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Abstract. Central banks issue often many kinds of bonds to guide their bench-
mark interest rates. Their market data are thought of to reflect current state of the
countries financial system. Then at least how much data is needed? Based on the
framework of HIM model, We prove that the amount of the data needed is related
to the form of the volatility function of forward rates, and then the initial forward
rate curve is not essential.

1 Introduction

In some emergent financial markets, benchmark interest rates are policy-based and
determined by their governments. While their central banks issue often many kinds of
interest rate instruments to make their benchmark interest rates market-based.

Spot rate models are popular in theory and in practice. However, spot rates are
not observable on the market. So we have to recalibrate the term structure of interest
rate, given initial market data. Then forward rate models, such as Heath-Jarrow-Morton
model(HIMM)[1], arise, which eliminate the disadvantages of spot rate models and fit
initial forward rate curve naturally. However, there is one natural problem, that is, finite
amount of data, but one initial curve, is presented in the market. Does the initial curve is
essential for curve fitting problem, or finite amount of data is sufficient? This problem
can be also stated as follows: can some group of market data be treated as state variable
as forward rate curve does?

From a geometric view of the interest rate theory, [2] proved that in deterministic
volatility models of HIM framework, forward rate curves can be represented as a func-
tion of a state variable of finite dimension. [3] presented detailed steps to construct this
function. [4] and [5] discussed some cases of stochastic volatility and proved similar
results as deterministic cases. This paper will prove that forward rate curve is not es-
sential to describe the system state, while several distinct groups of market data can
represent the same system state.

2 Musiela Parameterized HJM Model

Zero-coupon bonds are the representative interest rate instruments in the bond mar-
ket, which is sold in the price less than their face values and bought back in the price of
face values, and no interests is paid in the duration of their existence. Without loss of
generality, their face values are assumed to be one unit.
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First of all, some important definitions are given as follows.

P(t,x): the price at time ¢ of a zero-coupon bond maturing at time ¢ + z, t, z > 0;

(¢, x): the forward rate at time ¢ of a riskless loan which is contracted at time ¢ + x
and matured instantaneously, ¢,z > 0;

R(t): spot rate at time ¢, ¢ > 0.

We assume that the market is frictionless and the bonds are perfectly divisible.
There are some explicit relationships among the bonds prices, forward rates and spot
rates:

ey = -2l (M
P(t,z) = exp{—/ox r(t,s)ds} (2)
R(t) = r(t0) 3)

We assume that the bond market is a filtered probability space (2, F, Q, {F:}+>0),
where € is the sample space, () is the martingale measure defined on (2, F is the
filtration, and {F;} is the time ¢ filtration. Let W (t) be a m-dimensional standard
Wiener process. Assume that R(t) is {F;}-measurable, that is , it is known at time
t and R(t) is a one-to-one mapping between {F;} and its value set. In probability
theory, {F;} is the information set of the probability system at time ¢ and its element
means system event. Above all, the value of stochastic variable R(t) reflects the system
state. R(t) is called the state variable of the system, and the evolution of the process
{R(t),Vt > 0} reflects the transformation of the system state in the state space. The
forward rates r;(-) and bond prices P(t,-) are also state variables ([6]). Then we can
use several distinct state variables to reflect the same system state and there must be
some homeomorphic mapping between corresponding state spaces.

In the HIM model, the evolution of the forward rates is a stochastic differential
equation:

dr(t,z) = pt,x)dt+ o(t,z)dWr, (@))
r(0,2) = ri(z), Ve >0.
where, p(t, ) and o (t, ) are 1-dimensional drift coefficient and d-dimensional volatil-

ity coefficient, respectively, and 7(-) is the initial forward curve. Under the arbitrage-
free condition, HIM proves that the drift coefficient must satisfy

a x
tx) = —rtx)+olt, t,s)ds. 5
pta) = gorita)+olta) [ alts)ds 0

So, given the initial forward rate curve r(-) and particular forms of volatility coefficient
o(t, x), we can get the forward rates in the future with help of dynamics of the forward
rate.

3 Finite-Dimensional Realization (FDR)

Given real numbers 3 > 1and v > 0, let H  be the Hilbert space of all differential
functions r : R, — R satisfying the norm condition

[l Iy < o0
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Here the norm is defined by

2 — = —-n >~ d"r(x) 2 _ d
Irlf= 307 [ e (st

Because the following results are independent of the values of 3, v, we write H for H.,.
Surely the term forward rate curve simply refers to a point in .
We assume that the volatility function ¢ has the form

c:HxRy —R™

Here, each component of o(r, x) = (o1(r, ), . ..,om(r,z)) is a functional of the infi-
nite dimensional r-variable, and a function of the real variable 2. We can rewrite the for-
ward rate curve {r(¢,x),Vz > 0} at time ¢ as the form of r;, which is a function-valued
stochastic variable. Thus r, satisfies the following Stratonovich differential equation

dry = p(ry)dt 4 o(ry) o dWy, (6)
ro = Tg,
where
A t "ot s)ds — Lo 7
ur) = gerta)+ota) [ olts)ds— 3alotr)] )

and a; is a Frechet derivative of the volatility function o () with respect to r, o means
the Stratonovich integral.

Due to the special properties of Stratonovich integral, there is no second-order items
here and then we can rewrite the above Stratonovich stochastic differential equation by

dry

P p(re) +o(re) - vy, )

where v; denotes noise.

Given the dynamics of the above forward rate curves, and a special form of the
functional o, we refer {1, 0} 14 to the Lie algebra generated by {p, o}

Assume f is a smooth mapping on the space H, and z is a fixed point in H, we
write the solution of the following equation as x; = exp{ ft}x:

day

dt

When the dimension of {y,0}p4 = d < oo is finite, this Lie algebra can be
spanned by a set of d smooth mappings f1, ..., fq. Let

G(z) =exp{fiz1} - -exp{faza}ry, 2= (21,...,24) € R4 (10)

[2] proves that when the Lie algebra {y, 0}, 4 has a finite dimension d, there exists an
invariant submanifold ¢ near the initial point ¢, such that {y, 0} 4 is contained in a
tangent space of the manifold < , and r; can be realized as

ry = G(Zt),
dzy = a(z)dt + b(z¢) o AWy, (11)
20 = %3,

= f(xzy), xo = . 9)
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where a(z:), b(z¢) and z are respectively drift coefficient, volatility coefficient of the
process z; and its initial point, and G is a diffeomorphism. They can be deduced by the
relationship G between r; and z;. In other words, the infinite-dimensional forward rate
curve r; can be realized as an invertible function G of a finite-dimensional diffusion
process z;, which is called the finite-dimensional realization of the forward rate curve
Tt.

4 Minimal State Variables

The value of the forward rate curve r; reflects the system state at time ¢. However,
infinite amount of data is needed to obtain the forward rate curve, while finite amount
of data is available in the market. Then a natural problem arises: Does there exist a set
of finite data which is sufficient to reflect the system state?

4.1 Main Results

{G(2),¥z € R%} is a parameterized form of the manifold s, there exists an open
neighborhood U of the point 0 in the space R?, and an open neighborhood V' of the
point 7 in the manifold ¢, such that

vV =G(U),

where G~1(V') denotes the coordinate system of the manifold ¢ at , or G is a homeo-
morphic mapping from R to . The inverse mapping G~! of G exists, and there exists
one-to-one relationship between R and <. It means that z; is also a state variable as 7
does. We can refer to the stochastic variables 7, z; and R(t) as homeomorphic map-
pings between the filtration 7; and R*®(R? ,R!, respectively), their state spaces are
of the same structures with infinite-dimension, d-dimension, and 1-dimension, respec-
tively.

Theorem 1. The total forward rate curve is not essential to describe the current
system state, while a set of market data with d dimension is sufficient.

Proof. A homeomorphic mapping is of full order, so the order of the homeomorphic
mapping G~! equals to the order of the space of z;, which is exactly d.

Given a set of maturity {z1, 22, - -, x4}, we have from equation (11) that

re(x;) = Gag, 2), 1=1,2,---,d (12)

The Jaccobi matrix of the function G has a same order as GG, which equals to d. Then
the above equations has a unique solution.

Above all, if we have d units of market forward rates (r(x1),7¢(22), ..., 7(x4q)),
the value of z; can be computed. It means that in the space of the forward rates, d units
of separate points is sufficient to describe the current system state. O

Theorem 1 shows that the total forward rate curve is not essential to describe the
current system state, we need only d units of market data, which is identical to the di-
mension of the Lie algebra {x, 0} 1, 4, and depend on the form of the volatility function
g.

Theorem 2. At time ¢, two sets of market data will generate the same state of sys-
tem.

Proof. we have proved in theorem 1 that the function G : R — H is a homeomor-
phic mapping, which implies that there is a one-to-one relationship between the space
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R and H. From equation (11), we conclude that given a forward rate curve, there is
only one unique value of z; corresponding to it. On the basis of theorem 1, the same
system state will be obtained, given any two sets of market data. O

When we choose a model for the real world, or the form of the volatility function,
the dimension of the Lie algebra {1, 0} 1,4 can be deduced with the help of the theory
of algebra, then acquire the form of the function G, at last, choosing a set of d units
market data, the current system state can be well described.

Proposition 4.4 in [2] shows that we can also directly choose d units data of the
forward rates as the state of system. [2] also proves that, when d < 2, the forward rate
process can be realized as a spot rate process. In this case, we can say that the market
data reflect the benchmark interest rates of the central bank.

4.2 Construction of the State Variable

[2] gives the construction of the state variable z; as follows.
(1) choose a collection f1, fa, ..., fq of smooth mapping which spans {y, o} 1 4;
(2) compute the form of G(z;) = exp{fiz1}---exp{faza}rs;
(3) Due to the Stratonovich differential equations of r; and z;, the following rela-
tionships hold,

Gla:mG/b:a. (13)
Thus a, b can be from the above equations.

4.3 Identification of Error-Priced Market Data

When error-priced data exists in the market, we can use the following method to
identify them based on the above results.

(1) When there is only one error data, from theorem 2, we arrange all market data
available into three sets, and from equation (11), three units value of z; is obtained,
then the only one which differs from other two means that this set contains the error
data. Second, arranging this set into two subsets, together with other true-priced data,
we form two new sets of d units data, and find the set containing the error data. Go on
until the error data is determined.

(2) The case of two error data: the method is similar to the above case.

As long as the market data available is enough,error data should be identified by
using the above method.

5 Conclusion

From a geometric view of interest rate theory, we study the existence problem of
minimal state variables by using some important results of FDR problem of [2]. In the
framework of HIM model, we find that in the case of deterministic volatility, the system
state can be well described based on the available information in the current market, and
any set of market data generates the unique state of system.
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