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Abstract. We develop an approach to the numerical integration of ini-
tial value problem for mixed difference-differential equations that are
differential with respect to one argument and difference with respect to
others. Preliminary reduction of the problem to a set of Cauchy problems
for systems of ordinary differential equations depending on a parameter
affords to state it as the problem of the continuing the solution with
respect to the best continuation parameter, namely, the integral curve
length. This statement has numerous advantages over the usual state-
ment. Namely, the right-hand sides of the transformed system remain
bounded even if right-hand sides of the original system become infinite
at some points.

1 Introduction

The general type of mixed functional-differential equations (MFDE) [1] is

x(l+1)(s, t) = f(t, s, xts, x
′
ts, . . . , x

(l)
ts ),

Here a < s < b ,−∞ < a < b < ∞, 0 < t < ∞. The ranges of values of x
and f lie in R

n; the i-th order derivative of xts with respect to t is denoted as
x

(i)
ts , i = 1, . . . , l + 1; xts(ϑ, ξ) = x(t + ϑ, s + ξ),−g ≤ ϑ ≤ 0, |ξ| ≤ h; h, g ≥ 0.

A particular case of general MFDE of the form

F (x′(s, t), x′(s + h1, t), . . . , x′(s + hk, t), x(s, t), x(s + h1, t), . . . , x(s + hk, t)) = 0,

where x : R
2 → R, s ∈ Ω ⊂ R

n, hi ∈ Z
n, i = 1, . . . , k, k ∈ N, is called the mixed

difference-differential equation (MDDE).
Despite equations of this type have a lot of different applications in ecol-

ogy, biology and physics they have been studied systematically not for a long
time. The exhaustive review of applications and studies is presented in [2], the
general theory of such equations is given in [1]. Paper [3] deals with boundary
value problem for MDDEs which appear from variational problems. Paper [4]
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develops an algorithm of numerical integration of boundary value problem for
linear MDDE based on finite difference method. This work presents an approach
to numerical integration of initial value problem for MDDE transformed to the
best argument. The efficiency of the approach is shown on test example.

2 Initial Value Problem for Mixed Difference-Differential
Equation

Let consider mixed difference-differential equation

R1(t, s)
∂

∂t
x(t, s) = R2(t, s)g(x(t, s)) + f(t, s), ((t, s) ∈ Q), (1)

with boundary condition

x(t, s) = 0, ((t, s) ∈ (0, T ) × (Rn \ Ω), (2)

and initial condition
x(0, s) = ϕ(s), (s ∈ Ω). (3)

Here Q = (0, T ) × Ω, Ω ⊂ R
n is a bounded domain with piecewise-smooth

boundary, 0 < T < ∞, f(t, s) : Q → R and g(x) : R → R;

(Rνy)(t, s) =
∑

h∈H

ah
ν (t, s)y(t, s + h), ν = 1, 2,

where H is an additive Abelian group of integer vectors, ah
ν (t, s) : Q → R,

ν = 1, 2, h ∈ H.
Suppose that f(t, s), ah

ν (t, s), ν = 1, 2, h ∈ H are continuous functions
with respect to t and piecewise-smooth with respect to s ∈ Q and g(x) is a
continuous function in R.

Let D ⊂ R
n+1 be a bounded domain. Denote by C̃1,0(D) a set of functions

y(t, s) : D → R that are continuously differentiable with respect to the first
argument for almost all values of s and piecewise-smooth with respect to the
second argument. As it was done in [5], introduce operators IQ, PQ, RQ as follows:

IQ : C̃1,0(Q) → C̃1,0((0, T ) × R
n) extends a function from the space C̃1,0(Q)

with zero to ((0, T ) × R
n) \ Q;

PQ : C̃1,0((0, T )× R
n) → C̃1,0(Q) restricts a function from C̃1,0((0, T )× R

n)
to Q;

RνQ : C̃1,0(Q) → C̃1,0(Q), ν = 1, 2 are difference operators given by

RνQ = PQRνIQ, (ν = 1, 2) .

Definition 1. A function x(t, s) ∈ C̃1,0(Q) is the solution to problem (1)–(3),
if it satisfies the following equation

R1Q(t, s)
∂

∂t
x(t, s) = R2Q(t, s)g(x(t, s)) + f(t, s), ((t, s) ∈ Q), (4)

and initial condition
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x(t, s) = ϕ(s), ((t, s) ∈ {0} × Ω), (5)

for almost all s ∈ Ω.

Note that it is the definition of difference operators RνQ that affords to
rearrange equation (1) and boundary condition (2) to equation (4).

It has been proved (see [5]) that Ω \
( ⋃

h∈H

(∂Ω + h)
)

breaks into classes of

subdomains Ωi j (here and further we use i = 1, . . . , I for a class number and
j = 1, . . . , Ji is a subdomain number in class i). Subdomains Ωi1j1 and Ωi2j2

belong to the same class iff there is a vector h ∈ H such that Ωi1j1 = Ωi2j2 + h.
Denote

Qi j = (0, T ) × Ωi j .

It is evident that

Q =
I⋃

i=1

Ji⋃

j=1

Qi j and Qi1 j1

⋂
Qi2 j2 = ∅, (i1, j1) �= (i2, j2) . (6)

Rearrange problem (4), (5). Let an isomorphism

Ui : C̃1,0




Ji⋃

j=1

Qi j



→ C̃1,0
Ji

(Qi 1)

be given by
(Uix)j(t, s) = x(t, s + hij), ((t, s) ∈ Qi 1),

where hi j such that Qi j = Qi 1 + hi j , C̃1,0
Ji

(Qi 1) =
Ji∏
1

C̃1,0(Qi 1) — Cartesian

product of Ji spaces C̃1,0(Qi 1).

Denote by U−1
i an isomorphism U−1

i : C̃1,0
Ji

(Qi 1) → C̃1,0

(
Ji⋃

j=1
Qi j

)
that is

reverse to Ui. Using the isomorphism Ui, taking into account condition (6) and
permutability of Ui and ∂/∂t, we obtain from equation (4)

UiR1QU−1
i Ui

∂x

∂t
= UiR2QU−1

i Uig(x) + Uif, ((t, s) ∈ Qi 1) . (7)

Denote vector-valued function Uix by xi, Uig(x) by g̃(xi) and Uif by f i.
Using this notations, we can rewrite (7) as follows

UiR1QU−1
i

∂xi

∂t
= UiR2QU−1

i g̃(xi) + f i, ((t, s) ∈ Qi 1) . (8)

The boundary conditions (3) can be rewritten in the same way
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xi
∣∣
t=0 = ϕi(s), (s ∈ Ωi 1), (9)

where by ϕi vector valued function Uiϕ is denoted.
Denote by Ri

ν , ν = 1, 2, Ji × Ji matrixes with elements
{
Ri

ν

}
k l

,{
Ri

ν

}
k l

(t, s) = ah
ν (t, s + hi k), where h = hi l − hi k, (t, s) ∈ Qi 1.

Lemma 1. The operator Ri
νQ = UiRνQU−1

i : C̃1,0
Ji

(Qi1) → C̃1,0
Ji

(Qi1), ν =
1, 2, i = 1, . . . , I is the operator of multiplication by the matrix Ri

ν .

The proof follows from lemma 8.6, ch. II, [5].

Theorem 1. Let x be the solution to problem (4), (5), then for i = 1, . . . , I
vector-valued function xi = Uix is the solution to the following problem

Ri
1
∂xi

∂t
= Ri

2g̃(xi) + f i, ((t, s) ∈ Qi1), (10)

xi
∣∣
t=0 = ϕi(s), (s ∈ Ωi1), (11)

and if vector-valued function xi is the solution to problem (10), (11), then

x(t, s) = U−1
i xi, (t, s) ∈




Ji⋃

j=1

Qi j



 , i = 1, . . . , I,

is the solution to problem (4), (5).

Note that functions Ri
ν , g̃, f i, ϕi are supposed to provide the existence and

uniqueness of the solution to problem (10), (11) that is a continuously differen-
tiable function with respect to t and piecewise continuous function with respect
to s, i.e. xi ∈ C̃1,0

Ji
(Qi1).

Proof. To begin the proof recall that the solution to problem (10)-(11) is a
function that satisfies equation (10) and boundary condition (11) for almost all
s ∈ Ωi1.

Suppose x is the solution to problem (4), (5). Since equation (7) is equivalent
to equation (4) it follows that vector-valued function xi that is equal to Uix
satisfies equation (8). Taking into account the above notations we obtain that
vector-valued function xi satisfies equation (9). Finally, Lemma implies that xi

satisfies equation (10).
Analogous reasoning implies that if x satisfies initial condition (5) then

vector-valued function xi satisfies initial conditions (11) for almost all s. Thus
vector-valued function xi is the solution to problem (10), (11).

Now, suppose that vector-valued function xi(t) is the solution to problem
(10), (11). It is clear that if Ri

ν(t, s), f i(t, s), ϕi(s) are defined and continuous
for some s ∈ Ωi j then x(t, s) specified in the statement of the theorem is defined,
continuous with respect to s and continuously differentiable with respect to t for
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the same s. Thus relation (6) implies that x(t, s) has the same properties almost
everywhere in Q, i.e. x ∈ C̃1,0(Q).

Since xi, i = 1, . . . , I satisfies equation (10) then due to the Lemma it satisfies
equation (8). The latter yield that x(t, s) defined in the statement of the theorem
satisfies equation (4) almost for all s ∈ Ω. The same speculations show that x
satisfies initial condition (5) almost for all s ∈ Ω. Thus, x(t, s) is the solution to
problem (4), (5). 	


Note to conclude that if f(t, s), ϕ(s), ah
ν (t, s), ν = 1, 2, h ∈ H, are continuous

functions with respect to s for all s ∈ Ω may be except for points of the set
{s ∈ ∂Ωi j , i = 1, . . . , I, j = 1, . . . , Ji} then the solution to problem (4), (5) is a
continuous function with respect to s for all s ∈ Ω may be except for points of
the same set. It worth adding that generally continuity of f(t, s), ϕ(s), ah

ν (t, s) in
Q does not yield continuity with respect to s of the solution to problem (4), (5).

3 The Best Argument of the Problem

To solve the problem of choosing the best argument of problem (4), (5) (the
argument of differentiation), we exploit the method of the continuation of a
solution. Theorem 1 implies that it is equivalent to seek the best argument of
problem (10), (11).

Suppose matrixes Ri
1, i = 1, . . . , I, are not singular at (t, s) ∈ Qi1. Hence we

can transform system (10), (11) to the normal form considering variable s as a
parameter.

dxi

dt
= (Ri

1(t, s))
−1Ri

2(t, s)g̃(xi) + (Ri
1(t, s))

−1f i(t, s), (12)

xi(0) = ϕi(s), (13)

(t ∈ (0, T ), s ∈ Ωi1).

Assume that an integral of problem (12), (13) is given by

F (xi
1(t, s), . . . , x

i
r(t, s), t) = 0, (14)

such that
F (ϕi

1(s), . . . , ϕ
i
r(s), 0) = 0, s ∈ Ωi1,

where xi
l are components of xi , ϕi

l – ϕi, F : R
r+1 → R

r (recall r = Ji), defines
a smooth integral curve of the problem in R

r+1 almost for every s ∈ Ωi1.
We shall handle a process of this curve construction as a process of solving

system (14), where t is the argument of the problem and s is regarded as a pa-
rameter, s ∈ Ωi1. Also we’ll investigate this system by the continuation method
treating initial value problem (12), (13) as the Cauchy problem for continuation
equations for the solution of system (14) with respect to parameter t. Such an
approach has been used to solve the Cauchy problem for a system of ordinary
differential equation [6] and delayed differential equation [7], [8].
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Theorem 2. To transform the Cauchy problem (12), (13) to the best argument
it is necessary and sufficient to choose the arc length λ measured along the in-
tegral curve of this problem as a new independent variable for any particular
s ∈ Ωi1. After transformation problem (12), (13) takes the form

dxi

dλ
= ± Gi(t, s, xi)√

1 + (Gi, Gi)
, xi(0) = ϕi(s), (15)

dt

dλ
= ± 1√

1 + (Gi, Gi)
, t(0) = 0, (16)

i = 1, . . . , I, t ∈ (0, T ), s ∈ Ωi1.

Here by (·, ·) inner product in R
r and by Gi = (G1, . . . , Gr) vector of right-

hand side functions of system (12) are denoted. Choice of plus or minus sign
defines the direction of moving along the integral curve of the problem.

We call an argument to be the best if it provides the linear system of con-
tinuation equations whose matrix is the Jacobi matrix of system (14) with the
largest possible condition number at any step of integration process.

Proof. We’ll continue a solution to problem (12), (13) locally, in a small neigh-
borhood of any point of the problem integral curve. Suppose that t and all
components of xi are functions of µ such that

∆µ =
r∑

l=1

cl∆xi
l + cr+1∆t. (17)

Here ∆xi
l and ∆t are increments of corresponding variables, cl (l = 1, . . . , r + 1)

are components of the unit vector defining a direction in which µ is measured.
Having differentiated equation (14) with respect to µ as a composite function,

we obtain
r∑

l=1

Fk,xi
l
xi

l,µ + Fk,tt,µ = 0, k = 1, . . . , r, (18)

where the following notations were used

xi
l,µ =

dxi
l

dµ
, t,µ =

dt

dµ
, Fk,xi

l
=

∂Fk

∂xi
l

, Fk,t =
∂Fk

∂t
.

Assuming nonsingularity of matrix
(
Fk,xi

l

)
, we obtain from (18) and (12)

dxi
l

dt
= −(Fk,xi

l
)−1(F1,t, . . . , Fr,t)T = Gi

l.

Hence, equations (18) take the form

xi
l,µ − Gi

lt,µ = 0, l = 1, . . . , r. (19)
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Thus (19) implies that equations (12) multiplied by dt and divided by dµ can
be used as continuation equations.

To obtain (r +1)-th continuation equation one has to divide (17) by ∆µ and
then pass to limit as ∆µ → 0.

r∑

l=1

clx
i
l,µ + cr+1t,µ = 1. (20)

Thus (19) and (20) constitute the system of continuation equations.
It has been proved (see [9]) that the transformation of this system to the

Cauchy normal form is best conditioned iff cl = xi
l,λ, l = 1, . . . , r, cr+1 = t,λ.

This means that the arc length measured along the integral curve of problem
(12), (13) is chosen as µ. Hence, system (19), (20) can be rearranged

{
xi

,λ − Git,λ = 0,

(xi
l,λ, xi

l,λ) + t2,λ = 1.
(21)

Solving (21) for derivatives and measuring λ from initial point of (12), (13)
due to independence of right-hand side functions of the system on λ, we come
to the transformed problem that is of the form given by (15), (16). 	


Example 1. Let consider the problem

x′(t, s − 1) + tx′(t, s) + x′(t, s + 1) = 1/3x(t, s), ((t, s) ∈ (0, T ) × (0, 2)),

with boundary condition x(t, s) = 0, (t, s) ∈ (0, T ) × (R \ (0, 2)), and initial
condition x(0, s) = ϕ(s), (s ∈ (0, 2)).

In the above notations I = 1, J1 = 2. In this problem difference operator
generates decomposition of Q = (0, T ) × (0, 2) into subdomains Q11 = (0, T ) ×
(0, 1) and Q12 = (0, T ) × (1, 2). Functions xi and ϕi correspond to each of these
subdomains.

Define matrixes R1
1, R1

2

R1
1 =

(
t 1
1 t

)
, R1

2 =
(

1/3 0
0 1/3

)
.

Calculating a matrix inverse to (R1
1)

−1 and denoting xi by (x1, x2)T , we bring
the problem to the form of (12), (13).

(
x′

1
x′

2

)
=

1
t2 − 1

(
t −1

−1 t

)(
1/3 0
0 1/3

)(
x1
x2

)
.

or equivalently:

x′
1 =

1/3tx1

t2 − 1
− 1/3x2

t2 − 1
, x1(0) = ϕ1(s),

x′
2 =

−1/3x1

t2 − 1
+

1/3tx2

t2 − 1
, x2(0) = ϕ2(s).
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The solution to this problem

x1 = C1(t + 1)1/3 + C2(t − 1)1/3,
x2 = C1(t + 1)1/3 − C2(t − 1)1/3,

where C1 = (ϕ1(s) + ϕ2(s))/2, C2 = (ϕ1(s) − ϕ2(s))/2 are obtained from the
initial condition. As for the solution to the original problem, it has the form
x(t, s) = xi(t, s), (t, s) ∈ Q1 i, i = 1, 2. It is evident that despite the right-hand
side functions of system of differential equations are unbounded in a neighbour-
hood of t = ±1 the solution to the problem is a continuous function of t.

Having transformed the problem to the best argument, we obtain

dx1

dλ
=

f1√
(t2 − 1)2 + f2

1 + f2
2

, x1 |λ=0 = ϕ1(s),

dx2

dλ
=

f2√
(t2 − 1)2 + f2

1 + f2
2

, x2 |λ=0 = ϕ2(s),

dt

dλ
=

1√
(t2 − 1)2 + f2

1 + f2
2

, t |λ=0 = 0,

where f1 = 1/3(tx1 − x2), f2 = −1/3(x1 − tx2).
Note that right-hand side functions of the transformed system are continuous

and uniformly bounded functions of t. It yields that the solution to the problem
is a continuously differentiable function of λ.

Numerical tests demonstrate that unboundedness of the right-hand side func-
tions of a system of differential equations may make impossible the implementa-
tion of standard numerical integration procedures. Preliminary transformation
of a system to the best argument affords to avoid similar difficulties.
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