
Parallel Models for a Discrete Variable
Wavepacket Propagation

2 2 1D. Bellucci , S. Tasso , and A. Laganà

1Department of Chemistry, University of Perugia, Via Elce di Sotto, 8,
06123 Perugia, Italy
lag@dyn.unipg.it

2ÿDepartment of Mathematics and Informatics, University of Perugia,
Via Vanvitelli, 1, 06123 Perugia, Italy

daniele@dyn.unipg.it, sergio@unipg.it

Abstract. The parallelization of a code carrying out the discrete vari-
able propagation of a wavepacket is discussed. The performances ob-
tained from a Task Farm model are compared with those obtained from
a Pipeline model.

1 Introduction

Atom diatom reactive scattering calculations are often carried out using wavepacket
techniques. The difficulty of carrying out these calculations lies in the fact that
as the total angular momentum increases the matrices involved become rapidly
so large that they make the computer code quite inefficient. In fact, the al-
gorithms usually utilized to carry out the time propagation of the wavepacket
require at each time step the use of all the elements of the matrices. This makes
it inconvenient to apply a fine grain parallelization of the code.

As an alternative, for our time dependent code (in which the wavepacket is
propagated in the AV routine by dealing only with its real component[1]) we
adopted a more localized Discrete Variable technique that at each time step (τ)
performs a series of matrix operations that can be schematized as follows:

G = A · C + C · BT + V ! C. (1)

Eq (1) is recursive since the value of C is taken at time τ − 1 while that of G
is taken at time τ (the value of C at time τ , in turns, depends on that of G at
the same time τ even though, in order to simplify the notation, we have dropped
the time subindex). For simplicity we also assume that all the matrices involved
in the calculation are square matrices of order nr. Such a constraint, however,
can be easily removed with no prejudice for the results.

The starting point of our study is the sequential version of AV (see Fig. [1]
for its pseudocode). By adopting a domain representation by rows the j-th row
of matrix G can be expressed as follows:

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 341−349, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Row(j,G) =
nr∑

k=1

A(j, k) ·Row(k, C) +Row(j, C) ·BT +Row(j, V)!Row(j, C).

(2)
To optimize the usage of space all the matrices were stored on the secondary

memory minimizing the occupation of the main memory. When adopting a do-
main representation by rows it is easy to show that:

– Only a row vector is needed to carry out the calculations of Eq (2);
– The first term of Eq (2) ensures that accesses to I/O are optimized by storing

each matrix by row;
– The transpose operation is avoided by multiplying Row(j, C) by B rows since

they are the columns of BT [2].

Do j = 1, n
Row(j,G) = 0n
ReadFromFile (Row(j, A))
Do k = 1, n

ReadFromFile (Row(k, C))
Row(j,G) = Row(j,G) +A(j, k) ·Row(k, C)
If (k = j) then

Keep in main memory Row(j, C)
EndIf

EndDo
Do h = 1, n

ReadFromFile (Row(h,B))
G(j, h) = G(j, h) +Row(j, C) · Row(h,B)

EndDo
ReadFromFile (Row(j, V))
Row(j,G) = Row(j, G) +Row(j, V)!Row(j, C)
WriteToFile (Row(j,G))

EndDo

Fig. 1. Pseudocode of the sequential version of the AV routine.

2 The Task Farm Model

The first attempt to parallelize AV was performed using MPI and a Task Farm
model [3]. In the startup phase the Master process distributes the rows of C
using a cyclic policy. This implies that in the startup phase if j ≡ i mod M
the vector Row(j, C) is sent to the Worker Wi (with M being the number of
scheduled Workers). At the end of the startup phase each Worker has stored

342 D. Bellucci, S.Tasso, and A. Laganà

the rows received from the Master in a local (unshared) secondary space storage
hereafter calledDataset(Wi, C). In the same way, all the elements of the matrices
A and B referred by the Worker Wi are stored in a similiar Dataset during the
wavepacket inizialization (immediately before the first step τ = 0).

To carry out the subsequent operational phase the Master process adopts a
scheduling policy to broadcast Row(j, C) (that is needed to perform the calcu-
lation of the second term of Eq (1)) to each Worker. Each scheduled Worker
loads from a local (unshared) secondary memory space all the elements needed
to carry out the calculation of:

– wi =
∑

k∈Di
A(j, k) ·Row(k, C)

– wi(h) = wi(h) +Row(j, C) · Row(h,B) ∀h ∈ Ei

where:

– i is the index of the Worker process;
– j is the index of the Row of G to be calculated;
– Di = [i]M with M being the number of scheduled Workers;
– Ei is the set of contiguous indices assigned to Worker Wi allowing an opti-

mum load balancing among the Workers.

Through a reduce operation the Master reassembles the resulting rows of
matrix G. The pseudocodes of the Master and the Worker processes are given
in Figs. [2],[3] respectively.

Process Master
Do i = 1, nr

ReadFromFile (< Row(i, V), Row(i, C) >)
MPI Bcast (Every Worker, Row(i,C))
T = Row(i, V)!Row(i, C)
MPI Reduce (Master, T, Row(i,H))
WriteToFile (Row(i,H))

EndDo

Fig. 2. Pseudocode of the operational phase of the Master Process of the Task Farm
model.

Several speedup measurements were performed using a Cluster of Linux
Workstations on which the Gnu compiler and the Lam-MPI library were made
available. The size of the matrices was varied from 512 to 1024. Speedups
achieved when using the Task Farm Model are shown in Fig. [4]. They scale
as the ideal speedup indicated for comparison in the same figure.

3 An Improved Task Farm Model

A first improvement of the simple Task Farm model (hereafter called STF)
was introduced by changing the scheduling policy. The cyclic policy introduces,

343Parallel Models for a Discrete Variable Wavepacket Propagation

Process Wi

Do j = 1, nr
MPI Bcast (From Master, Row(j, C))
wi = 0
Read ({A(j, k)|k ∈ Di} from Dataset(Wi, A))
ForEach k ∈ Di

Read (Row(k, C) from Dataset(Wi, C))
wi = wi +A(j, k) ·Row(k, C)

EndFor
ForEach h ∈ Ei

Read (Row(k,B) from Dataset(Wi, B))
wi(h) = wi(h) +Row(j, C) · Row(h,B)

EndFor
MPI Reduce (Master, wi)

EndDo

Fig. 3. Pseudocode of the i-th Worker process operational phase.

in fact, a certain amount of overhead due to the fact that the communication
system has to be initialized everytime a block of data is sent.

The improved Task Farm (ITF) minimizes such an overhead adopting a
block scheduling policy. Each Worker has to receive at least a matrix partition
during the startup phase. Thus the Master process needs at least M steps to
complete the scheduling operation (remember that M is the number of Workers
used). The block policy consists of sending a block of contiguos rows of C to
each Worker.

To estimate the advantage gained in terms of a reduction of comunication
time when using the block policy of the ITF model instead of the cyclic one we
plot in Fig. [5] the amount Dt = tSTF − tITF defined as the difference between
the STF and ITF the elapsed times (t).

As apparent from Fig. [5] the block scheduling policy progressively outper-
forms the cyclic one on the four node Beowulf as the size of the matrices grows.
Such an advantage slowly decreases as the number of processes increases al-
though it remains substantially constant in percentage with respect to an in-
crease of the size of the matrices and of the number of processes. This result,
however, exploits also the fact that the A, B and V matrices remain unchanged
during the calculation. Accordingly, in the ITF model there is not need to repeat
their distribution to the Workers at every time step.

Related speedups are given in Fig. [6]. The figure shows that the ITF model,
in addition to improving over the STF one, still scales as the ideal curve when
the dimension of the matrices increases.

344 D. Bellucci, S.Tasso, and A. Laganà

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processes

’512’
’768’

’1024’
’Ideal’

Fig. 4. Speedups obtained for the STF model on the 8 node Beowulf plotted as a
function of processes.

4 The Pipeline Model

During the operational phase of the Task Farm the calculation of A ·C+C ·BT is
performed by all available Worker processes in a way that overlaps the calculation
of V ! C performed by the Master process. In this way related sequentiality is
suppressed and possible limiting effects on the speedup are avoided.

The Pipeline solution differs from the Task Farm ones in that the calculation
of G is partitioned among the scheduled processes. Therefore, in an M stage
Pipeline the i-th process1 Wi calculates the following vector:

– wi =
∑

k∈Di
A(j, k) ·Row(k, C)

– wi(k) = wi(k) +Row(j, C) · Row(k,B) + V (j, k)! C(j, k) ∀k ∈ Di

where

– j represents the index of the row of G to be calculated;
– Di is a set of contiguous indices assigned to process Wi allowing an optimum

load balancing among the stages.

1 Each process is now a stage of the pipe.

345Parallel Models for a Discrete Variable Wavepacket Propagation

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8 9 10

D
t/s

Number of processes

’512’
’768’

’1024’

Fig. 5. Time difference between cyclic and block policy.

Distributed calculations ofRow(j,G) can be described as follow: theW1 stage
calculates w1, loads Row(j+1, C) and sends the t-uple < Row(j+1, C), wi > to
W2. For each i = 2, · · · ,M − 1 stage Wi receives the t-uple from Wi−1, performs
the sum wi = wi+wi−1 and then sends the new t-uple < Row(j+1, C), wi > to
Wi+1. The last stage carries out the final calculation of Row(j,G) summing its
vector (wM) to the second term of the t-uple received fromWM−1 which contains∑M−1

i=1 wi. Like in the Task Farm model each vector needed to calculate wi by
stage Wi is loaded from a local (unshared) secondary memory storage to avoid
possible conflicts.

A possible stencil for stage Wi is illustrated in Fig. [7]. In our work we made
use of the persistent comunication requests [4] to avoid overheads caused by the
repeated initialization of the comunication system.

Speedups obtained for this approach are plotted in Fig. [8]. A comparison
with the speedups calculated for the Task Farm model (see Fig. [6]) shows that
the Pipeline model is less efficient though the size of the matrices does not
affect the speedup obtained. The efficiency obtained for the Pipeline solution is
constant (percentual efficiency is 46% irrespective of the number of processes
used and of the size of the matrices employed) implying that the Pipeline model

346 D. Bellucci, S.Tasso, and A. Laganà

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processes

’512’
’768’

’1024’
’Ideal’

Fig. 6. Speedups obtained for the ITF model.

is well balanced. This suggests that a possible evolution of this model is a Pipeline
made of Task Farms. Work on such a hybrid model is in progress.

5 Conclusion

Discrete variable approaches to wavepacket propagation techniques require to
compute the following recursive matrix operation

G = A · C + C · BT + V ! C

where the value of the elements of C depend on the previous value of the elements
of G.

This calculation engages a significant amount of computing resources. In
this paper we have discussed how the request of computing resources can be
reduced. To this end we have proposed a Task Farm model. Our study shows
that a Task Farm model is appropriate to this end and that further reduction
in both computing time and memory occupation can be obtained by approaches
based on models accounting for the memory hierarchy of MIMD concurrent
architectures.

347Parallel Models for a Discrete Variable Wavepacket Propagation

· · ·calculation of Row(j,G) · · ·
wi = 0n
Read ({A(j, k)|k ∈ Di} from Dataset(Wi, A))
ForEach k ∈ Di

Read (Row(k, C) from Dataset(Wi, C))
wi = wi +A(j, k) · Row(k, C)
Read (Row(k,B) from Dataset(Wi, B))
wi(k) = wi(k) +Row(j, C) · Row(k,B) + V (j, k)! C(j, k)

EndFor
If (i == 1) then

ReadFromFile (Row(j + 1, C))
Else

MPI Recv (From Wi−1, < Row(j + 1, C), wi−1 >)
wi = wi + wi−1

EndIf
If (i #= M) then

MPI Send (Wi+1, < Row(j + 1, C), wi >)
Else

{Row(j, G) = wi}
WriteToFile (Row(j,G))

EndIf
· · · · · ·

Fig. 7. Pseudocode of the i-th stage of the Pipeline model.

348 D. Bellucci, S.Tasso, and A. Laganà

0

2

4

6

8

10

2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processes

’512’
’768’

’1024’
’Ideal’

Fig. 8. Speedups obtained for the Pipeline model on the 8 node Beowulf plotted as a
function of the number of processes.

2. G. D’Agosto, Parallel approaches to integrate the Schrödinger equation using a
time dependent technique, Diploma thesis, (2000) Perugia.

3. D. Bellucci, S. Tasso, A. Laganà, Fine grain parallelism for discrete variable ap-
proaches to wavepacket calculations, Lecture Notes in Computer Science, 2331
(2002) 918 - 925.

4. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference, MIT Press, Cambridge Massachusetts, (1996).

5. A. Skjellum, B. Protopov, S. Hebert, A thread taxonomy for MPI, Proc. of MPIDC,
(1996).

6. A. Chowdappa, A. Skjellum, N. Doss, Thread-safe message passing with P4 and
MPI, Tech. Rep. TR-CS-941025, Computer Science Department and NSF Engi-
neering Research Center, Mississipi State University, (1994).

7. M. Danelutto, C Pucci, A compact thread-safe communication library for efficient
cluster computing, Lecture Notes in Computer Science, 1823 (2000) 407 - 416.

349Parallel Models for a Discrete Variable Wavepacket Propagation

This has led to an improved Task Farm model that adopts a block scheduling
policy. Speedups reached by this solution are satisfactory and are not affected by
an increase of the matrix size (in the size interval of our investigation). Further
benefits could be ensured by the use of a thread safe communication library [5–7]
that could reduce the need for collective communication.

We have also investigated the performances of a Pipeline model. These are
lower than those of a Task Farm model though being characterized by a constant
value of the efficiency with respect to the number of activated processes and to
the size of the matrices. This suggests a possible use of a Hybrid Model in which
each stage of the Pipeline is made of a Task Farm.

Acknowledgments.
This work has been financially supported by MIUR, ASI, CNR and COST in
Chemistry (Action D23).

References

1. G. G. Balint-Kurti, Time dependent quantum approaches to chemical reactions,
Lectures Notes in Chemistry, 75 (2000) 74 - 88.

	Introduction
	The Task Farm Model
	An Improved Task Farm Model
	The Pipeline Model
	Conclusion
	References

