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Abstract. In this paper we present a maple-package, named SyNRAC,
for solving real algebraic constraints derived from various engineering
problems. Our main tool is real quantifier elimination and we focus on
its application to robust control design problems.

1 Introduction

SyNRAC is a maple-package aiming to be a comprehensive toolbox composed of a
collection of solvers for real algebraic constraints derived from various engineer-
ing problems. SyNRAC stands for a Symbolic-Numeric toolbox for Real Algebraic
Constraints. The solvers to be addressed include mainly symbolic ones and also
symbolic-numeric ones to improve efficiency of symbolic approaches. Hence they
can deal with parametric and nonconvex constraints.

The focus of the implemented algorithms is on practically effective quantifier
elimination (QE) for certain industrial/engineering problems and simplification
of quantifier-free formulas. Therefore SyNRAC provides a yet another implemen-
tation of quantifier elimination, a thing which is still missing in maple. Currently
the following algorithms are available in SyNRAC:

• a special QE by the Sturm-Habicht sequence for sign definite condition (§2.1)
• a special QE by virtual substitution for linear formulas (§2.2)
• some simplifications of quantifier-free formulas

Furthermore, based on SyNRAC we are going to develop some toolboxes tailored
for specific application fields, e.g., robust control design, on MATLAB, which
would be novel tools that provide new systematic design procedures for engineers.
Taking maple/MATLAB as a platform has the following advantages:

• maple-packages are automatically incorporated into MATLAB, which is
widely used in engineering, via its “Symbolic Math Toolbox”

• They provide a good environment to realize symbolic-numeric solvers
(floating-point arithmetic, many numerical packages for, e.g., optimization)

We note that this work is strongly motivated by one of the authors’ previous
works concerning practically effective applications of QE to robust control design
problems [1,2,3]. They show that when we solve practical control problems it is
effective to use the scheme that well combines reduction of problems to particular
formulas and usage of QE algorithms specialized to such particular formulas.
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2 Special Quantifier Elimination Methods

Our current focus of implemented solvers is on QE algorithms specialized to par-
ticular types of input formulas that are sufficiently efficient for practical prob-
lems. Two special QE algorithms explained below are now available in SyNRAC.

Moreover simplification of quantifier-free formulas is important. Formulas
which occur during a special QE algorithm tend to get extremely large, deeply
nested and highly redundant. Utilizing simplification algorithms combined with a
special QE algorithm contributes to improve not only readability of the resulting
formula but efficiency of the computation (see [4,5] for possible simplifications).
Automatic formula simplifiers are implemented in REDLOG1 and QEPCAD.2

Implementation of such simplifications in SyNRAC is ongoing.

2.1 Special QE Using the Sturm-Habicht Sequence

A special QE method based on the Sturm-Habicht sequence for the first-order
formula ∀x f(x) > 0, where f(x) ∈ R[x] was proposed in [4]. The algorithm is
desired to be modified for checking a sign definite condition (SDC):

∀x > 0, f(x) > 0 , (1)

since a quite wide range of the important problems in robust control can be
reduced to SDC (see §3.1). We briefly sketch a special QE algorithm using the
Sturm-Habicht sequence for the SDC (see [1] for details).
Definition 1. Let P,Q be polynomials in R[x]; P =

∑n
k=0 akx

k, Q =∑m
k=0 bkx

k, where n,m are non-negative integers. For i = 0, 1, . . . , 
 =
min(n,m) we define the subresultant Sresi(P, n,Q,m) associated to P, n,Q and
m of index i as

∑i
j=0M

i
j(P,Q)x

j, where M i
j(P,Q) is the determinant of the

matrix composed by the columns 1, 2, . . . , n +m − 2i − 1 and n +m − i − j in
the matrix si(P, n,Q,m):

si(P, n,Q,m) :=

n+m−i︷ ︸︸ ︷


an . . . a0

. . .
. . .

an . . . a0

bm . . . b0

. . .
. . .

bm . . . b0





m − i


n − i

.

Let v = n+m− 1 and δk = (−1) k(k+1)
2 . The Sturm-Habicht sequence associated

to P and Q is defined as the list of polynomials {SHj(P,Q)}j=0,...,v+1 given by
SHv+1(P,Q) = P , SHv(P,Q) = P ′Q, SHj(P,Q) = δv−j · Sresj(P, p, P ′Q, v)
for j = 0, 1, . . . , v − 1, where P ′ = dP

dx . In particular, {SHj(P, 1)}j=0,...,v+1 is
called the Sturm-Habicht sequence of P . We simply denote it by {SHj(P )}.
1 REDLOG is a QE package based on virtual substitution (§2.2) on REDUCE.
2 QEPCAD is a general QE package that is applicable to all first-order formulas based

on cylindrical algebraic decomposition (CAD) [6,7].
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The Sturm-Habicht sequence can be used for real root counting in almost the
same way as the Sturm sequence. Moreover it has better properties in terms of
specialization and computational complexity (see [8,9] for details).

Theorem 1 (González-Vega et al.[9]). Let P (x) ∈ R[x] and
{g0(x), . . . , gk(x)} be a set of polynomials obtained from {SHj(P (x))} by
deleting the identically zero polynomials. Let α, β ∈ R ∪ {−∞,+∞} s.t. α < β.
We define WSH(P ;α) as the number of sign variations on {g0(α), . . . , gk(α)}.
Then WSH(P ;α, β) ≡ WSH(P ;α) − WSH(P ;β) gives the number of real roots
of P in [α, β].

We denote the principal j-th Sturm-Habicht coefficient of SHj(f), i.e., the co-
efficient of degree j of SHj(f), by stj(f) and the constant term of SHj(f) by
ctj(f) for all j. Then we have

WSH(f ; 0,+∞) =WSH(f ; 0)−WSH(f ; +∞)
= V ({ctn(f), . . . , ct0(f)})− V ({stn(f), . . . , st0(f)}) , (2)

where V ({ai}) stands for the number of sign changes over the sequence {ai}.
The SDC (1) holds if and only if both WSH (f ; 0, +∞) = 0 and stn(f) > 0
hold. Hence an equivalent condition to the SDC (1) can be obtained as follows:
Consider all the possible sign combinations over the polynomials cti(f),sti(f)
(there are at most 32(n+1)−3 = 32n−1 patterns since ct0(f) = st0(f), stn(f) > 0,
stn−1(f) > 0); Choose all sign conditions that satisfy WSH(f ; 0,+∞) = 0 by
(2); Construct semi-algebraic sets generated by cti(f), sti(f) for the selected
sign conditions and combine them as a union. The obtained condition is of the
form of a union of semi-algebraic sets. They are expected to contain many empty
sets. We can prune some impossible sign combinations beforehand (see [1]). All
procedures mentioned above have been implemented in SyNRAC.

2.2 Linear QE by Virtual Substitution

We present another special QE algorithm, i.e., quantifier elimination for linear
formulas. A linear formula is a formula whose atomic subformulas are all linear
with respect to its quantified variables. In 1993 Weispfenning [10] proposed a
QE algorithm for linear formulas. Loos and Weispfenning [11] have presented
more efficient algorithms. We explain the essence of their algorithms.

Let Q1x1 · · ·Qnxnϕ be a linear formula, where Qi ∈ {∀,∃} and ϕ is a
quantifier-free formula. By using the equivalence ∀xϕ(x)⇐⇒¬(∃x¬ϕ(x)), we can
change the formula into an equivalent formula of the form

(¬)∃x1 · · · (¬)∃xn(¬)ϕ .

The negation ‘¬’ that precedes a quantifier-free formula can be easily elimi-
nated (use De Morgan’s law and rewrite the atomic subformulas), which is not
essential part of quantifier elimination. In addition to that, a practical problem
is mostly given by an existential formula, i.e., a formula of the form ∃x1 · · · ∃xnϕ.
We assume from now on that the input is an existential formula. Thus our main
purpose is to eliminate the quantified variable ∃x in ∃xϕ with ϕ quantifier-free.
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Definition 2. Let ϕ be a quantifier-free formula, x ∈ X a variable, and S a
set of terms, where each term t ∈ S does not contain x. Then S is called an
elimination set for ∃xϕ if the equivalence

∃xϕ ⇐⇒
∨

t∈S

ϕ(x//t)

holds, where ϕ(x//t) is the formula obtained by a modified substitution.3

It is known that for any given linear formula ∃xϕ as above, there exists an
elimination set for the formula.

Lemma 1 (Weispfenning [10]). Let ϕ be a linear quantifier-free formula, x
a quantified variable in ϕ, and Ψ = {aix − bi ρi 0|i ∈ I, ρi ∈ {=, �=,≤, <}} the
set of atomic subformulas in ϕ. Then

S =
{ bi
ai
,
bi
ai

± 1|i ∈ I
} ∪ {1

2
(
bi
ai

+
bj
aj
)|i, j ∈ I, i �= j

}

is an elimination set for ∃xϕ, where S is regarded as a set of linear terms.

By using Lemma 1, we can eliminate all the quantifiers in a given formula;
eliminate them one by one from inside.

Loos and Weispfenning [11] have found smaller elimination sets than in
Lemma 1 and succeeded in improving the algorithm because smaller elimination
sets help prevent the number of atomic subformulas from getting larger during
the elimination process. All the QE algorithms mentioned here have been im-
plemented in SyNRAC. Furthermore an algorithm that returns a sample point if
the input formula turns out to be ‘true’ has also been implemented in SyNRAC.

3 Fixed-Structure Robust Controller Synthesis

As applications of SyNRAC we focus on fixed-structure robust controller synthesis
problems: Controller synthesis problems are to choose controller parameters so
that given specifications are satisfied. It is strongly desired that the fixed-order
controller design problems be resolved in practical problems which operate under
the constraint of fixed structure. However, it is a long-standing open problem
in robust control and the lack of effective results on the problem has prevented
modern design methods from being applicable to such practical problems.

Recently methods based on QE have been proposed for such robust controller
synthesis and multi-objective design problems [12,13,14,15,1]. The design scheme
they used is, so called a parameter space approach, as follows:

1. Determine the structure of the controller and select the design parameters,
e.g., x1 and x2 in the PI-controller x1 + x2

s are the parameters
2. Reduce the specifications to the equivalent first-order formulas
3 There is a procedure assigning the expression ϕ(x/t) obtained from ϕ by substituting

t for x a formula equivalent to it. We denote the resulting formula by ϕ(x//t).
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3. Compute the admissible regions of the design parameters for all specifications
by applying QE to the obtained first-order formulas

4. Superpose the admissible regions in the parameter space and take the pa-
rameters in the intersections

However, since they in general need to use general QE algorithm based on CAD,
they have a drawback on computational complexity. For the efficient compu-
tation it is effective to use the scheme that well combines reduction of target
problems to particular classes of formulas and usage of special QE algorithms
for the particular input formulas. Actually this scheme is successfully applied to
several open problems in robust control; the following are such examples.

3.1 Control Synthesis Based on SDC

Many important design specifications in robust control such as H∞ norm con-
straints, gain/phase margins and stability radius specification, which are fre-
quently used as indices for the robustness of feedback control systems, can be
recast as SDCs (see [16,17,18,3,19,1]). A special quantifier elimination method
using the Sturm-Habicht sequence has sufficient practicability for the SDCs de-
rived from practical control problems [1,3]: For example, an H∞ norm constraint
of a strictly proper transfer function P (s) = n(s)/d(s) given by

‖P (s)‖∞ := sup
ω

|P (jω)| < 1

is equivalent to ∀ω d(jω)d(−jω) > n(jω)n(−jω). Since we can find a function
f(ω2) which satisfies f(ω2) = d(jω)d(−jω) − n(jω)n(−jω) > 0, letting x = ω2

lead to SDC. Similarly, a finite frequency H∞ norm defined by

‖P (s)‖[ω1,ω2] := sup
ω1≤ω≤ω2

|P (jω)| < 1

can be recast as the condition f(x) �= 0 in [ −ω2
2 ,−ω2

1 ], which is reduced to
SDC for f(z) by a bilinear transformation z = −(x+ ω2

2)/(x+ ω2
1).

3.2 Linear Programming Approach to Control Design

Recently it has been reported in [2] that other important problems in robust con-
trol, which are recast as parametric linear programming (LP) problems, can be
resolved with sufficient efficiency for practical use by using a special QE method
based on virtual substitution [10]: If there is no feasible controller parameter
value for a given specification, it is required to relax the given specification
within acceptable levels. A systematic approach to estimating how we can relax
a design specification is achieved by applying QE to parametric LP.

We briefly review robust controller synthesis via LP [20]. Consider a feedback
control system shown in Fig.1, where p = [p1, p2, . . . , ps] is the vector of uncer-
tain real parameters in the plant G and x = [x1, x2, . . . , xt] is the vector of real
parameters of the controller C. Assume that the controller considered here is of
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Fig. 1. A standard feedback system

fixed-order. The performance of the control system can often be characterized
by a vector a = [a1, . . . , al] which are functions of the plant and controller pa-
rameters p and x: ai = ai(x,p), i = 1, . . . , l. Here we take the ai to represent the
coefficients of a closed-loop performance function. Suppose that the target value
of the closed-loop performance vector is ∆T = [δT

1 , . . . , δ
T
l ] ∈ R

l. We denote the
nominal value of the plant parameter by p = p0 and deal with uncertainty in
the plant by letting p lie in a box Π given by

Π = {P | p−
i ≤ pi ≤ p+i , i = 1, 2, . . . , s} .

The control system design is ideally to choose the controller parameter vector
x which satisfies the set of equations ai(p0,x) = δT

i , i = 1, . . . , l. However, this
is in general not attainable. Moreover, under plant perturbations the ideal per-
formance deteriorates. Hence the robust performance problem requires ensuring
that the controller design vector x can be chosen so that the performance ag-
gravation, which could occur as p ranges over the uncertainty set Π, remains
within acceptable limits. Therefore, we suppose that target performance ∆T is
given as the interval set

∆T = {∆T | δT−
i ≤ δT

i ≤ δT+
i , i = 1, 2, . . . , l} ,

which is the relaxation of the desired target performance δT . Then the goal of
controller synthesis problem is to find a controller parameter vector x which
satisfies the following set of inequalities

δT−
i ≤ ai(p,x) ≤ δT+

i , i = 1, 2, . . . , l (3)

for all p ∈ Π. Assume that the parameter p appears linearly or multilinearly
in a(p,x) whereas x appears linearly (this is valid in many control problems).
Then the constraints (3) obviously have a standard LP form. To estimate possible
relaxation of the given specification, we regard endpoints of the target box as
parameters in (3) and then compute the possible range of the endpoints so that
a feasible controller exists by applying QE to a parametric version of (3). A
typical example is the fixed-order robust pole assignment problem (see §4).

4 Computational Examples

In this section we show some computational examples to illustrate how SyNRAC
works and its application to concrete control problems:4 We load the packages:
4 All computations were executed on a Pentium III 1 GHz processor.
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> read "synrac"; with(combinat);

First we solve the QE problem ∀x > 0, a2x2 + a1x+ a0 > 0:

> qe_sdc(a2*xˆ2+a1*x+a0,x);

-a0 < 0 and a1 < 0 and -4*a0+a1ˆ2 < 0 or
-a0 < 0 and -a1 < 0 and -4*a0+a1ˆ2 < 0 or
-a0 < 0 and -a1 < 0 and 4*a0-a1ˆ2 < 0

time = 0.02, bytes = 123614

Next we solve the existential linear QE problem ∃x∃y(y > 2x+3∧x > 0∧y < s):

> qe_lin([x,y], y>2*x+3 and x>0 and y<s);

-1/2*s < -3/2

time = 0.03, bytes = 144686

Finally we show the examples of decision problems for both commands:

> qe_sdc(xˆ5-xˆ2+3*x-9,x);
false

time = 1.11, bytes = 8774262

> qe_lin([x,y], y<2*x+2 and y<=-3*x+12 and y>(1/3)*x+5);
true

A sample point: [x, y], [52/25, 144/25]

time = 0.03, bytes = 155078

Example 1 (H∞ norm constraints for sensitivity function). Consider the feed-
back system shown in Fig.1 with G(s) = 1

s−1 , C(s,x) = x1 + x2
s . We want to

find feasible regions of the controller parameter x so that the system satisfies
a finite frequency H∞ norm constraint of a complementary sensitivity function
T (s):

||T (s)||[ωt,∞] ≡ max
ωt≤ω≤∞

||T (iω)|| < γt , (4)

where T (s) = G(s)C(s)
1+G(s)C(s) and ωt and γt are given real values. We can see from a

simple symbolic computation that (4) is reduced to the following SDC:

x > 0, ft(x) ≡ x2 + a1x+ a0 > 0 ,

where a1 = 2ω2
t − 2x2 + (1 − x1)2 − x2

1/γ
2
t , a0 = ω4

t − (2x2 − (1 − x1)2 +
x2
1/γ

2
t )ωt+m2(1−1/γ2

t ). Performing qe sdc in SyNRAC to ft(x) instantly gives
us the following equivalent formula:

(−a0 < 0 ∧ a1 < 0 ∧ −4a0 + a2
1 < 0) ∨ (−a0 < 0 ∧ −a1 < 0 ∧ −4a0 + a2

1 < 0) ∨
(−a0 < 0 ∧ −a1 < 0 ∧ 4a0 − a2

1 < 0)

After manual simplification we have the only one equivalent condition:
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(a0 > 0 ∧ a1 > 0 ∧ 4a0 − a21 < 0) .

Moreover we can finally simplify the condition to obtain (a0 > 0∧a1 > 0) because
4a0 − a21 < 0 is true due to the structure of a0, a1. Then if we specify the values
of ωt, γt, we immediately have possible regions of controller parameters x1, x2
which satisfy the given complementary sensitivity constraint. For example, the
possible region for ωt = 20, γt = −0.1 with stability condition (x1 > 1∧ x2 > 0)
obtained from the Hurwitz criterion, is shown as the shaded region in Fig 2.

Fig. 2. The possible regions of Example 1 (left) and 2 (right).

Example 2 (Possible relaxation of robust pole assignment specification). We con-
sider a PI control system with C(s) = x1+ x2

s for the plant G(s) = 1
(d2s2+d1s+d0)

.

The closed-loop characteristic polynomial is

δ(s) = d2s
3 + d1s

2 + (x1 + c0)s+ x2 .

Then pole assignment problem is to locate the roots of δ(s) at(within) desired
place(region). The target pole location is given as roots of a given target poly-
nomial. Now we want to estimate how much we can relax the given infeasible
specification. The target(relaxed) characteristic polynomial is given by

δT (s) = δT
3 s

3 + δT
2 s

2 + δT
1 s+ δT

0 ,

where δT−
i ≤ δT

i ≤ δT+
i . Assume the endpoints have the following structure:

δT−
i = σi(δ0i − eiγ), δT+

i = σi(δ0i + eiγ) for all i where δ0i , ei are given constants
and σ and γ are parameters which stand for changes of the time-scale (or fre-
quency range) and a magnitude of perturbations, respectively. Then we find the
possible region of δT−

i , δT+
i (i.e., γ, σ) so that there exists a controller parameter

x satisfying that all the roots of δ(s) are within the root space of δT (s). Based
on the argument in §3.2 we have the following formulas corresponding to (3):
ϕ ≡ ((δT−

3 ≤ d2 ≤ δT+
3 ) ∧ (δT−

2 ≤ d1 ≤ δT+
2 ) ∧ (δT−

1 ≤ x1 + d0 ≤ δT+
1 ) ∧

(δT−
0 ≤ x2 ≤ δT+

0 ) ∧ (−1 ≤ d0 ≤ 1) ∧ (1 ≤ d1 ≤ 3/2) ∧ (−1/2 ≤ d2 ≤ 3/2)) .

Here we take δ00 = 4, δ01 = 6, δ02 = 4, δ03 = 1, e0 = 1, e1 = 3/4, e2 = 1/2, e3 = 1/4.
We execute qe lin in SyNRAC to the first-order formula
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∃x1∃x2∃d0∃d1∃d2 ϕ(x1, x2, d0, d1, d2, σ, γ)

to obtain instantly an equivalent quantifier-free formula of the form
∨16

i=1 τi(γ, σ),
where τi is the conjunction of atomic formulas. After additional simplification
we finally get the following quantifier free formula

ψ(γ, σ) = τ1(γ, σ) ∨ τ2(γ, σ) ,
where

τ1 = ( P2 ≥ 0 ∧ P3 ≥ 0 ∧ P5 ≥ 0 ∧ P6 ≥ 0 ∧ P7 ≥ 0 ∧ P8 ≥ 0 ),

τ2 = ( P1 ≥ 0 ∧ P2 ≤ 0 ∧ P5 ≥ 0 ∧ P6 ≥ 0 ∧ P7 ≥ 0 ∧ P8 ≥ 0 ),

P1 = γσ3 + 4σ3 − 2, P2 = γσ3 + 4σ3 − 6, P3 = γσ3 − 4σ3 + 6,
P4 = γσ2 + 8σ2 − 2, P5 = γσ2 + 8σ2 − 3, P6 = γσ2 − 8σ2 + 3,
P7 = γσ, P8 = γ.

The possible region of γ, σ given by ψ is illustrated as the shaded region in
Fig.2. Since we finally have all the possible region as semialgebraic sets in γ-σ
space, we can easily obtain the minimum relaxation.

5 Conclusions

We have presented maple-package SyNRAC for solving real algebraic constraints.
Although our project is currently under development and there is still a consider-
able way to go until the state-of-the-art techniques in real quantifier elimination
are implemented in SyNRAC, we think our package has now reached a stage of
development that justifies publication. We are continually improving the effi-
ciency of implemented algorithms and are going to implement other algorithms
(including symbolic-numeric algorithms) for solving real algebraic constraints
into SyNRAC. We also plan to develop some toolboxes tailored for specific ap-
plications (e.g., parametric robust control toolbox) based on SyNRAC. In order
to make our system applicable to those who are interested in but not famil-
iar with symbolic computation and maple software, we are going to incorporate
SyNRAC into MATLAB and implement interfaces to modeling formulas and
sophisticated visualization facility of feasible parameter regions in a parameter
space.
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