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Abstract. In this paper some class of nonlinear differential-algebraic
equations of high index is considered. For the numerical solution of this
problem the family of multistep, multistage difference schemes of high
order is proposed. In some cases this difference schemes are Runge-Kutta
methods. The estimate of error is found.

In the paper a family of high-order precision difference schemes which are
intended for numerical solution of high-index differential algebraic equations
(DAEs) is proposed and investigated. The condition of collocation forms the
basis for constructing such schemes. The paper is a continuation of the author’s
works [1], [2], [3], [4].

Consider the following problem

f(x
′
(t), x(t), t) = 0, t ∈ [0, 1], (1)

x(0) = a. (2)

Definition 1 ([5], p. 16). Let J be an open subinterval of R, D a connected
open subset of R2n+1, and f a differentiable function from D to Rn. Then the
DAE (1) is solvable on J in D if there is a k-dimensional family of solutions
y(t, c) defined on a connected open set J × D1, D1 ⊂ Rk, such that:

1. y(t,c) is defined on all of J for each c ∈ D1

2. (y
′
(t, c), y(t, c), t) ∈ D for (t, c) ∈ J × D1

3. If z(t) is any other solution with (z
′
(t), z(t), t) ∈ D, then z(t) = y(t, c) for

some c ∈ D1

4. The graph of y as a function of (t, c) is a k + 1-dimensional manifold.

Let the following mesh be given on the segment [0; 1]

∆h = {ti : ti = ih, i = 1, ..., M, h = 1/M}.
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For the purpose of numerical solving of the problem (1)–(2) it is advisable
to construct s-stage, m-step difference schemes of the form






f(h−1
m∑

j=0
k1

j xi+s−j ,
m∑

j=0
l1jxi+s−j , t̄i+1) = 0,

f(h−1
m∑

j=0
k2

j xi+s−j ,
m∑

j=0
l2jxi+s−j , t̄i+2) = 0,

· · ·
f(h−1

m∑

j=0
ks

jxi+s−j ,
m∑

j=0
lsjxi+s−j , t̄i+s) = 0.

(3)

Here f(h−1
m∑

j=0
kq

j xi+s−j ,
m∑

j=0
lqjxi+s−j , t̄i+q) = 0 is an approximation of the

initial problem. We assume that initial values of x1, x2, ..., xm−s−1 have been
computed earlier ( x0 = a ).

Consider a particular case of schemes (3), say, the interpolation variant. Let
an interpolation m-power manifold be passed through the points xi+s, xi+s−1, ...,
xi+s−m. Then the scheme (3) writes






f(h−1
m∑

j=0
k1

j xi+s−j , xi+1, ti+1) = 0,

f(h−1
m∑

j=0
k2

j xi+s−j , xi+2, ti+2) = 0,

· · ·
f(h−1

m∑

j=0
ks

jxi+s−j , xi+s, ti+s) = 0.

(4)

where h−1
m∑

j=0
kq

j xi+s−j is an approximation x
′
(ti+q) of the order hm, q = 1, ..., s.

If s = m, h̄ = sh, and xi+1, xi+2, ..., xi+s−1 are considered as intermediate
results, then schemes (4) can be interpreted as Runge-Kutta methods with ab-
scissas c = (1/s, 2/s, ..., 1), the weights b = (1, 0, ..., 0) and with the matrix A,
determined from the conditions

V A� = C,

where

C =











1/s 1/(s − 1) . . . 1
1/(2s2) 1/(2(s − 1)2) . . . 1/2
. . . . . .
. . . . . .
. . . . . .
1/(ss+1) 1/(s(s − 1)s−1) . . . 1/s











,

and V is the Vandermonde matrix:
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V =











1 1 . . . 1
1/s 2/s . . . 1
. . . . . .
. . . . . .
. . . . . .
(1/s)s−1 (2/s)s−1 . . . 1











.

Similar methods for ODEs have probably for the first time been proposed
in [6]. In this paper, the abscissas were chosen as follows c = (0, 1/s, ..., (s−1)/s).

Note that presently the theory of methods of difference coefficients for DAEs,
which have the index not higher than 3 and the Hessenberg form [5], [7], [8], have
been developed rather completely.

Consider a few schemes for the case when m > s.
For s = 1 we obtain the BDF methods.
For s = 2, m = 3 we have

{
f((2xi+2 + 3xi+1 − 6xi + xi−1)/6h, xi+1, ti+1) = 0,
f((11xi+2 − 18xi + 9xi − 2xi−1)/6h, xi+2, ti+2) = 0,

while assuming x1 to be known and x0 = a.
For s = 2, m = 4 we obtain

{
f((3xi+2 + 10xi+1 − 18xi + 6xi−1 − xi−2)/12h, xi+1, ti+1) = 0,
f((25xi+2 − 48xi + 36xi − 16xi−1 + 3xi−2)/12h, xi+2, ti+2) = 0,

while assuming x1, x2 known, x0 = a.
Consider a particular case of problem (1)

x(t) + ξ(x
′
(t), t) = 0, (5)

where ∂ξ(x
′
, t)/∂x

′
is an upper-triangular matrix with the zero diagonal, fur-

thermore, the number of zero square blocks on the diagonal is r.
It can readily be noted that our system (5) has a unique solution for a

sufficiently smooth ξ(x
′
, t). Indeed, when rewriting (5) in the explicit form





x1 + ξ1(x
′
2, x

′
3, ..., x

′
r, t) = 0,

x2 + ξ2(x
′
3, x

′
4, ..., x

′
r, t) = 0,

. . .
xr + ξr(t) = 0,

where x1, x2, ..., xr correspond to zero blocks of the matrix ∂ξ(x
′
, t)/∂x

′
, we

obtain that xr = −ξr(t), xr−1 = −ξr−1(−ξ
′
r(t), t) and so on.

Lemma 1 ([4]). Let ∂F (x)/∂x be an upper-triangular matrix with the zero
diagonal, furthermore, (∂F (x)/∂x)r = 0 corresponds to the zero matrix. Hence
the system of nonlinear equations

x = F (x), (6)

has a unique solution, and the method of simple iteration
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xi+1 = F (xi), (7)

gives a precision solution for the system (6) in r steps for any initial approxi-
mation x0.

Lemma 2. For the system of nonlinear equations x = F (x), which satisfy the
condition of Lemma 1, the Newton’s method

xi+1 = xi − (E − ∂F (x)/∂x|x=xi)−1F (xi), (8)

gives a precision solution of the system (6) in r steps for any initial approximation
x0.

Proving of this result can be conducted likewise in Lemma 2, and so, it is
omitted.

Corollary 1. Let for the system (6) the matrix ∂F (x)/∂x have the following
block form

∂F (x)/∂x =







F11 F12 . . . F1k

F21 F22 . . . F2k

. . . . . .
Fk1 Fk2 . . . Fkk





 ,

where Fij are upper-triangular (s × s)−matrices with the zero diagonal, further-
more, the maximum number of zero blocks on the diagonals Fij is r. Hence this
systems has a unique solution. The simple iteration method

xi+1 = F (xi)

and the Newton’s method

xi+1 = xi − (E − ∂F (x)/∂x|x=xi)−1F (xi),

give a precision solution of this system in r steps for any initial approximation
x0.

Now let us turn back to problem (5). For the purpose of numerical solving
this problem let us consider the difference schemes (4), which with respect to it
have the form 





xi+1 = ξ(h−1
m∑

j=0
k1

j xi+s−j , ti+1),

xi+2 = ξ(h−1
m∑

j=0
k2

j xi+s−j , ti+2),

. . .

xi+s = ξ(h−1
m∑

j=0
ks

jxi+s−j , ti+s),

(9)

where h−1
m∑

j=0
kq

j xi+s−j is an approximation of x
′
(ti+q), furthermore,
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h−1
m∑

j=0

kq
j xi+s−j − x

′
(ti+q) = σi+q/h,

σi+q/h = hm+1x(m+1)(ti+q)/(m + 1) + O(hm+2). (10)

On account of the corollary of the lemmas, the system (9) has a unique
solution, and the method of simple iteration (or the Newton’s method) in r
steps suggests a precision solution of the given system.

Let us reduce the result concerning the convergence of schemes (9) to the
precision solution of problem (5).

Theorem 1. Let the vector function ξ(x
′
, t) in the problem (5) be sufficiently

smooth with respect to the set of arguments, and let

‖ xj − x(tj) ‖= O(hm+1), j = 0, 1, ..., m − s.

Then
‖ xi − x(ti) ‖= O(hm+2−r), i = m + 1, m + 2, ..., M.

Proof. Having substituted the precision value of x(t) into the system (9), we
have






xi+1 + εi+1 = ξ(h−1
m∑

j=0
k1

j εi+s−j + x
′
(ti+1) + σi+1/h, ti+1),

xi+2 + εi+2 = ξ(h−1
m∑

j=0
k2

j εi+s−j + x
′
(ti+2) + σi+2/h, ti+2),

. . .

xi+s + εi+s = ξ(h−1
m∑

j=0
ks

jεi+s−j + x
′
(ti+s) + σi+s/h, ti+s).

From the last formula and the initial system (5) we obtain the following result
for the solution error:






εi+1 = Ai+1h
−1

m∑

j=0
k1

j εi+s−j + Ai+1σi+1/h,

εi+2 = Ai+2h
−1

m∑

j=0
k2

j εi+s−j + Ai+2σi+2/h,

. . .

εi+s = Ai+sh
−1

m∑

j=0
ks

jεi+s−j + Ai+sσi+s/h,

(11)

where Aj = ∂ξ/∂x
′
.

For the purpose of simplicity of our reasoning assume s to be m−fold (one
can always obtain this by increasing m artificially up to the minimum value m1,
which is multiple to s, and assuming kp

l = 0, l = m + 1, m + 2, ..., m1).
Introduce the denotations:

m2 = m/s, n1 = (M − m + s)/s,
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ε̄i = (ε�
m−s+1+is, ε

�
m−s+2+is, ..., ε

�
m+is)

�,

σ̄i = ((Am−s+1+isσm−s+1+is)�, ..., (Am+isσm+is)�)�.

On account of these denotations the recurrent relation (11) may be rewritten
in the form of a block m2−diagonal system of linear algebraic equations

(N + E)Υ = Σ, (12)

where N + E =










hE + N11 0 0 0 0 . . . 0 0
N21 hE + N22 0 0 0 . . . 0 0
. . . . . . . . . .
Nm21 . . . hE + Nm2m2 0 . . . 0
. . . . . . . . . .
0 0 . . . Nn1n1−m2 . . . hE + Nn1n1











,

Υ =











ε̄1
ε̄2
.
.
.

ε̄n1











, Σ = −











σ̄1
σ̄2

.

.

.
σ̄n1











,

and

Nii =







k1
m−s+1Am−s+is+1 k1

m−sAm−s+is+1 . . . k1
0Am−s+is+1

k2
m−s+1Am−s+is+2 k2

m−sAm−s+is+2 . . . k2
0Am−s+is+2

. . . . . .
ks

m−s+1Am+is ks
m−sAm+is . . . ks

0Am+is





 ,

Ni−j i =







k1
m−s+1Am−s+is+1 k1

m−sAm−s+is+1 . . . k1
0Am−s+is+1

k2
m−s+1Am−s+is+2 k2

m−sAm−s+is+2 . . . k2
0Am−s+is+2

. . . . . .
ks

m−s+1Am+is ks
m−sAm+is . . . ks

0Am+is





 .

From the system (12) we have:

‖ Υ ‖=‖ (N + E)−1Σ ‖ . (13)

Due to the theorem’s condition, Aj are upper-triangular matrices with zero
quadratic blocks on the diagonal, whose number is r. It can easily be shown that

(N + E)−1 = h−1E − h−2N + ... + (−h)−rN r−1. (14)

Each of the addends of the right-hand side of the identity (14) N l, l =
1, 2, ...r − 1 is a block matrix, and each of its blocks contains a multiplication of
l upper-triangular matrices of the form Aj . Having restored in the memory that
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σ̄i = ((Am−s+1+isσm−s+1+is)�, ..., (Am+isσm+is)�)�,

we obtain that
N r−1Σ = 0.

By employing the formula (14), the estimate (10) and the latter identity in
(13), we have

‖ Υ ‖=‖ (N + E)−1Σ ‖=‖ h−1EΣ − h−2NΣ + ... + (−h)−rN r−1Σ ‖=

=‖ h−1Σ − h−2NΣ + ... + (−h)1−rN r−2Σ ‖≤
≤ K1h

m+1 + K2h
m + ... + Kr−1h

m+2−r = O(hm+2−r).

��
In conclusion, we would like to note that multistep, multistage methods of

numerical solving of ODEs are presently under intensive development (see, for
example [9]). Although their form is different with respect to that of (3).
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