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Abstract. The parallelisation of a sequential nonequilibrium molecular dynamics 
(NEMD) code for simulating polymer melts is presented. The issues impacting 
the efficiency of the parallel executable are probed. Various techniques, such as 
loop interchange, loop fusion and code restructure, have been applied to the in-
cremental OpenMP parallelisation. Significant performance improvement and 
speed up are achieved for large sized systems when the parallelized code is com-
pared to the existing sequential code. The parallelised code has successfully been 
applied to simulate the shear rheology of a polymer melt system.  

 

1   Introduction 
 
Nonequilibrium molecular dynamics (NEMD) has proven to be a useful tool in inves-
tigateing transport properties of materials. However, NEMD simulations of polymeric 
systems are often crippled by the excessively high computational effort required. The 
complexity arises mostly from the large number of atoms involved and the longer 
relaxation time of the materials. NEMD code for the simulation of polymer melts 
under shear and planar elongational flows at realistic flow conditions, recently devel-
oped in Fortran 90 by Matin, Daivis and Todd [1–3], was specifically optimised for 
high efficiency on vector architecture processors. However, it performs poorly on 
cluster supercomputers. The purpose of this work is to parallelise the NEMD code 
using OpenMP parallelism and explore the issues that impact the efficiencies of the 
parallelised code. Within the paper we also report the application of this parallelised 
code in successfully simulating the shear rheology of a polymer system.  

OpenMP [4] is a portable programming model for shared memory architecture 
based on threads. It offers a small but efficient set of language constructs that support 
both fine- and coarse-grained parallelism paradigms. The fine-grained paradigm par-
allelises most of the loops in a code, which is simple and only requires a quick analy-
sis of the loop in question. However, sometimes the number of loops is so large and 
the computation task in a loop is so small that the fine-grained scheme is probably not 
appropriate. The coarse-grained paradigm requires a parallelisation strategy similar to 
a MPI strategy and explicit synchronisation is required. The strength of the OpenMP 
approach lies in the possibility to proceed incrementally. It is easier to use OpenMP to 
convert an existing code. Although do-loop splitting with OpenMP is less efficient 
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and scalable than domain decomposition (DD) using MPI approaches, its fast imple-
mentation involves significantly less programming effort.  

2   The NEMD Code 
 
The NEMD code was developed for simulating linear chain polymers under shear and 
planar elongation [1–3, 5]. The polymer chain is treated as a freely joined chain (FJC) 
where a chain can be characterized by the number of beads (or sites) and the bond 
length between two adjacent sites. For performance gains, an efficient cell-code algo-
rithm for constructing neighbour lists was implemented to calculate the forces [2]. 
The appropriate equations of motion for the positions and momenta are based on the 
SLLOD equations of motion for molecular fluids [6,7]. A fifth order Gear Predictor-
Corrector Scheme was used for integrating the equations of motion [8]. Bond lengths 
between adjacent sites on the same molecule are held constant by bond-constraint 
forces, determined by using Gauss’s principle of least constrain [9].  

Normally, the effort exerted to generate the parallel code must be weighted 
against the speed-up reachable. Extensive performance analysis on the code and pro-
filing tests reveal that various subroutines contribute cooperatively towards the total 
execution time, such as, the subroutines for advancing particles, calculating forces, 
and applying constraints. The amount of computational efforts involved in each sub-
routine can vary considerably depending on simulation parameters. For example, the 
force procedure becomes dominant in time consumption for systems of high density 
and short chains, while the time spent in computing bond constraints significantly 
increases as the number of sites per chain increases. The information from the code 
analysis and profiling tests suggests that most major subroutines have to be parallel-
ised.  
 
 
3  Parallelisation of the NEMD Code 
 
When one writes parallel programs, one expects a linear speed up in performance. 
However, there are some hurdles to overcome in the efficient parallelisation of loops. 
For example, loops may have data dependencies among iterations caused by shared 
variables which result in some un-parallelisable code. There may be no sufficient 
work in a loop body and the performance suffers from the high parallel start-up costs. 
There may be too many references to shared variables and low cache affinity. Various 
techniques, such as loop interchange and loop fusion, were applied in the loop trans-
formations to improve the parallel efficiency. In order to optimise data locality and 
efficient memory utilisation some procedures were restructured. To achieve this, it is 
necessary to maintain a global perspective of the program so that changes in one pro-
cedure have no side effects on others. The following sections describe the incremental 
parallelisation techniques used in detail and discuss the performance effects of the 
various techniques. 
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3.1   Data Dependencies 
 
Data dependencies prevent relevant sections of code to be parallelised. The serial 
parts limit the performance of parallel code and pose an upper limit on the efficiency. 
In order for a loop to parallelise, access to the shared data must be mutually exclusive. 
Data dependency can be valid if all the iterations in a loop can be executed in any 
order and give the same result at the end of the execution. One example is the creation 
of neighbour lists, nlist[][]. The code fragment is shown as: 
 
    j = 1 
    do i = 1, n 
      if (nmask(i))  then 
        nlist(j, 1) = iindex(i) 
        nlist(j, 2) = jindex(i) 
        j = j + 1 
      endif 

enddo 
 
nmask is a logical array that identifies the particle pair within a cut-off distance,  iin-
dex and jindex are arrays of indices of the paired particles. Obviously, the value of j 
in one iteration step depends on the results of previous iteration, therefore it can only 
be executed sequentially. Data dependency may also occur if a shared variable is writ-
ten in one iteration and possibly read in another one. A typical example is the main 
force computing loop for accumulating forces as given below in pseudo code: 
 
        loop i <- 1 ... n 
 compute k from i 
 compute fijx[i] 
      fx[k] <= fx[k] + fijx[i] 
   end loop i 
  
fijx[i] is the force between i and j particles in the x direction and fx[k] is the accumu-
lated force on the particle k in the x direction due to all other particles. From a paral-
lelism perspective, when pair-wise interactions are treated using a neighbour list, 
complexities arise when atom k interacts with atom i, and simultaneously with atom j. 
In this case, the force exerted on k, fx[k], is updated from the contributions due to 
atoms i and j, which cannot be done concurrently on different threads. We had im-
plemented synchronised code by using OpenMP ‘atomic’ updates or ‘critical’ [4] di-
rectives. However, testing revealed that the cost of the synchronisation is expensive 
due to significant synchronisation overhead. Thereafter, this data dependency problem 
was solved through moving the dependency part into a separate loop, and then only 
parallelising the main loop without the dependency. The distribution of loop iterations 
is often based on loop index, therefore, a clean relationship between the loop index 
variable and array indices is of fundamental importance. The data dependencies in the 
existing code were introduced from array linearisation in implementing the particular 
algorithm for the neighbour list. Array linearisation is a common efficient way to fa-
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cilitate vectorisation of nested loops. However, it can obfuscate the relationship be-
tween array and loop indices, thereby foiling parallelisation efforts [10].  

 
3.2 Loop Fusion and Interchange: Performance Improvement by Increasing 

Parallel Loop Granularity 
 
The number of loops incrementally transformed in a code is sometimes so large that 
the parallelised code is too fine-grained. For example, the initial transformations of 
the force procedure produced about 30 parallel do loops. Rather than performance 
gains, the parallelised code ran slower on 4 processors. This is because many small 
loops have no sufficient work in their loop bodies, resulting in high parallel overhead 
when entering and exiting the loops. In later modifications, two techniques, loop fu-
sion and loop interchange, were applied to increase the parallel loop granularity.  

Loop fusion increases the work in a loop body by combining several loops. Fu-
sion promotes software pipelining and reduces the frequency of branches, synchroni-
sation and scheduling overhead. Loop fusion can be inhibited by statements between 
loops which may have dependencies with data accessed by the loops. To promote 
fusion, it is often necessary to reorder the code to get loops which are not separated by 
statements creating data dependencies. One example is the calculation of forces and 
potential energy. As the existing serial code needs to handle different flow types (e.g., 
shear flow, elongational flow, bulk compression), the force and potential calculations 
were scheduled into several loops. A segment of the pseudo code is given below: 
 
         loop i <- 1 ... n 
  calculate rijx[], rijy[], rijz[] 

end i loop 
if not do_elongation 
   loop j <- 1 ... n 
      calculate PBC’s rijx[], rijy[], rijz[] 

          calculate rijsq[] 
   end j loop 
else 
   loop j <- 1 ... nab 
      transform rijx[]... to rijx_trans[] ...  

          calculate PBC’s rijx_trans[]... 
          transform rijx_trans[] ... back to rijx[]... 
          calculate rijsq[] 
       end j loop 

end if 
loop i <- 1 ... nab 
   calculate rijxc[],rijyc[],rijzc[],fmask[] 
end i loop 
loop j <- 1 ... nab 
   if rijsq[j] ≤ rcutsq 
      calculate uij[],fijx[],fijy[],fijz[] 
   end if 
end j loop 
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sum forces fx[],fy[],fz[] 
sum potential uintra[],uinter[] 
 

The first loop calculates distances over the whole neighbour list. Next, if the flow is 
not do_elongation the loop simply applies standard periodic boundary conditions 
(PBCs) and computes the square of distances, otherwise it first needs to transform 
distances, rijx, to the appropriate elongational flow PBC frame, rijx_trans [11-13]. 
The next loop computes centre of mass distances, rijxc, rijyc and rijzc. They are used 
later for computing the molecular pressure tensor.  fmask is a logical array that identi-
fies those pairs within the cut-off distance. After fmask is determined, the loop calcu-
lates forces and potential, uij, over all pair interactions within the cut-off distance. 
The accumulation of forces is conducted in three loops. To sum potential energy over 
all the particles, several additional loops are used first to separate intra and intermo-
lecular interactions (uintra and uinter) and then to sum them separately. 

The reorder and fusion made to the code combined most of the loops into a main 
loop. First, the if condition statement was moved before the computation of distances. 
This gives a higher level branch and allows distance computation, PBC and force cal-
culations to be done in one main loop. The force accumulation may be combined into 
the main loop as well. However, as discussed in section 3.1, this can result in data 
dependency problems, therefore the three loops were modified into one nested loop. 
The several loops for computing potentials were simplified and then fused into the 
main loop, with only several lines of code. The loop for the computation of centre of 
mass distances was moved into other parallel sections. Now the force and potential 
calculations become two main loops for parallelization as shown in the following: 
 
          if not do_elongation 
       loop i <- 1 ... nab 
          calculate rijx[], rijy[], rijz[] 
          calculate PBC’s rijx[], rijy[], rijz[] 
                        calculate rijsq[], fmask[] 

      if rijsq[j] ≤ rcutsq 
         calculate uij[],fijx[]... uintra[],uinter[] 
      end if 
   end loop i 
else 

       loop j <- 1 ... nab 
          calculate rijx[], rijy[], rijz[] 
          transform rijx[]... to rijx_trans[] ... 
          calculate PBC’s rijx_trans[] ... 
          transform rijx_trans[] ... back to rijx[]... 
                        calculate rijsq[], fmask[] 

      if rijsq[j] ≤ rcutsq 
         calculate uij[],fijx[]... uintra[],uinter[] 
      end if 
   end loop j 
end if 
sum forces fx[], fy[], fz[]                                         
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In the case of nested loops, once an array dimension and its corresponding loop have 
been selected for parallelisation, performance can be obtained by moving this loop to 
the outmost position. This loop interchange method reduces the frequency of entering 
and exiting a parallel loop and hence the parallel overhead. The loop interchange 
method was extensively used in parallelising the procedures involving the calculation 
of constraint forces, proportional feedback and linear equation solvers. Given below is 
an example of the code to calculate the symmetric dot product. 
 
      do i = 1, n 
        do j = i, n 
          a(i,j,:)=(x12(i,:)*x12(j,:)+y12(i,:)*y12(j,:) & 
          &        + z12(i,:)*z12(j,:))*ka(i,j,:) 
          a(j,i,:) = a(i,j,:) 
        enddo 
      enddo 
 
The innermost loop is an implicit one expressed as an array operation. The parallelisa-
tion of this nested loop includes the conversion of the implicit loop to an explicit one 
and loop interchange. The parallelised loop is shown below: 
 
!$omp  parallel do default(shared) private(i, j, k) 
    do k = 1, nm 
      do i = 1, n 
        do j = i, n 
          a(i,j,k)=(x12(i,k)*x12(j,k)+y12(i,k)*y12(j,k) & 
           &           + z12(i,k)*z12(j,k))*ka(i,j,k) 
          a(j,i,k) = a(i,j,k) 
        enddo 
      enddo 
    enddo 
 
 
3.3   Parallel Regions: Performance Improvement by Reducing fork/joins 
 
There are some cases in which loop fusion is not suitable. One case is when several 
loops have to be executed sequentially. Another case is when various loops have a 
different loop index or step. We can parallelise each individual do loop. However, this 
possibly produces parallel start-up overhead because of many thread forks and joins 
involved. OpenMP supports parallel regions. Several do loops can be put inside the 
parallel region. New threads are forked when entering the region and then joined 
when exiting the region. Parallel loops inside the parallel region are executed in a 
work-sharing fashion. The execution of associated statements is distributed among 
existing threads without new threads created when entering the next loop from the 
current one inside the parallel region. In the parallel NEMD code, performance im-
proved when a series of parallel loops were enclosed within a parallel region. This 
replaced multiple fork/joins with a single fork/join. Another parallel region construc-
tion is parallel sections, which define a sequence of contiguous blocks. The beginning 
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of each block is marked with a “section” directive and one block is assigned to one 
thread. This method was applied for computing the molecular pressure tensor. 

 
3.4   Efficient Use of Memory  
 
Effective parallelisation and efficient memory utilisation are tightly coupled. This 
requires maximising cache reuse and minimising cache misses. The way to efficiently 
use local memory (caches) is to use a memory stride of one. This means array ele-
ments are accessed in the same order they are stored in memory. Fortran uses “Col-
umn-major” order for storing array elements. When possible, nested loops in the code 
were interchanged to make the leftmost index of a multi-dimensional array in the in-
ner loop to achieve the preferred order. This allows the inner loop to correspond to 
access in consecutive data elements and promotes the reuse of caches. The second 
example presented in Section 3.2 can also illustrate this point. In order to increase the 
data locality, most array variables used for holding intermediate data in the code were 
replaced with scalar variables. The parallel performance was improved by declaring 
these variables as private to threads. This also reduces the memory usage, particularly 
in the case of using the so-called ‘brute force’ method [5]. 

 
3.5   Parallelised Code Performance 
 
In order to probe the efficiency of the parallelised NEMD code, a series of tests were 
performed. Most tests were conducted on systems at equilibrium and at a reduced 
density of 0.8, reduced molecular temperature of 1.0, and reduced time-step of 0.001. 
The data in Table 1 compare the performances of the existing sequential code and 
parallelised code running on 4 processors where the cell-code implementation of 
neighbour list construction is used [2]. It can be clearly seen that significant perform-
ance improvement has been achieved for big systems with large numbers of sites per 
chain. It should be noted that the restructure and optimization of the code during the 
parallelisation implementation also contribute to the high speed-up for the long chain 
polymers which is much higher than the processors used. The parallelised code also 
reduces the memory requirement for running the program. In the case of using the 
brute force method, nearly 80% memory reduction was achieved for large sized sys-
tems.  More than 30% memory reduction can be achieved when the cell method is 
used.  
 
 
Table 1.  Execution time (in CPU hh:mm:ss) of the sequential and parallel codes for systems of 
fixed particle number (np = 40000) and various numbers of molecules (nm) and sites (ns). Note 
that nm = np/ns 
   

Ns       1       4      10      20      50     100 
Seq. code 00:17:19 00:19:12 00:35:11 00:53:15 05:25:46 22:07:52 
Paral. code 00:06:02 00:06:16 00:06:42 00:09:09 00:20:45 01:09:41 
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For long chain polymers with large number of sites, ns, most of the execution time 
is consumed in the procedures to solve liner equations and calculate proportional 
feedback as a result of using Gaussian constraint forces to constrain bond lengths. 
These procedures contain few nested loops which are very intensive when the site 
number, ns, is large. The parallel strategies and optimisation techniques discussed 
in Section 3 are particularly efficient for these procedures, where linear and some-
times super-linear speed-up has been achieved in the case of large site and particle 
numbers. The super linear speed up may stem from an optimal usage of memory 
cache and hence the speed up obtained can be higher than the ratio of processors 
used.  

However, the performance improvements for the systems of short chains or 
small number of particles is less significant. Various factors affect the parallel effi-
ciency. One is the high parallel start-up cost due to the lack of sufficient work in a 
parallel loop, particularly when the system size is small. This may be attributed to 
the nature of the ‘fork-join parallelism’ of OpenMP and the structure of the code 
where some loops have less computational workload, so that the ‘forking’ and ‘join-
ing’ processes are expensive. The serial parts in the procedures involving the forma-
tion of neighbour lists and implementation of the cell-code algorithm limit the per-
formance of the parallel code as well. This limitation can become more significant 
if the neighbour lists need to be updated frequently. Another major factor is the less 
efficient use of memory caches. For example, the main force computation loop con-
tains intensive computation tasks but with many references to various array vari-
ables, and memory access to the elements of some arrays is in an irregular manner. 
This results in low cache affinity and more cache missing. Despite the less signifi-
cant performance improvement of the parallel code for small sized systems, the 
great improvement for large systems is of particular importance for our work, as 
future simulations will be concentrated on long chain polymers.  
 
 

4    Simulation Results 
 
In addition to the performance tests discussed in Section 3.5, we conducted simula-
tions on a 50-site chain system of 400 molecules. Equilibrium and shear properties 
were examined. The simulations were performed at a site density of 0.84 and a mo-
lecular temperature of 1.0 with a time-step of 0.001. Due to the longer relaxation 
time of this system, each simulation typically requires over 1 million steps depend-
ing on the value of shear rate applied. This involves around one month of simula-
tion time for a single task if the sequential code is used. The execution time for a 
simulation is now reduced to several days when the parallelized code runs on 4 
processors.    
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Fig. 1. Non-Newtonian shear viscosity as a function of the shear rate. The open circle data are 
taken from Matin [5], while our current parallelised simulation data are represented by solid 
squares 
 
 
The shear viscosity versus the shear rate is plotted in Fig. 1 for constant volume simu-
lations. A shear-thinning region is evident. The lower Newtonian regime was not 
reached because the examined shear rates were still not low enough. A slight shear-
thickening can be observed from Fig. 1, due to performing the simulations at constant 
volume [14]. The data plotted in Fig. 1 also include the results from a system of 256 
molecules, taken from Matin [5]. Very good agreement is obtained, which validates 
the accuracy and correctness of the parallel implementation of the code.       
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Fig. 2.   Pressure versus shear rate 

 



284         Z. Zhou, B.D. Todd, and P.J. Daivis 

 

 

           

0.0 0.1 0.2 0.3 0.4 0.5

10000

15000

20000

25000

30000

35000

40000

po
te

nt
ia

l E
ne

rg
y

shear rate

 
Fig. 3. System potential energy versus shear rate 

 
 
The results for the molecular pressure and the potential energy are plotted against the 
shear rate respectively on Figs. 2 and 3. Both the molecular pressure and the potential 
energy change little when the shear rate is less than 0.1. After this value, they increase 
rapidly as the shear rate increases. For simple fluids, NEMD simulations have demon-
strated that the pressure or energy as a function of shear rate under planar shear flow 
follows a power law [15, 16]. The results from this study seem unlikely to give such a 
simple relationship for long chain systems.  
 
               
5    Summary 
 
A sequential NEMD code has been successfully converted into an efficient parallel 
version using OpenMP directives. Major techniques, such as loop interchange, loop 
fusion, and code restructure, have been applied to the incremental OpenMP paralleli-
sation. Performance studies of the parallel code are made. The speed up achieved in 
the present work is significant for large sized systems with large numbers of sites per 
chain. This is particularly important for the simulation of long-chain polymer melt 
systems. Linear or super-linear speed-up is achieved on some parallelised procedures 
in the case of large sized systems, while the speed up of other parallelised procedures 
is lower than the theoretical speed up value. The computational workload that can be 
parallelised varies, depending on the frequency of updating neighbour lists, and hence 
depends on parametric conditions. The parallelised code has successfully been applied 
to simulate the shear rheology of a polymer system and produces results well consis-
tent with previously validated serial and vector code. 
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