

i

BGarrived

i
)þparrived

x
+(BGsource

x
)=(
X

i

BGsource

i
)þpsource

x

where x is the constant and and it is set between 0 to 1; x is set to 0 when source
site is very close to the main cluster and/or the network speed is very fast; x is
set to 1 in the opposite case.

With the new px, JM adjusts the number of processing nodes for each buddy.

Load Balancing Within Buddy ('3' in Figure 1) The algorithm within
the buddy can be any parallel single join algorithm. We use the chunking-HJ
proposed by Imasaki et al.[8]. It has robust performance that takes into account
the following factors: data size, degree of data skew, degree of background load,
or any combination of these. The algorithm does not require any knowledge of
distribution and it does not involve pre-processing of the input relations.

4 Concluding Remarks

This paper proposed an adaptive load balancing algorithm for query processing
with large communication delay. The algorithm uses buddy concept and data
distribution statistics obtained at source sites. As we described in Introduction,
this algorithm can be used in not only database processing but also other appli-
cations dealing with large amount of data.

We are currently evaluating the algorithm using an event-driven simulation
programs. The ÿuctuating transfer rate is simulated by collected trace data.

245An Adaptive Load Balancing Algorithm for Large Data Parallel Processing



BGarrived
x

BG x
source

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ

þþþþþþþ
þþþþþþþ
þþþþþþþ
þþþþþþþ

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ

þþþþþþþ
þþþþþþþ
þþþþþþþ
þþþþþþþ
þþþþþþþ

ÿÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ

þþþþþþþþ
þþþþþþþ
þþþþþþþ
þþþþþþþ

ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ
ÿÿÿÿÿÿÿ

þþþþþþþ
þþþþþþþ
þþþþþþþ
þþþþþþþ
þþþþþþþ

ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ

þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ

ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ

þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ

ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ

þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ

ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ

þþþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ

þþþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ

ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ

þþþþ
þþþþ
þþþþ
þþþþ

ÿÿÿÿÿÿ
ÿÿÿÿÿ

þþþþþþ
þþþþþ

ÿÿÿ
ÿÿÿ
ÿÿÿ
ÿÿÿ

þþþþ
þþþ
þþþ
þþþ

ÿÿÿ
ÿÿÿ

þþþþ
þþþ

ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ

þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ

ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ
ÿÿÿÿ

þþþþ
þþþþ
þþþþ
þþþþ
þþþþ
þþþþ

#Tuples

BGpast
x

BG BG BG BG0 1 2 3

Fig. 2. Bucket Group Distribution in the case its number is 4

References

1. L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan. Scrambling Query Plans
to Cope with Unexpected Delays. In Fourth International Conference on Parallel
and Distributed Information Systems (PDIS '96), pages 208{219, Miami Beach,
Florida, USA, Dec. 1996. IEEE Computer Society Press.

2. R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Process-
ing. In W. Chen, J. Naughton, and P. A. Bernstein, editors, The 2000 ACM SIG-
MOD International Conference on Management of Data, volume 29(2) of SIGMOD
Record (ACM Special Interest Group on Management of Data), pages 261{272,
Dallas, Texas, May 2000. ACM Press.

3. L. Bouganim, F. Fabert, C. Mohan, and P. Valduriez. A Dynamic Query Processing
Architecture for Data Integration Systems. In 16th International Conference on
Data Engineering, pages 425{434. IEEE Computer Society Press, Mar. 2000.

4. L. Bouganim, F. Fabert, C. Mohan, and P. Valduriez. Dynamic Query Scheduling
in Data Integration Systems. IEEE Data Engineering Bulletin: Special Issue on
Adaptive Query Processing, 23(2):42{48, June 2000.

5. J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum,
S. Madden, V. Raman, and M. Shah. Adaptive Query Processing: Technology
in Evolution. IEEE Data Engineering Bulletin: Special Issue on Adaptive Query
Processing, 23(2):7{18, June 2000.

246 K. Imasaki and J.H. Abawajy



6. K. A. Hua and W. Tavanapong. Performance of Load Balancing Techniques for
Join Operations in Shared-nothing Database Management Systems. Journal of
Parallel and Distributed Computing, 56(1):17{46, Jan. 1999.

7. K. Imasaki and S. Dandamudi. Performance Evaluation of Nested-loop Join Pro-
cessing on Networks of Workstations. In Proceedings of the Seventh International
Conference on Parallel and Distrubuted Systems, pages 537{544, Iwate, Japan, July
2000.

8. K. Imasaki and S. Dandamudi. An Adapive Hash Join Algorithm on a Network
of Workstations. In International Parallel and Distributed Processing Symposium
(IPDPS), Fort Lauderdale, Florida, Apr. 2002.

9. K. Imasaki, H. Nguyen, and S. Dandamudi. Performance Comparison of Pipelined
Hash Joins on Workstation Clusters. In 9th International Conference on High
Performance Computing (HiPC2002), pages 264{275, Bangalore, India, Dec. 2002.

10. K. Imasaki, H. Nguyen, and S. Dandamudi. Performance of Pipelined Nested Loop
and Hash Joins on a Workstation Cluster. In The 2002 International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA'02),
June 2002.

11. D. A. Schneider and D. J. DeWitt. A Performance Evaluation of Four Parallel Join
Algorithms in a Shared-nothing Multiprocessor environment. SIGMOD Record,
18(2):110{121, June 1989.

12. T. Urhan and M. J. Franklin. XJoin: Getting Fast Answers From Slow and Bursty
Networks. Technical Report CS-TR-3994, University of Maryland, College Park,

Feb. 1999.

247An Adaptive Load Balancing Algorithm for Large Data Parallel Processing


	1 Introduction
	2 Related Work
	3 Load Balancing Algorithms
	3.1 The Query Processing Architecture
	3.2 The Proposed Algorithm

	4 Concluding Remarks
	References

