

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 275–285, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Parallelisation of Nonequilibrium Molecular Dynamics
Code for Polymer Melts Using OpenMP

Zhongwu Zhou1, B.D. Todd1, and Peter J. Daivis2

1 Centre for Molecular Simulation, Swinburne University of Technology
PO Box 218, Hawthorn, Vic. 3122, Australia
2 Dept. of Applied Physics, RMIT University

GPO Box 2476V, Melbourne, Vic. 3001, Australia

Abstract. The parallelisation of a sequential nonequilibrium molecular dynamics
(NEMD) code for simulating polymer melts is presented. The issues impacting
the efficiency of the parallel executable are probed. Various techniques, such as
loop interchange, loop fusion and code restructure, have been applied to the in-
cremental OpenMP parallelisation. Significant performance improvement and
speed up are achieved for large sized systems when the parallelized code is com-
pared to the existing sequential code. The parallelised code has successfully been
applied to simulate the shear rheology of a polymer melt system.

1 Introduction

Nonequilibrium molecular dynamics (NEMD) has proven to be a useful tool in inves-
tigateing transport properties of materials. However, NEMD simulations of polymeric
systems are often crippled by the excessively high computational effort required. The
complexity arises mostly from the large number of atoms involved and the longer
relaxation time of the materials. NEMD code for the simulation of polymer melts
under shear and planar elongational flows at realistic flow conditions, recently devel-
oped in Fortran 90 by Matin, Daivis and Todd [1–3], was specifically optimised for
high efficiency on vector architecture processors. However, it performs poorly on
cluster supercomputers. The purpose of this work is to parallelise the NEMD code
using OpenMP parallelism and explore the issues that impact the efficiencies of the
parallelised code. Within the paper we also report the application of this parallelised
code in successfully simulating the shear rheology of a polymer system.

OpenMP [4] is a portable programming model for shared memory architecture
based on threads. It offers a small but efficient set of language constructs that support
both fine- and coarse-grained parallelism paradigms. The fine-grained paradigm par-
allelises most of the loops in a code, which is simple and only requires a quick analy-
sis of the loop in question. However, sometimes the number of loops is so large and
the computation task in a loop is so small that the fine-grained scheme is probably not
appropriate. The coarse-grained paradigm requires a parallelisation strategy similar to
a MPI strategy and explicit synchronisation is required. The strength of the OpenMP
approach lies in the possibility to proceed incrementally. It is easier to use OpenMP to
convert an existing code. Although do-loop splitting with OpenMP is less efficient

276 Z. Zhou, B.D. Todd, and P.J. Daivis

and scalable than domain decomposition (DD) using MPI approaches, its fast imple-
mentation involves significantly less programming effort.

2 The NEMD Code

The NEMD code was developed for simulating linear chain polymers under shear and
planar elongation [1–3, 5]. The polymer chain is treated as a freely joined chain (FJC)
where a chain can be characterized by the number of beads (or sites) and the bond
length between two adjacent sites. For performance gains, an efficient cell-code algo-
rithm for constructing neighbour lists was implemented to calculate the forces [2].
The appropriate equations of motion for the positions and momenta are based on the
SLLOD equations of motion for molecular fluids [6,7]. A fifth order Gear Predictor-
Corrector Scheme was used for integrating the equations of motion [8]. Bond lengths
between adjacent sites on the same molecule are held constant by bond-constraint
forces, determined by using Gauss’s principle of least constrain [9].

Normally, the effort exerted to generate the parallel code must be weighted
against the speed-up reachable. Extensive performance analysis on the code and pro-
filing tests reveal that various subroutines contribute cooperatively towards the total
execution time, such as, the subroutines for advancing particles, calculating forces,
and applying constraints. The amount of computational efforts involved in each sub-
routine can vary considerably depending on simulation parameters. For example, the
force procedure becomes dominant in time consumption for systems of high density
and short chains, while the time spent in computing bond constraints significantly
increases as the number of sites per chain increases. The information from the code
analysis and profiling tests suggests that most major subroutines have to be parallel-
ised.

3 Parallelisation of the NEMD Code

When one writes parallel programs, one expects a linear speed up in performance.
However, there are some hurdles to overcome in the efficient parallelisation of loops.
For example, loops may have data dependencies among iterations caused by shared
variables which result in some un-parallelisable code. There may be no sufficient
work in a loop body and the performance suffers from the high parallel start-up costs.
There may be too many references to shared variables and low cache affinity. Various
techniques, such as loop interchange and loop fusion, were applied in the loop trans-
formations to improve the parallel efficiency. In order to optimise data locality and
efficient memory utilisation some procedures were restructured. To achieve this, it is
necessary to maintain a global perspective of the program so that changes in one pro-
cedure have no side effects on others. The following sections describe the incremental
parallelisation techniques used in detail and discuss the performance effects of the
various techniques.

Parallelisation of Nonequilibrium Molecular Dynamics Code for Polymer Melts 277

3.1 Data Dependencies

Data dependencies prevent relevant sections of code to be parallelised. The serial
parts limit the performance of parallel code and pose an upper limit on the efficiency.
In order for a loop to parallelise, access to the shared data must be mutually exclusive.
Data dependency can be valid if all the iterations in a loop can be executed in any
order and give the same result at the end of the execution. One example is the creation
of neighbour lists, nlist[][]. The code fragment is shown as:

 j = 1
 do i = 1, n
 if (nmask(i)) then
 nlist(j, 1) = iindex(i)
 nlist(j, 2) = jindex(i)
 j = j + 1
 endif

enddo

nmask is a logical array that identifies the particle pair within a cut-off distance, iin-
dex and jindex are arrays of indices of the paired particles. Obviously, the value of j
in one iteration step depends on the results of previous iteration, therefore it can only
be executed sequentially. Data dependency may also occur if a shared variable is writ-
ten in one iteration and possibly read in another one. A typical example is the main
force computing loop for accumulating forces as given below in pseudo code:

 loop i <- 1 ... n
 compute k from i
 compute fijx[i]
 fx[k] <= fx[k] + fijx[i]
 end loop i

fijx[i] is the force between i and j particles in the x direction and fx[k] is the accumu-
lated force on the particle k in the x direction due to all other particles. From a paral-
lelism perspective, when pair-wise interactions are treated using a neighbour list,
complexities arise when atom k interacts with atom i, and simultaneously with atom j.
In this case, the force exerted on k, fx[k], is updated from the contributions due to
atoms i and j, which cannot be done concurrently on different threads. We had im-
plemented synchronised code by using OpenMP ‘atomic’ updates or ‘critical’ [4] di-
rectives. However, testing revealed that the cost of the synchronisation is expensive
due to significant synchronisation overhead. Thereafter, this data dependency problem
was solved through moving the dependency part into a separate loop, and then only
parallelising the main loop without the dependency. The distribution of loop iterations
is often based on loop index, therefore, a clean relationship between the loop index
variable and array indices is of fundamental importance. The data dependencies in the
existing code were introduced from array linearisation in implementing the particular
algorithm for the neighbour list. Array linearisation is a common efficient way to fa-

278 Z. Zhou, B.D. Todd, and P.J. Daivis

cilitate vectorisation of nested loops. However, it can obfuscate the relationship be-
tween array and loop indices, thereby foiling parallelisation efforts [10].

3.2 Loop Fusion and Interchange: Performance Improvement by Increasing

Parallel Loop Granularity

The number of loops incrementally transformed in a code is sometimes so large that
the parallelised code is too fine-grained. For example, the initial transformations of
the force procedure produced about 30 parallel do loops. Rather than performance
gains, the parallelised code ran slower on 4 processors. This is because many small
loops have no sufficient work in their loop bodies, resulting in high parallel overhead
when entering and exiting the loops. In later modifications, two techniques, loop fu-
sion and loop interchange, were applied to increase the parallel loop granularity.

Loop fusion increases the work in a loop body by combining several loops. Fu-
sion promotes software pipelining and reduces the frequency of branches, synchroni-
sation and scheduling overhead. Loop fusion can be inhibited by statements between
loops which may have dependencies with data accessed by the loops. To promote
fusion, it is often necessary to reorder the code to get loops which are not separated by
statements creating data dependencies. One example is the calculation of forces and
potential energy. As the existing serial code needs to handle different flow types (e.g.,
shear flow, elongational flow, bulk compression), the force and potential calculations
were scheduled into several loops. A segment of the pseudo code is given below:

 loop i <- 1 ... n
 calculate rijx[], rijy[], rijz[]

end i loop
if not do_elongation
 loop j <- 1 ... n
 calculate PBC’s rijx[], rijy[], rijz[]

 calculate rijsq[]
 end j loop
else
 loop j <- 1 ... nab
 transform rijx[]... to rijx_trans[] ...

 calculate PBC’s rijx_trans[]...
 transform rijx_trans[] ... back to rijx[]...
 calculate rijsq[]
 end j loop

end if
loop i <- 1 ... nab
 calculate rijxc[],rijyc[],rijzc[],fmask[]
end i loop
loop j <- 1 ... nab
 if rijsq[j] ≤ rcutsq
 calculate uij[],fijx[],fijy[],fijz[]
 end if
end j loop

Parallelisation of Nonequilibrium Molecular Dynamics Code for Polymer Melts 279

sum forces fx[],fy[],fz[]
sum potential uintra[],uinter[]

The first loop calculates distances over the whole neighbour list. Next, if the flow is
not do_elongation the loop simply applies standard periodic boundary conditions
(PBCs) and computes the square of distances, otherwise it first needs to transform
distances, rijx, to the appropriate elongational flow PBC frame, rijx_trans [11-13].
The next loop computes centre of mass distances, rijxc, rijyc and rijzc. They are used
later for computing the molecular pressure tensor. fmask is a logical array that identi-
fies those pairs within the cut-off distance. After fmask is determined, the loop calcu-
lates forces and potential, uij, over all pair interactions within the cut-off distance.
The accumulation of forces is conducted in three loops. To sum potential energy over
all the particles, several additional loops are used first to separate intra and intermo-
lecular interactions (uintra and uinter) and then to sum them separately.

The reorder and fusion made to the code combined most of the loops into a main
loop. First, the if condition statement was moved before the computation of distances.
This gives a higher level branch and allows distance computation, PBC and force cal-
culations to be done in one main loop. The force accumulation may be combined into
the main loop as well. However, as discussed in section 3.1, this can result in data
dependency problems, therefore the three loops were modified into one nested loop.
The several loops for computing potentials were simplified and then fused into the
main loop, with only several lines of code. The loop for the computation of centre of
mass distances was moved into other parallel sections. Now the force and potential
calculations become two main loops for parallelization as shown in the following:

 if not do_elongation
 loop i <- 1 ... nab
 calculate rijx[], rijy[], rijz[]
 calculate PBC’s rijx[], rijy[], rijz[]
 calculate rijsq[], fmask[]

 if rijsq[j] ≤ rcutsq
 calculate uij[],fijx[]... uintra[],uinter[]
 end if
 end loop i
else

 loop j <- 1 ... nab
 calculate rijx[], rijy[], rijz[]
 transform rijx[]... to rijx_trans[] ...
 calculate PBC’s rijx_trans[] ...
 transform rijx_trans[] ... back to rijx[]...
 calculate rijsq[], fmask[]

 if rijsq[j] ≤ rcutsq
 calculate uij[],fijx[]... uintra[],uinter[]
 end if
 end loop j
end if
sum forces fx[], fy[], fz[]

280 Z. Zhou, B.D. Todd, and P.J. Daivis

In the case of nested loops, once an array dimension and its corresponding loop have
been selected for parallelisation, performance can be obtained by moving this loop to
the outmost position. This loop interchange method reduces the frequency of entering
and exiting a parallel loop and hence the parallel overhead. The loop interchange
method was extensively used in parallelising the procedures involving the calculation
of constraint forces, proportional feedback and linear equation solvers. Given below is
an example of the code to calculate the symmetric dot product.

 do i = 1, n
 do j = i, n
 a(i,j,:)=(x12(i,:)*x12(j,:)+y12(i,:)*y12(j,:) &
 & + z12(i,:)*z12(j,:))*ka(i,j,:)
 a(j,i,:) = a(i,j,:)
 enddo
 enddo

The innermost loop is an implicit one expressed as an array operation. The parallelisa-
tion of this nested loop includes the conversion of the implicit loop to an explicit one
and loop interchange. The parallelised loop is shown below:

!$omp parallel do default(shared) private(i, j, k)
 do k = 1, nm
 do i = 1, n
 do j = i, n
 a(i,j,k)=(x12(i,k)*x12(j,k)+y12(i,k)*y12(j,k) &
 & + z12(i,k)*z12(j,k))*ka(i,j,k)
 a(j,i,k) = a(i,j,k)
 enddo
 enddo
 enddo

3.3 Parallel Regions: Performance Improvement by Reducing fork/joins

There are some cases in which loop fusion is not suitable. One case is when several
loops have to be executed sequentially. Another case is when various loops have a
different loop index or step. We can parallelise each individual do loop. However, this
possibly produces parallel start-up overhead because of many thread forks and joins
involved. OpenMP supports parallel regions. Several do loops can be put inside the
parallel region. New threads are forked when entering the region and then joined
when exiting the region. Parallel loops inside the parallel region are executed in a
work-sharing fashion. The execution of associated statements is distributed among
existing threads without new threads created when entering the next loop from the
current one inside the parallel region. In the parallel NEMD code, performance im-
proved when a series of parallel loops were enclosed within a parallel region. This
replaced multiple fork/joins with a single fork/join. Another parallel region construc-
tion is parallel sections, which define a sequence of contiguous blocks. The beginning

Parallelisation of Nonequilibrium Molecular Dynamics Code for Polymer Melts 281

of each block is marked with a “section” directive and one block is assigned to one
thread. This method was applied for computing the molecular pressure tensor.

3.4 Efficient Use of Memory

Effective parallelisation and efficient memory utilisation are tightly coupled. This
requires maximising cache reuse and minimising cache misses. The way to efficiently
use local memory (caches) is to use a memory stride of one. This means array ele-
ments are accessed in the same order they are stored in memory. Fortran uses “Col-
umn-major” order for storing array elements. When possible, nested loops in the code
were interchanged to make the leftmost index of a multi-dimensional array in the in-
ner loop to achieve the preferred order. This allows the inner loop to correspond to
access in consecutive data elements and promotes the reuse of caches. The second
example presented in Section 3.2 can also illustrate this point. In order to increase the
data locality, most array variables used for holding intermediate data in the code were
replaced with scalar variables. The parallel performance was improved by declaring
these variables as private to threads. This also reduces the memory usage, particularly
in the case of using the so-called ‘brute force’ method [5].

3.5 Parallelised Code Performance

In order to probe the efficiency of the parallelised NEMD code, a series of tests were
performed. Most tests were conducted on systems at equilibrium and at a reduced
density of 0.8, reduced molecular temperature of 1.0, and reduced time-step of 0.001.
The data in Table 1 compare the performances of the existing sequential code and
parallelised code running on 4 processors where the cell-code implementation of
neighbour list construction is used [2]. It can be clearly seen that significant perform-
ance improvement has been achieved for big systems with large numbers of sites per
chain. It should be noted that the restructure and optimization of the code during the
parallelisation implementation also contribute to the high speed-up for the long chain
polymers which is much higher than the processors used. The parallelised code also
reduces the memory requirement for running the program. In the case of using the
brute force method, nearly 80% memory reduction was achieved for large sized sys-
tems. More than 30% memory reduction can be achieved when the cell method is
used.

Table 1. Execution time (in CPU hh:mm:ss) of the sequential and parallel codes for systems of
fixed particle number (np = 40000) and various numbers of molecules (nm) and sites (ns). Note
that nm = np/ns

Ns 1 4 10 20 50 100
Seq. code 00:17:19 00:19:12 00:35:11 00:53:15 05:25:46 22:07:52
Paral. code 00:06:02 00:06:16 00:06:42 00:09:09 00:20:45 01:09:41

282 Z. Zhou, B.D. Todd, and P.J. Daivis

For long chain polymers with large number of sites, ns, most of the execution time
is consumed in the procedures to solve liner equations and calculate proportional
feedback as a result of using Gaussian constraint forces to constrain bond lengths.
These procedures contain few nested loops which are very intensive when the site
number, ns, is large. The parallel strategies and optimisation techniques discussed
in Section 3 are particularly efficient for these procedures, where linear and some-
times super-linear speed-up has been achieved in the case of large site and particle
numbers. The super linear speed up may stem from an optimal usage of memory
cache and hence the speed up obtained can be higher than the ratio of processors
used.

However, the performance improvements for the systems of short chains or
small number of particles is less significant. Various factors affect the parallel effi-
ciency. One is the high parallel start-up cost due to the lack of sufficient work in a
parallel loop, particularly when the system size is small. This may be attributed to
the nature of the ‘fork-join parallelism’ of OpenMP and the structure of the code
where some loops have less computational workload, so that the ‘forking’ and ‘join-
ing’ processes are expensive. The serial parts in the procedures involving the forma-
tion of neighbour lists and implementation of the cell-code algorithm limit the per-
formance of the parallel code as well. This limitation can become more significant
if the neighbour lists need to be updated frequently. Another major factor is the less
efficient use of memory caches. For example, the main force computation loop con-
tains intensive computation tasks but with many references to various array vari-
ables, and memory access to the elements of some arrays is in an irregular manner.
This results in low cache affinity and more cache missing. Despite the less signifi-
cant performance improvement of the parallel code for small sized systems, the
great improvement for large systems is of particular importance for our work, as
future simulations will be concentrated on long chain polymers.

4 Simulation Results

In addition to the performance tests discussed in Section 3.5, we conducted simula-
tions on a 50-site chain system of 400 molecules. Equilibrium and shear properties
were examined. The simulations were performed at a site density of 0.84 and a mo-
lecular temperature of 1.0 with a time-step of 0.001. Due to the longer relaxation
time of this system, each simulation typically requires over 1 million steps depend-
ing on the value of shear rate applied. This involves around one month of simula-
tion time for a single task if the sequential code is used. The execution time for a
simulation is now reduced to several days when the parallelized code runs on 4
processors.

Parallelisation of Nonequilibrium Molecular Dynamics Code for Polymer Melts 283

0.01 0.1 1

4

6

8

10

12

14

16

η

shear rate

Fig. 1. Non-Newtonian shear viscosity as a function of the shear rate. The open circle data are
taken from Matin [5], while our current parallelised simulation data are represented by solid
squares

The shear viscosity versus the shear rate is plotted in Fig. 1 for constant volume simu-
lations. A shear-thinning region is evident. The lower Newtonian regime was not
reached because the examined shear rates were still not low enough. A slight shear-
thickening can be observed from Fig. 1, due to performing the simulations at constant
volume [14]. The data plotted in Fig. 1 also include the results from a system of 256
molecules, taken from Matin [5]. Very good agreement is obtained, which validates
the accuracy and correctness of the parallel implementation of the code.

0.0 0.1 0.2 0.3 0.4 0.5
4

5

6

7

8

9

10

11

12

13

P

shear rate

Fig. 2. Pressure versus shear rate

284 Z. Zhou, B.D. Todd, and P.J. Daivis

0.0 0.1 0.2 0.3 0.4 0.5

10000

15000

20000

25000

30000

35000

40000

po
te

nt
ia

l E
ne

rg
y

shear rate

Fig. 3. System potential energy versus shear rate

The results for the molecular pressure and the potential energy are plotted against the
shear rate respectively on Figs. 2 and 3. Both the molecular pressure and the potential
energy change little when the shear rate is less than 0.1. After this value, they increase
rapidly as the shear rate increases. For simple fluids, NEMD simulations have demon-
strated that the pressure or energy as a function of shear rate under planar shear flow
follows a power law [15, 16]. The results from this study seem unlikely to give such a
simple relationship for long chain systems.

5 Summary

A sequential NEMD code has been successfully converted into an efficient parallel
version using OpenMP directives. Major techniques, such as loop interchange, loop
fusion, and code restructure, have been applied to the incremental OpenMP paralleli-
sation. Performance studies of the parallel code are made. The speed up achieved in
the present work is significant for large sized systems with large numbers of sites per
chain. This is particularly important for the simulation of long-chain polymer melt
systems. Linear or super-linear speed-up is achieved on some parallelised procedures
in the case of large sized systems, while the speed up of other parallelised procedures
is lower than the theoretical speed up value. The computational workload that can be
parallelised varies, depending on the frequency of updating neighbour lists, and hence
depends on parametric conditions. The parallelised code has successfully been applied
to simulate the shear rheology of a polymer system and produces results well consis-
tent with previously validated serial and vector code.

Parallelisation of Nonequilibrium Molecular Dynamics Code for Polymer Melts 285

References

1. M.L. Matin, P.J. Daivis and B.D. Todd, J. Chem. Phys. 113 (2000), 9122. [Erratum: J.

Chem. Phys., 115 (2001), 5338]
2. M. L. Matin, P.J. Daivis and B.D. Todd, Computer Physics Communications 151 (2003),

35.
3. P.J. Daivis, M.L. Matin and B.D. Todd, Nonlinear shear and elongational rheology of

model polymer melts by non-equilibrium molecular dynamics. Accepted, J. Non-
Newtonian Fluid Mechanics.

4. http://www.openmp.org
5. M.L. Matin, Molecular Simulation of Polymer Rheology. Ph.D. thesis, RMIT University

(Oct. 2001).
6. R. Edberg, D.J. Evans and G.P. Morriss, J. Chem. Phys. 84 (1986), 6933.
7. R. Edberg, G.P. Morriss and D.J. Evans, J. Chem. Phys. 86 (1987), 4555.
8. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford,

(1987).
9. D.J. Evans and G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic

Press, New York (1990).
10. T.W.Clark, R. von Hanxleden, etc., ‘Programming Issues for Molecular Dynamics’, Com-

putational Biomedicine Symposium, Houston, Texas, Dec. 1997.
11. B.D. Todd and P.J. Daivis. Phys. Rev. Lett. 81 (5) (1998) 1118.
12. B.D. Todd and P.J. Daivis. Computer Physics Communications 117 (3) (1999) 191.
13. B.D. Todd and P.J. Daivis. J. Chem. Phys. 112 (1) (200) 40.
14. P.J. Daivis and D.J. Evans, J. Chem. Phys. 100 (1994), 541.
15. G. Marcelli, B.D. Todd and R.J. Sadus, Phys. Rev. E 63 (2001), 02 12041.
16. J. Ge, G. Marcelli, B.D. Todd and R.J. Sadus, Phys. Rev. E 64 (2001), 02 12011.

	1 Introduction
	2 The NEMD Code
	3 Parallelisation of the NEMD Code
	3.1 Data Dependencies
	3.2 Loop Fusion and Interchange: Performance Improvement by Increasing Parallel Loop Granularity
	3.3 Parallel Regions: Performance Improvement by Reducing fork/joins
	3.4 Efficient Use of Memory
	3.5 Parallelised Code Performance

	4 Simulation Results
	5 Summary

