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Abstract. The paper discusses the high-performance parallel algorithms for sto-
chastic simulation of metocean processes and fields. The approaches for parallel
representation of sample estimation procedures, linear stochastic systems,
Markov chains, periodically correlated processes and inhomogeneous fields are
proposed. The speedup of the proposing algorithms is studied in respect to pa-
rameters of the models.

1   Introduction

Metocean data fields, like atmospheric pressure, wind speed, ocean waves etc. have a
complex spatial and temporal variability. Recently the huge databases of metocean
data in the irregular gridpoints are collected (see e.g. [14]). Development of environ-
mental models and use them for data assimilation and reanalysis [10], has allowed to
create global information arrays of metocean fields in points of a regular spatial-
temporal grid. For the analysis and synthesis of these data the special models, consid-
ers in the first [4] and second [5] parts of this paper, has been developed. The model-
ing procedures often require large amounts of computational resources and are there-
fore executed on parallel computer systems.
Generally, parallelization of statistical computational procedures (including Monte-
Carlo techniques) is based on decomposition of sample on the equal sub-volumes (see
e.g. [16]). This approach is valid only for independent random values (RV), because in
terms of time series (TS) or stochastic fields (SF) the elements of sample are interde-
pendent. Therefore, for the dependent data models, the sophisticated reformulation of
the sequential algorithm (and correspondent code) is requires. There are at least two
extensive ways to solve this problem.
The first way is the automatic translation of sequential code by means of the loop
parallelization tools [18]. But if the stochastic algorithm has explicit formalization of
interdependence (e.g. – parametrical regression), then the efficiency of this procedure
is rather low. The second way concerns the using of the free parallel scientific libraries
(as ATLAS, PBLAS, PLAPACK, ScaLAPACK etc. [19]) for the compiling of the
code. But the majority of the computational procedures orients on the elected compu-
tational tacks (matrix algebra, PDE solving and optimization). Moreover, sometimes
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the most labor-consuming part of the algorithm is not respect to any standard proce-
dure.
Thus, the development of the parallel stochastic algorithms is the creative problem.
The best solution may be obtained using the paradigm of problem “reflection” to par-
allel architecture of computer [3], take in mind the specifics of data. The main goals of
this paper are the follows:
• To illustrate the principles of parallelization for stochastic simulation of metocean

processes and fields.
• To study the computational efficiency of the proposed parallel algorithms in re-

spect to parameters of stochastic models.

2   Theoretical Model of Parallel Program

The design of scalable and portable algorithms requires the previous formalization of
the theoretical model of parallel program. One of the simple models for computational
applications is the BSP (bulk-synchronous parallel) model, associated with simultane-
ous computation of p parallel threads, with barrier synchronization [8]. It allows con-
sider any parallel program in terms of cortege η,C,p . Here )E,V(C =  is the

communication graph, (where V  are the vertexes and E  are the edges), and

pi f,g,L=η  are the characteristic of processors loading. The values iL  (associated

with iV ) are the times of parallel computations of thread i, and g  is the communica-

tion time. The value pf  is the part of sequential operations.

There are a few indexes characterizing the performance of parallel algorithms [7]. For
statistical application we consider the speedup index p1p T/TS =  (where iT  are the

measured time of computations with i parallel threads) as the measure of efficiency
p/S pp =ε . For maximization of pS  the follows is requires: (1) graph C includes at

least p parallel threads, (2) the loadings of the processors are balanced 1L/L ji ≈ , (3)

and value g  is minimized.

In practice these requirements are not enough for absolute maximization of pS , be-

cause BSP model ignores the platform-dependent features, e.g. cashing. Therefore, the
validation of proposed algorithms would be controlled by means of computational
experiment. We use the on-shell cluster “Paritet” (4x2-processor nodes), designed in
Institute for High Performance Computing and Data Bases (Russia). In spite of the
low number of nodes, this cluster reproduced in scale the Beowulf architecture and
may be used for qualitative analysis of parallel algorithms.
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3   Parallelization Principles for Stochastic Models

The paradigm of parallel algorithms design requires the formalization of principles for
parallelism detection, based on the features of the stochastic models. Below the three
general principles are considered.

3.1   Parallel Algorithms, Based on the Ensemble Decomposition

The principle of ensemble decomposition is based on the data parallelism. For meto-
cean fields the first level of decomposition technique is result of the multiscale hy-
pothesis proposed by Andrey S. Monin [15]. The hypothesis suggests modelling the
total variability of process ζ  by means of a set of stochastic models for each temporal

scale separately, and with the interdependence taken into account parametrically. It
allows present the total distribution function )x(Pζ over the probability space Ω  in

terms of combined distribution
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Here ζG  is the main scale distribution function and ξF  is the distribution function of
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== ΩΩξΩ  in parallel. In practice for the

best balancing of the processor loadings it is easy to consider the initial dataset in
terms of natural metocean scales (e.g. day, month, year etc.). For example, in the
papers [4,5] the function ζG  from Eqn. (1) is associated with synoptic variability and

ξF  - with annual and year-to-year variability. Therefore, in simple case (continuous

data analysis) the processing of the synoptic data may be carrying out for 12 months in
parallel. For the irregular data (series with the data missing) the dynamical balancing
is required.
The second level of decomposition is based only on statistical properties of ensemble

in terms of RV model. Let us consider the sample estimate *Ξ of parameter Ξ  as any

statistical sum *)x(
Ωξℑ over the sample *Ω  [22] (here �  is the operation of

sample averaging). Such definition allows compute the *
)k(Ξ  over the *

kΩ  in the p
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Here )p(tα  is the %1 α−  quantile of Student’ distribution, and *
Ξσ  is the estimate of

r.m.s., calculated over the sample { }p

1k

*
)k( =

Ξ . In the Fig. 1(a) the communication graph

of the parallel algorithm is shown. The vertex A is the data preparation and storage on

the local nodes, vertex B – parallel computation the *
)k(Ξ , and vertex D – computation

of total estimate (2).

(a)

(b)

(c)
Fig. 1. Communication graphs of the
parallel algorithms
(Here PT – Parallel thread, MPT – Main parallel
thread)

For some statistical parameters an-
other operators are uses instead of
� . For example, for univariate RV

the q%-quantiles may be estimated as

order statistics 1]qN[
**

q )(sort += Ωξ .

Such definition is clear for parallelism
detection: the sample estimates of

1]qN[
)k()k*(

q k
)(sortx += Ω  for all

threads p,1k =  are considers in

parallel (see Fig. 1(a), vertex C). For
the computation of total estimate the
Eqn. (2) may be used also; but for last
terms of sample such estimates are
biased. Therefore, the total sorting of

previously sorted *
kΩ  is required

(vertex E). In the Fig 1(a) seen, that
the most labor-consuming operations:
estimation of sums (B) and sorting
(C) are parallel.

In the Fig 2(a) the speedup indexes Sp vs. p for statistical estimation of univariate RV

are shown for different volumes N of the sample *Ω . It is seen, that the scalability of
the algorithm is rather good, especially – for high value of N.
Even for RV model, the inverse problem – stochastic simulation by Monte-Carlo tech-
nique sometimes require more computational resources, than the estimation. The
simulation of random numbers is traditional parallel problem (see e.g. [21]). The par-
allel scheme of RV simulation is close to Fig. 1(a), when vertex B contains the ran-
dom number generation instead of statistical summation.

3.2   Parallel Algorithms, Based on the Strong Mixing Principle

The ensemble decomposition principle is the best mainly for the RV model. For the
TS and SF modeling more sophisticated approaches are require. Here we consider the
class of the parallel algorithms, based on the strong mixing principle [11]. In terms of
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TS model this expressed as ( ) ( ) )y(FxFy,xF )s()t(st)s()t( ζζζζ ⎯⎯⎯ →⎯ ∞→− , where t and s

are the time moments. This fact allows design the algorithms on the base of the paral-
lel simulation of p independent time series, and its further sewing.

(a)
(b)

(c) (d)
Fig. 2. (a) Speedup of the parallel statistical estimation. Here 1-N=2000, 2-N=4000, 3-N=
10000, 4-N=20000.
(b-d) Illustration of the main parallelization principles: (linear stochastic systems (b),
Markov chains (c) and models of inhomogeneous stochastic fields (d)).

3.2.1   Parallel Models of Linear Stochastic Systems
For simulation of Gaussian stationary TS and homogeneous SF ζ(u) the model of
linear stochastic system in terms of partial differential equation may be adopted [1]:
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with constant coefficients (*  is the operator composition). When

1k,0e,0q,1N kiki ≥=== , the Eqn. (3) reduces to the well-known autoregressive

model [9]:

T,1Mt,t

M

1i
itit +=+= ∑

=
− εσζΦζ ε . (4)

The parameters εσΦ ,i  are obtains by means of linear equation system

( )( )[ ]ζζ ζζΦ mmEK,KK ittii
k

kik −−== −−∑ . (5)

Here Ki is the value of covariance function of ζt. It may be estimated by means of
parallel algorithm, described in Chapter 3.1. It is seen, that the Eqn. (4) has an explicit
recurrence, thus, the direct loop parallelism is impossible here. Taking to account, that

TM << , let us consider the parallelization principle, shown in Fig. 2(b). If we de-
compose the length of simulated series as M)1p(pTT 1 −+= , the follows steps may

be carry out:
• Estimation of the model parameters by Eqn. (5) (vertex A)

• Parallel simulation of T1-length independent time series p,1k,)k(
t =ζ  (vertex B)

• Couple sewing of the simulated series by Eqn. (4) (vertex C).

Table 1. Speedup indexes for parallel simulation of linear dynamic systems (left part)
 and Markov chains (right part)

Linear dynamic system (4-6) Markov chain (7-8)

Number of processors p Number of processors p
T M

2 4 8
T M

2 4 8

2000 10 1.7 1.3 0.8 103 10 1.0 0.9 0.7

2000 40 1.8 2.9 3.8 103 100 0.9 0.7 0.4

4000 10 1.7 2.6 3.2 104 10 1.7 2.3 2.7

4000 40 1.9 3.3 4.8 104 100 1.8 2.5 2.7

8000 10 1.8 2.9 3.9 105 10 1.6 2.5 3.3

8000 40 1.9 3.4 5.6 105 100 1.9 3.5 5.8

The algorithm of couple sewing is close to approach for environmental data missing

recovering from the paper [20]. It allows present the values of MT,...,1Tt,
~

11t ++=ζ
by means of recurrent equation
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Here δσΘ ,)(
i

•  are the model parameters, and tδ  is the white noise. The Eqn. (6) is the

double-side generalization of Eqn. (5), and the values { })k(
T

)k(
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,, ζζ �+−  and

{ })1k(
M
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1 ,, ++ ζζ �  of the TS from two parallel threads (k) and (k+1) may be consider

as the boundary values. The procedure like (5) is used for the estimation of )(
i

•Θ . In

the Table 1 (left part) the speedup indexes Sp vs. p are present for different values of T
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and M. For the short data series the Sp became less 1, but with the increasing of T the
speedup became rather better (e.g. for T = 8000, M =40 the Sp = 5.6 and ε = 70% for 8
processors).

3.2.2   Parallel Markov Models
For stationary Markov chains and processes the strong mixing principle is also valid.
Taking to account, that for numerical computations the discrete representation of the
continuous Markov processes are traditionally uses, we consider only discrete M-states
Markov chains with parameters [2]:
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Here π  is the vector of limit probabilities and P  is the matrix of transient probabili-
ties. The general principle of parallelism is shown in the Fig. 2(c) for first order
Markov chain. The parallelization technique is close to the same for linear stochastic
systems (the communication graph in the Fig. 1(b)). It consists of three stages:
• Estimation of parameters (7) and data preparation (vertex A)
• Parallel simulation of independent sub-chains (vertex B)
• Couple sewing of the simulated sub-chains (vertex C).
The sewing procedure uses the states in the tail of first sub-chain (a) and head of sec-
ond sub-chain (b) as the boundary conditions for simulation of the sewing Markov
state k, with the conditional probability:

M,1k,b,a,
pp

pp
p

M
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lbal
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k ==

∑
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In the Table 1 (right part) the speedup indexes Sp vs. p for Markov chains with differ-
ent T and M are shown. For low T=103 the speedup may be less 1, due to high commu-
nication expenses for sewing of the sub-chains. But for high length of the chain
(T=105) the values of Sp increases in respect to M and p. E.g. for Markov chain with
the 100 states the S4=3.5 and S8=5.8 times.

3.3   Parallel Algorithms, Based on the Functional Approximation Principle

The principle of functional approximation is based on the classical representation of
TS or spatio-temporal SF )t,( rζ  in terms of the deterministic function, dependent

from the set of random arguments Ξ  [12]:
)|t,()t,( Ξζζ rr = . (9)

It allows decompose the spatial (or spatio-temporal) domain on the set of equal sub-
volumes. The main advantages of this principle are obvious for the nonstationary TS
and inhomogeneous SF, where the strong mixing principle is not valid.



Stochastic Simulation of Inhomogeneous Metocean Fields. Part III         241

3.3.1   Periodically Correlated Time Series
One of the simplest examples of nonstationary TS is the model of periodically corre-
lated stochastic process (PCSP) )t(ζ , where the mathematical expectation

)t(m)t(m τζζ +=  and covariance function )s,t(K)s,t(K ττζζ ++= , τ  is the

period of correlation (e.g. – one year). The PCSP model is widely uses for simulation
of the annual variability of different metocean processes [13], e.g. sea waves, wind
speed, atmospheric pressure, ice cover, air and water temperature [6] etc. In the book
[17] the simulation algorithm for PCSP with explicit formalization of dependence is
proposed. Instead of this, let us consider the alternative parametrical model of PCSP
as expansion [4]:

∑=
k

kk )tiexp()t()t( Λαζ . (10)

Here )}t({ kαΞ =  - the set of parameters, τπΛ /k2k = . The inverse transformation

of Eqn. (10) allows obtain the explicit expression for TS )t(kα :
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Here )s,t(H  is the kernel function, )y,x(H)s,t(H)y,x,s,t(R = . When )s,t(H  is

the step function for [ ]τ−∈ t,ts , the time series )t(kα  became stationary and Gaus-

sian [6]. The Eqns. (10,12) allows the domain parallelization of PCSP computation.
Communication graph of this algorithm is shown in the Fig. 1(c), where vertex A
respects to simulation of TS (11) with covariance function (12) by means of multivari-
ate autoregressive model (4), and vertex B is the parallel computation of the Eqn. (10)

for equal time intervals [ ] p

0k1kk t,t =+ . After the sub-volumes computations all the data

send to the main computational thread (vertex C).

3.3.2   Inhomogeneous Spatio-Temporal Fields
The principle of functional approximation is applied for simulation of the inhomoge-
neous spatio-temporal metocean fields. In [4,5] such models are presented as the ex-
pansion:

)t,()t,()t(a)t,(m)t,(
M

1k
kk rrrr εΦζ +=− ∑

=
. (13)

Here )t(ak  are the coefficients, )t,(m r  is the mathematical expectation, )t,(k rΦ  is

the spatio-temporal basis, )t,(rε  is the inhomogeneous white noise. The estimation of

)t(ak  is fully discussed in the paper [4]. The general principle of parallelism in Eqn.

(13) is shown in the Fig. 2(d). It is seen, that there are at least two alternative ways for
parallelization. The first (horizontal) way is the domain decomposition on the equal
spatial areas, and calculation the Eqn. (13) for each area in parallel. The communica-
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tion graph of this algorithm is shown in the Fig. 1(c) and discussed in Section 3.3.1.
The second (vertical) way is based on the parallel computation of the coefficients

(vertex A in Fig 1(c)) and the terms )t,()t(a kk rΦ  for all the gridpoints { }N

1kk =r , and

finally – summation of Eqn. (13) in the main parallel thread (vertex C). Theoretically
both schemes are valid, but in practice the real speedup depends from the total num-
bers of gridpoints N  and numbers of basic functions M. In the table 2 the speedup
indexes Sp vs. p are present for different values of N and M. Take in mind, that the
parameters ka  may be considered as RV, stationary SF or PCSP [4], we carry out all

the computations for three classes of complexity (associated with loadings LA for
simulation of coefficients).

Table 2. Speedup indexes for parallel simulation of inhomogeneous metocean fields

Horizontal parallelization Vertical parallelization
Processors p Processors pComplexity

M N
2 4 8

M N
2 4 8

4 500 1 1.2 1.2 10 100 0.7 0.4 0.4
I

8 1000 1.5 2.1 2.3 100 100 1.0 0.9 0.7
4 500 1.5 2.0 1.6 10 100 1.9 1.6 1.8

II
8 1000 1.9 3.4 5.7 100 100 ~2 1.7 3.2
8 500 ~2 3.7 6.1 10 100 1.9 3.4 1.9

III
16 1000 ~2 3.9 7.7 100 100 ~2 3.9 5.9

From the table 2 seen, that for horizontal (domain) parallelization the speedup is the
highest for the high-complexity models. E.g., for third class of complexity (PCSP
model of coefficients) the S8=7.7 (efficiency ε8=96%) when M=16 and N=1000 spatial
points. For the complexity class I (RV model, describing only spatial variability), the
speedup is low. The vertical (sum) parallelization allows obtain the high speedup only
if the number of basic functions is close to number of spatial points. Therefore, this
way is not adopts for the reduction of data dimensionality in stochastic models and
may be considered only for the specific problems, as the simulation of the fields with
very complicated spectral structure.

4   Conclusions

This paper has demonstrated the main principles of parallel algorithms design for
computational multivariate statistics of spatio-temporal metocean fields. The princi-
ples of ensemble decomposition, strong mixing and functional approximation allow
develop the parallel stochastic models for dependent time series and fields (including
autoregressive TS, Markov chains, PCSP and inhomogeneous spatio-temporal SF).
The analysis of speedup sensitivity to the model parameters shown, that the efficiency
of the proposed algorithms is the best for huge model datasets, in practice applying for
numerical study of extreme metocean events [5].
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