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Abstract. The academic literature suggests that the extent of exporting by mul-
tinational corporation subsidiaries (MCS) depends on their product manufac-
tured, resources, tax protection, customers and markets, involvement strategy, 
financial independence and suppliers’ relationship with a multinational corpora-
tion (MNC). The aim of this paper is to model the complex export pattern be-
haviour using a Takagi-Sugeno fuzzy inference system in order to determine the 
actual volume of MCS export output (sales exported). The proposed fuzzy in-
ference system (FIS) is optimised by using neural network learning and evolu-
tionary computation. Empirical results clearly show that the proposed approach 
could model the export behaviour reasonable well compared to a direct neural 
network approach.  

1 Introduction  

Malaysia has been pursuing an economic strategy of export-led industrialisation 
[3,6,7]. To facilitate this strategy, foreign investment is courted through the creation 
of attractive incentive packages. These primarily entail taxation allowances and more 
liberal ownership rights for investments [8,10,11]. The quest to attract foreign direct 
investment (FDI) has proved to be highly successful [9]. The bulk of investment has 
gone into export-oriented manufacturing industries. 

Several specific subsidiary features identified in international business literature are 
particularly relevant when seeking to explain MNC subsidiary export behaviour. The 
location factors in attracting FDI to the country, the subsidiary’s functional roles, size 
and age, and whether subsidiary products are targeted at niche or broader markets, 
have all been perceived to be determinants of export behaviour. This paper is con-
cerned with the manner in which the structure and strategy of MNC that have invested 
in Malaysia affect the export intensity of their subsidiaries. Prior to going into the 
details of the study, it is important to explain that there are two related aspects of ex-
port behaviour. One aspect is the probability of a firm exporting at all. The other as-
pect is the relationship between the percentage of total sales exported and the size of 
the firm. According to the literature, larger firms are more likely to export. However, 
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there is no clear relationship between size of the firm and export intensity. For exam-
ple Bonnaccorsi [4] found that although larger firms were more likely to export, there 
was no significant difference between the export intensity of small, medium, or large 
firms. Wolff et al [12] also found no significant difference in export intensity between 
small, medium and large firms. They argued that the type of resources available is a 
key factor, specifically, that with the appropriate type of resource, a small firm can 
use the same competitive patterns utilised by larger firms with the same effectiveness. 
Wagner (2001) notes that greater firm size is neither necessary nor sufficient for any 
industry or country.  

In this paper we are concentrated on the MCS product manufactured, resources, tax 
protection, customers and markets, involvement strategy, financial independence and 
suppliers’ relationship with a MNC. We use the EvoNF, an integrated computational 
framework to optimise FIS through neural network learning and evolutionary compu-
tation [1].  

The paper is divided as follows: Section 2 explains the role of fuzzy inference sys-
tems in determining the export behaviour of MCS. Section 3 illustrates the experi-
mentation results based on data provided by Malaysian MCS. The paper ends with 
concluding remarks. 

2    The Role of FIS for Explaining the Export Behaviour of MCS 

A FIS can utilize human expertise by storing its essential components in rule base and 
database, and perform fuzzy reasoning to infer the overall output value. The deriva-
tion of if-then rules and corresponding membership functions (MF) depends heavily 
on the researcher’s a priori knowledge about the system under consideration. How-
ever, there is no systematic way of transforming experiences of knowledge of human 
experts to the knowledge base of a FIS. There is also a need for adaptability or some 
learning algorithms to produce outputs within the required error rate [2].  

In this section, we define the architecture of EvoNF, as an integrated computational 
framework to optimise FIS by using neural network learning technique and evolution-
ary computation. The proposed framework could adapt to Mamdani, Takagi-Sugeno 
or other FIS. The architecture and the evolving mechanism can be considered as gen-
eral framework for adaptive fuzzy systems. That is a FIS can change their MF (quan-
tity and shape), rule base (architecture), fuzzy operators and learning parameters ac-
cording to different environments without human intervention.  

Solving multi-objective problems is, generally, a very difficult goal. In optimisation 
problems, the objectives often conflict across a high-dimension problem space and 
may also require extensive computational resources. The hierarchical evolutionary 
search framework could adapt MF (shape and quantity), rule base (architecture), 
fuzzy inference mechanism (T-norm and T-conorm operators) and the learning pa-
rameters of neural network learning algorithm. In addition to the evolutionary learn-
ing (global search) neural network learning could be considered as a local search 
technique to optimise the parameters of the rule antecedent/consequent parameters 
and the parameterised fuzzy operators. 
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Figure 1 illustrates the interaction of various evolutionary search procedures. For 
every type of FIS (for example Mamdani type), there exist a global search of learning 
algorithm parameter, inference mechanism, rule base and MF in an environment de-
cided by the problem. Thus the evolution of FIS will evolve at the slowest time scale 
while the evolution of the quantity and type of MF will evolve at the fastest rate. The 
function of the other layers could be derived similarly. 

 

Fig. 1. General computational framework for EvoNF 

Hierarchy of the different adaptation layers (procedures) will rely on the prior 
knowledge. For example, if there is more prior knowledge about the architecture than 
the inference mechanism then it is better to implement the architecture at a higher 
level. If we know that a particular FIS will suit best for the problem, we could also 
minimize the search space. For fine-tuning the FIS all the node functions are to be 
parameterised. 

 
2.1    Parameterization of Membership Functions 
 
FIS is completely characterized by its MF For example, a generalized bell MF is 
specified by three parameters (p, q, r) and is given by: 
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Figure 2 shows the effects of changing p, q and r in a bell MF. Similar parameterisa-
tion can be done with most of the other MF. 

    

(a)   (b)   (c)    (d) 

Fig. 2. a Changing parameter p; b changing parameter q; c changing parameter r; d changing p 
and q  
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2.2 Parameterization of T-Norm Operators 
 
T-norm is a fuzzy intersection operator, which aggregates the intersection of two 
fuzzy sets A and B. The Schweizer and Sklar's T-norm operator can be expressed as: 
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which correspond to two of the most frequently used T-norms in combining the mem-
bership values on the premise part of a fuzzy if-then rule.  
 

 

Fig. 3. Effects of changing p of T-norm operator for two Bell MF 

 
To give a general idea of how the parameter p affects the T-norm operator, Figure 3 
illustrates T-norm operator T(a,b,p) for different values of p. 

2.3    Chromosome Modeling and Representation 

The antecedent of a fuzzy rule defines a local region, while the consequent the behav-
iour within the region via various constituents. Basically the antecedent part remains 
the same regardless of the inference system used. Different consequent describes con-
stituents result in different FIS. For applying evolutionary algorithms, problem repre-
sentation (chromosome) is very important as it directly affects the proposed algo-
rithm. Referring to Fig. 1 each layer (from fastest to slowest) of the hierarchical evo-
lutionary search process has to be represented in a chromosome for successful model-
ing of EvoNF. A typical chromosome of the EvoNF would appear as shown in Fig. 5 
and the detailed modeling process is as follows. 

Layer 1. The simplest way is to encode the number of MF per input variable and the 
parameters of the MF. Figure 5 depicts the chromosome representation of n bell MF 
specified by its parameters p, q and r. The optimal parameters of the MF located by 
the evolutionary algorithm will be later fine tuned by the neural network-learning 
algorithm. Similar strategy could be used for the output MF in the case of a Mamdani 
FIS. Experts may be consulted to estimate the MF shape forming parameters to esti-
mate the search space of the MF parameters. 
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Fig. 4. Chromosome structure of the EvoNF model 
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Fig. 5. Chromosome representing n MF for every input/output variable coding the pa-
rameters of a bell shape MF 
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( c) 

Fig. 6. (a) Angular coding technique (b) representation of m fuzzy rules (c) represen-
tation of I/O variables 

We used the angular coding method proposed by [5] for representing the rule con-
sequent parameters of the Takagi-Sugeno inference system. Rather than directly cod-
ing the consequent parameters, the "transformed" parameters represent the direction 
of the tangent αi = arctan pi. The range for the parameters αi is the interval (-900, 
+900), such that the parameters pi can assume any real value. A single input Takagi-
Sugeno system Y = p1 X + p0 defines a straight line. The real value p1 is simply the 
gradient between this line and the X-axis. Parameter p0 determines the offset of the 
straight line (intercept) along the Y-axis. The procedure is illustrated in Fig. 6. 
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Layer 2. This layer is responsible for the optimisation of the rule base. This includes 
deciding the total number of rules, representation of the antecedent and consequent 
parts. The simplest way is that each gene represents one rule, and "1" stands for a 
selected and "0" for a non-selected rule. Figure 6 (b) displays such a chromosome 
structure representation. To represent a single rule a position dependent code with as 
many elements as the number of variables of the system is used. Each element is a 
binary string with a bit per fuzzy set in the fuzzy partition of the variable, meaning the 
absence or presence of the corresponding linguistic label in the rule. For a three input 
and one output variable, with fuzzy partitions composed of 3,2,2 fuzzy sets for input 
variables and 3 fuzzy sets for output variable, the fuzzy rule will have a representation 
as shown in Figure 6(c). 

Layer 3. In this layer, a chromosome represents the different parameters of the T-
norm and T-conorm operators. Real number representation is adequate to represent 
the fuzzy operator parameters. The parameters of the operators could be fine- tuned 
using gradient descent techniques. 

Layer 4. This layer is responsible for the selection of optimal learning parameters. 
Performance of the gradient descent algorithm directly depends on the learning rate 
according to the error surface. The optimal learning parameters decided by the evolu-
tionary algorithm will be used to tune MF and the inference mechanism. 

Layer 5. This layer basically interacts with the environment and decides which FIS 
(Mamdani type and its variants, Takagi-Sugeno type, Tsukamoto type etc.) will be the 
optimal according to the environment. Once the chromosome representation, C, of the 
entire EvoNF model is done, the evolutionary search procedure could be initiated as 
follows: 

1. Generate an initial population of N numbers of C chromosomes. Evaluate the 
fitness of each chromosome depending on the problem. 

2. Depending on the fitness and using suitable selection methods reproduce a 
number of children for each individual in the current generation. 

3. Apply genetic operators to each child individual generated above and obtain 
the next generation.  

4. Check whether the current model has achieved the required error rate or the 
specified number of generations has been reached. Go to Step 2. 

5. End 

3    Model Evaluation and Experimentation Results 

For simulations we have used data provided from a survey of 69 Malaysian MCS. 
Each corporation subsidiary data set were represented by the following input vari-
ables:  

• Product manufactured (1–5 scale representing fully independent from the par-
ent and fully dependent)  

• Resources (1–5 scale representing fully independent from the parent and fully 
dependent)  
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• Tax protection (1–5 scale representing tax protection and no tax protection) 
Customers and market (1 - 4 scale representing the geographical distribution of 
the customers) 

• Involvement strategy (1–4 scale representing subsidiary, subsidiary and parent, 
parent alone and equal share) 

• Financial independence (1–5 scale representing fully independent from the par-
ent and fully dependent) 

• Suppliers relationship (1–5 scale representing fully independent from the parent 
and fully dependent) 

3.1    EvoNF Training 

We used the popular grid partitioning method (clustering) to generate the initial rule 
base. This partition strategy requires only a small number of MF for each input. We 
used the 90% of the data for training and remaining 10% for testing and validation 
purposes. The initial populations were randomly created based on the parameters 
shown in Table 1. We used a special mutation operator, which decreases the mutation 
rate as the algorithm greedily proceeds in the search space 0. If the allelic value xi

 of 

the i-th gene ranges over the domain ai and bi the mutated gene '
ix  is drawn randomly 

uniformly from the interval [ai , bi]. 
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defines the mutation step, where γ  is the random number from the interval [0,1] and t 

is the current generation and tmax is the maximum number of generations. The function 
∆  computes a value in the range [0,x] such that the probability of returning a number 
close to zero increases as the algorithm proceeds with the search. The parameter b 
determines the impact of time on the probability distribution ∆  over [0,x]. Large val-
ues of b decrease the likelihood of large mutations in a small number of generations. 
The parameters mentioned in Table 1 were decided after a few trial and error ap-
proaches. Experiments were repeated 3 times and the average performance measures 
are reported. Figures 10 illustrates the meta-learning approach for training and test 
data combining evolutionary learning and gradient descent technique during the 35 
generations. 
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Fig. 7. Meta-learning performance (training and test) of EvoNF framework 

The 35 generations of meta-learning approach created 76 if-then Takagi-Sugeno type 
fuzzy if-then rules compared to 128 rules using the grid-partitioning method. We also 
used a feed forward neural network with 12 hidden neurons (single hidden layer) to 
model the export output for the given input variables. The learning rate and momen-
tum were set at 0.05 and 0.2 respectively and the network was trained for 10,000 ep-
ochs using BP [2]. The network parameters were decided after a trial and error ap-
proach. The obtained training and test results are depicted in Table 2 (CC=correlation 
coefficient). 

Table 1. Parameter settings of EvoNF framework 

Population size 40 
Maximum no of generations  35 
FIS Takagi Sugeno 
Rule antecedent MF 2 MF (parameterised Gaussian)/ Input 
Rule consequent parameters Linear parameters 
Gradient descent learning 10 epochs 
Ranked based selection 0.50 
Elitism 5 % 
Starting mutation rate 0.50 

Table 2. Training and test performance of the different intelligent paradigms 

 

 

Intelligent paradigms 

EvoNF Neural network 
RMSE RMSE 

Train Test 
*CC 

Train Test 
*CC 

Export 
output 

0.0013 0.012 0.989 0.0107 0.1261 0.946 
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Fig. 8. Test results showing the export output (scaled values) for 13 MNC’s with respect to the 
desired values (*) 

4    Conclusions 

Our analysis on the export behavior of Malaysia’s MCS reveals that the developed 
EvoNF model could learn the chaotic patterns and model the behavior using an opti-
mized Takagi Sugeno FIS. As illustrated in Figure 8 and Table 2, EvoNF could easily 
approximate the export behavior within the tolerance limits. When compared to a neu-
ral network approach, EvoNF performed better (in terms of lowest RMSE) and better 
correlation coefficient. Our experiment results also reveal the importance of all the 
key input variables to model the behavior within the required accuracy limits. These 
techniques might be useful not only to MNC’s but also to administrators and Gov-
ernment for long-term strategic management of the economy.  

As a future research, we also plan to incorporate more intelligent paradigms to im-
prove the modeling aspects of the export behavior. 

References 

1. Abraham, A. (2002), EvoNF: A Framework for Optimization of Fuzzy Inference Systems 
Using Neural Network Learning and Evolutionary Computation, In Proceedings of 17th 
IEEE International Symposium on Intelligent Control, ISIC'02, IEEE Press, pp 327–332, 
2002  

2. Abraham, A. (2001), Neuro-Fuzzy Systems: State-of-the-art Modelling Techniques, Lec-
ture Notes in Computer Science. Volume. 2084, Springer-Verlag Germany, Jose Mira and 
Alberto Prieto (Eds.), ISBN 3540422358, Granada, Spain, pp. 269–276. 

3. Ariff, M. and Hill, H (1985) Export-Oriented Industrialisation: The ASEAN Experience, 
Allen and Unwin, Sydney.  

4. Bonnaccorsi, A. (1992) On the Relationship between Firm Size and Export Intensity, 
Journal of International Business Studies, XXIII( 4)” 605–635. 

5. Cordón O., Herrera F., Hoffmann F. and Magdalena L. (2001), Genetic Fuzzy Systems: 
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific Publish-
ing Company, Singapore. 



178          R. Edwards, A. Abraham, and S. Petrovic-Lazarevic 

 

6. Doraisami, A. (1996) Malaysia, in R. Edwards and M. Skully (eds.) ASEAN Business 
Trade and Development: An Australian Perspective, Butterworth Heinemann, Sydney. 

7. Gomez, E.T. and Jomo, K.S. (1997) Malaysia’s Political Economy: Politics, Patronage 
and Profits, Cambridge University Press, Cambridge. 

8. Government of Malaysia (1999) Malaysian Investment in the Manufacturing Sector Poli-
cies, Incentives and Facilities.  

9. Lyles, M. Sulaiman, M., Barden, J. and Kechik, A. (1999) Factors Affecting International 
Joint Ventures Performance: A Study of Malaysian Joint Ventures, International Business 
Review, XV (2): 1–20. 

10. Tan Ser Kiat (1999) Malaysia: Foreign Investment Policy 
11. http://www.malaysianlaw.com <accessed on 03 March 2003> 
12. Wolff, J. A. and Pett, T.L (2000), Internationalization of small firms: An examination of 

export competitive patterns, firm size, and export performance. Journal of Small Business 
Management, 38 (2), pp. 34–47. 

 
 


	1 Introduction
	2 The Role of FIS for Explaining the Export Behaviour of MCS
	2.1 Parameterization of Membership Functions
	2.2 Parameterization of T-Norm Operators
	2.3 Chromosome Modeling and Representation
	3 Model Evaluation and Experimentation Results
	3.1 EvoNF Training
	4 Conclusions

