
A Framework for Microprocessor Correctness
Statements

Mark D. Aagaard1, Byron Cook2, Nancy A. Day3, and Robert B. Jones4

1 Electrical and Computer Engr., University of Waterloo, Waterloo, ON, Canada
markaa@swen.uwaterloo.ca

2 Prover Technology, Portland, OR, USA
byron@prover.com

3 Computer Science, University of Waterloo
nday@cs.uwaterloo.ca

4 Strategic CAD Labs, Intel Corporation, Hillsboro, OR, USA
rjones@ichips.intel.com

Abstract Most verifications of out-of-order microprocessors compare state-mach-
ine-based implementations and specifications, where the specification is based on
the instruction-set architecture. The different efforts use a variety of correctness
statements, implementations, and verification approaches. We present a frame-
work for classifying correctness statements about safety that is independent of
implementation representation and verification approach.We characterize the rela-
tionships between the different statements and illustrate how existing and classical
approaches fit within this framework.

1 Introduction

The increased parallelism provided by out-of-order execution in microprocessors has
made correctness statements for verification complicated, varied, and even controver-
sial. We studied published verifications of out-of-order microprocessors and discovered
a wide variety of correctness statements, verification techniques, and processor imple-
mentations. Some correctness statements initially appear to be similar, such as the ones
based on Burch-Dill style flushing [BD94], but differences emerge after close exam-
ination. Other statements are difficult to compare at first, but later reveal similarities.
The goal of this work is to provide a foundation for clarifying the meaning of individ-
ual correctness statements; precisely comparing different statements; and analyzing the
interaction between processor features, verification strategy, and correctness statements.

Most recent verification efforts verify a state-machine-based microarchitectural im-
plementation against a state-machine-based instruction-set architecture. The verification
efforts focus on safety; liveness is usually dealt with as a secondary concern. In keep-
ing with these trends, we focus on the verification of safety between microarchitectural
implementations and instruction-set architectures. We include deterministic and non-
deterministic state machines with finite or infinite state spaces. We do not yet include
specifications that are collections of properties, e.g. [BB94,McM98,PJB99].

The result of our investigation and analysis is a framework that precisely describes
and classifies correctness statements about safety between state machines. It allows cor-

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 433–448, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



434 M.D. Aagaard et al.

rectness statements to be analyzed independent of verification techniques and microar-
chitectural features. In this paper, we introduce the framework, present its mathematical
basis, and describe how existing out-of-order microprocessor correctness statements fit
within the framework.

2 Modeling with State Machines

We assume that both the specification and implementation have program memories as
part of their state. Therefore, our state machines do not take instructions as inputs. Ap-
proaches that take instructions as inputs in their correctness statements
(e.g. [BD94,JSD98,BBCZ98]) can be augmented with program memories that produce
the input trace. Interrupts can also be treated as part of the state space by adding ap-
propriate control circuitry to read the interrupt input trace from a store. We assume that
state machines generate infinite traces, where “termination” of a program is denoted by
repeating the final state of the program. Definition 1 shows the formalism we use to
describe state machines.

Definition 1 (State machines). A state machine M is a triple (Q, Q◦, N) where:
– Q is the set of possible state values and is a Cartesian product of internal (hidden)

state components and externally-visible state components.
Qe is the set of possible external state values.
Πe : Q → Qe is the corresponding projection function.
q1

Π= q2 says that q1 and q2 have equivalent external state: Πe(q1) = Πe(q2).
– Q◦ ⊆ Q is the set of initial states.
– N ⊆ Q × Q is the next-state relation.

Nk(q, q′) means q′ is reachable from q in k steps of N .
When N is a function, we write it as n.

The components of a state machine M will be subscripted with “s” for specification
and “i” for implementation. We assume a machine can always make a transition, i.e.
∀ q ∈ Q. ∃ q′ ∈ Q. N(q, q′). We allow machines to self-loop, that is transition from a
given state back to itself.

In verification, the state space of the implementation often needs to be limited to
reachable states, or an over-approximation of reachable states. This challenging task is
done by finding and proving invariants. Invariants are treated with varying degrees of
emphasis in the literature. In our framework we consider the invariants to be encoded in
Q, the set of states for the machine.

3 Correctness Statements

A well-established definition of correctness is that of trace containment: every trace
of external observations generated by the implementation can also be generated by the
specification. A disadvantage of trace containment is that verifying it can require infor-
mation about an entire trace. Another traditional definition of correctness is simulation:
if an implementation state is externally equal to a specification state, then executing



A Framework for Microprocessor Correctness Statements 435

one instruction in both the implementation and specification results in states that are
externally equal. Simulation is usually easier to verify than trace containment, because
simulation refers to individual transitions, rather than entire traces. Formal verification
of sequential microprocessors has generally been done using simulation-style correct-
ness statements. Similar correctness statements are also used in other domains such as
cache-coherence protocols (e.g. [PD96,SA97,NG98]).

Pipelining and other optimizations increase the gap between the behavior of the im-
plementation and the specification, thus making it more difficult to consider only one step
within the implementation and specification traces. Pipelined machines begin executing
new instructions before previous ones retire. Machines with out-of-order retirement re-
tire instructions in a different order than the specification. A superscalar machine may
externally appear to do nothing for a number of steps and then, in a single step, update
the register file with the results of several instructions.

To describe how out-of-order verifications use simulation-style correctness state-
ments, we separate the notions of 1) how to align the implementation trace against the
specification trace to determine which states should match, and 2) what it means for an
implementation state to successfully match a specification state.

When verifying non-pipelined machines, the traces can be aligned at every tran-
sition and two states match if the externally-visible state components are equal. To
verify pipelined machines, the alignment often needs to be at looser intervals than every
transition, or external equivalence needs to be replaced by a looser relationship. With
out-of-order microprocessors, the notions of alignment and matching are necessarily
even more complicated. A common alignment technique is to check the implementation
when it is in a flushed state (i.e. no in-flight instructions). A common matching relation-
ship is Burch-Dill style flushing [BD94], which uses an abstraction function to retire all
in-flight instructions in the implementation and project the externally-visible state, and
then checks for equality with the specification state.

Our framework uses four parameters to characterize a correctness statement: align-
ment, match, implementation execution, and specification execution. Alignment is the
method used to align the executions of the implementation and specification (Sect. 3.1).
Match is the relation established between the aligned implementation and specification
states (Sect. 3.2). Implementation execution and specification execution describe the type
of state machines used (Sect. 3.3). Section 4 shows how the correctness statements of
existing work fit within our framework.

3.1 Alignment

Alignment describes which states in the execution traces are tested for matching. Fig-
ure 1 illustrates the four kinds of alignment that we have found used in out-of-order
microprocessor verification. Pointwise alignment (P) is the classic commuting diagram,
which compares every transition. Stuttering alignment (S) allows the specification to
stutter, i.e. two or more consecutive implementation states can match the same specifi-
cation state. In must-issue alignment (M), the specification takes a single step, and the
implementation takes as many steps as are necessary to reach an unstalled state, and
then issue an instruction. A predicate isStalled indicates when the implementation cannot
take a “productive” step, and is generally defined to be true when the implementation



436 M.D. Aagaard et al.

cannot issue an instruction. Finally, flush-point alignment (F) says that if there is a trace
between flushed implementation states, then there must exist a trace in the specification
between any pair of states that match the flushed implementation states. A predicate
isFlushed indicates flushed implementation states. Instruction-set architectures execute
one instruction per step; therefore all of their states are flushed.

(F) Flush-point

Ms• • • •
��

��

Mi• • • • •

isF
lushed

isF
lushed

Mi and Ms must match
when Mi is in a flushed
state.

(M) Must-issue

��

Ms• • •
���������

Mi• • • • •

¬isS
talled

isS
talled

isS
talled

¬isS
talled

Ms takes one step. Mi takes zero
or more stalled steps and then one
unstalled step.

(S) Stuttering

��

Ms• •
��

��
������� • •

Mi• • • • • •
Ms can stutter

(P) Pointwise

��

Ms• • • •

Mi• • • •

Mi and Ms must match for
every transition.

In each diagram, the horizontal lines between states are the specification and implemen-
tation traces. The vertical lines between states show the where the implementation state
must match the specification state.

Fig. 1. Options and total order for the alignment parameter

We place the four kinds of alignment in a total order as illustrated by the arrows in
Fig. 1. This order is based on generality where alignments higher in the order are weaker.
For example, stuttering correctness implies flush-point for any instance of the predicate
isFlushed.

3.2 Match

Instantiations for the match parameter are relations R over an implementation state qi
and specification state qs that mean “qi is a correct representation of qs”. Figure 2 shows
the matches that we found used in out-of-order microprocessor verification. The arrows
show the total order, where definitions lower in the order are instances of higher values.

A general match (G) is any relation between implementation and specification states.
The abstraction match (A) uses a function (abs) to map an implementation state to a



A Framework for Microprocessor Correctness Statements 437

point that is externally equivalent to the specification state. The equality match (E) re-
quires that the implementation and specification states be externally equivalent. The
tightest match is the refinement map (R), which is an abstraction function that preserves
the externally-visible part of the implementation state. Refinement differs from equality
because the refinement map is a function, so each implementation state matches ex-
actly one specification state. The literature overloads words such as “refinement” and
“abstraction”. The mathematics in Fig. 2 give the precise definitions that we use.

(G)
General relation

qs•��

R

��
qi•

R(qi , qs)

(A)
Abstraction

qs• ��
Π=��•

qi•
abs

��

abs(qi)
Π= qs

��

(E)
Equality
qs•��

Π=

��
qi•

qi
Π= qs

��

(R)
Refinement Map

qs•��

Π=

��
qi•

abs

��

abs(qi) = qs

∧ qi
Π= qs

��

Fig. 2. Options and total order for the match parameter

If the specification does not have any internal state (i.e. all of the state components are
externally visible), then equality and refinement both reduce to Πe(qi) = qs . Because
refinement is a tighter match than equality, we will call such cases refinement.

In addition to the instances listed here, other options are possible. For example,
Pnueli et al. [DP97,PA98,AP99,AP00] have a matching relation that uses both con-
cretization and abstraction functions. Two states match if concretizing the specification
state produces the same result as abstracting the implementation state. In their exam-
ples, their concretization functions are identity or projection, so their match specializes
to abstraction in our framework.

3.3 Execution

The third and fourth parameters of the framework are the methods for describing the
traces of the implementation and specification. In the literature we find both determinis-
tic (D) and non-deterministic (N) implementations and specifications. In a deterministic
machine, the transition relation is instantiated as: N(q, q′) ≡ q′ = n(q). Implementa-
tions are often modeled with non-determinism because of scheduling circuitry. On the
other hand, most instruction-set architectures are deterministic, so most specification ma-
chines are deterministic. Exceptions include specifications with imprecise exceptions or
external interrupts. For our purposes, we consider deterministic machines as instances
of non-deterministic machines in the total order for the execution parameters.



438 M.D. Aagaard et al.

3.4 Correctness Space

By choosing different values of the parameters, we arrive at a variety of correctness
statements. We use four-letter acronyms to describe the values of the parameters:

<alignment> <match> <impl. execution> <spec. execution>
For example, “PADD” denotes point-wise alignment (P), abstraction match (A), and
deterministic implementation (D) and specification (D).

Each parameter has a total order on its instantiations. Together, these total orders
induce a partial order over correctness statements, which serves to map out the space of
correctness statements for microprocessor implementations (Fig. 3). The partial order
is based on the generality of the correctness statements. For example, FGNN (at the top
of the partial order) is more general than PADD because pointwise alignment implies
flush-point alignment; an abstraction function is an instance of a general relation; and
deterministic machines are instances of non-deterministic ones. Correctness statements
lower in the order are less general in that they apply to fewer systems. We do not advocate
any points in the correctness space over others. The classification serves to highlight the
differences and similarities among approaches.

3.5 Mathematical Formulation

In this section we describe the mathematical formulations of correctness statements in
the framework. We use Mi �R Ms to mean “Mi is correct with respect to Ms via the
relation R”. All of the correctness statements have the general form of Definition 2. The
base clauses remain largely unchanged from the one shown in Definition 2, so in the
remainder of the paper, we will discuss only the induction clauses.

Definition 2 (General form of correctness statement).

(Qi , Q
◦
i , Ni) �R (Qs , Q

◦
s , Ns) ≡

[
∧ ∀ q◦

i ∈ Q◦
i . ∃ q◦

s ∈ Q◦
s . R(q◦

i , q◦
s )

〈inductive clause〉
]

The alignment parameter determines the form of the correctness statement. We show
the correctness statements for the various values of the alignment parameter together
with the most-general values for the other parameters (i.e. non-deterministic machines
with a general relation match).

The most general combination in the correctness space is flush-point alignment with
a general match and non-deterministic machines (FGNN, Definition 3). It says that if the
implementation is in a flushed state qi and can transition through some number of steps
k to another flushed state q′

i , then all specification states qs that R says match qi must
transition through some number of steps j to some state q′

s that matches q′
i .

Definition 3 (Flush-point induction clause: FGNN).
∀ qi , q

′
i ∈ Qi . ∀ qs ∈ Qs . ∃ q′

s ∈ Qs .[
∧ isFlushed(qi) ∧ ∃ k. Nk

i (qi , q′
i) ∧ isFlushed(q′

i)
R(qi , qs)

]
=⇒

[
∧∃ j. N j

s (qs , q′
s)

R(q′
i , q

′
s)

]

The most general case of must-issue alignment (Definition 4) is MGNN. In must-
issue alignment, the specification takes one step and the implementation takes as many
steps k as are necessary to become unstalled; it then takes one unstalled transition from
qk
i to qk+1

i .



A Framework for Microprocessor Correctness Statements 439

FGNN FADD
[HSG98]

�� FENN
*[SH98]

�� FRNN
*[AP99]

��

FEND
*[SH97]

		�����
FRND

[SJD98]
*[AS99]



���

��

FRDD
*[HSG98]
*[SJD98]

��

MADD
*[BBCZ98]

*[SM95]

����������������������������

��

SANN
*[AP00]

�������������������������������

SENN
*[AL91]

��

��
SRNN
[AL91]
[AP00]

��

��

SADD
*[BGV99]


���������

��

PANN
*[DP97]
[AP00]

��

PENN
*[HQR98]

[DP97]
[SH98]

��

��
PRNN

*[PA98]
[AP99]

[HQR98]

��

��

PADN

�
�����
PEDN

[SJD98]

��

�� PEND
[SH97]

�����

��

*PGDD
[Mil71]

��

PADD
*[BF89]
*[SB90]
*[WC94]
*[BD94]
*[Bur96]
[HSG98]

[BBCZ98]

��

��					

��

A
l
i
g
n
m
e
n
t

F

M

S

P

Match

G A E R

<alignment> <match> <impl. execution> <spec. execution>
(F) Flush-point (G) General (N) Non-deterministic (N) Non-deterministic
(M) Must-issue (A) Abstraction (D) Deterministic (D) Deterministic
(S) Stuttering (E) Equality
(P) Pointwise (R) Refinement Map

Each point is annotated with citations for the works that use the particular correctness
statements. Citations prefixed with ∗ denote top-level correctness statements; others are
used as intermediate correctness statements during the proofs. Section 4 provides further
explanation.

Fig. 3. Space of correctness statements



440 M.D. Aagaard et al.

Definition 4 (Must-issue induction clause: MGNN).
∀ q0

i , q
1
i , . . . , qk+1

i ∈ Qi . ∀ qs ∈ Qs . ∃ q′
s ∈ Qs .

∧
∧

∀ j < k. Ni(q
j
i , q

j+1
i ) ∧ isStalled(qj

i )
Ni(qk

i , qk+1
i ) ∧ ¬isStalled(qk

i )
R(q0

i , qs)


 =⇒

[
∧Ns(qs , q′

s)
R(qk+1

i , q′
s)

]

Stuttering alignment results in a simpler correctness statement (Definition 5) because
it considers only one step of execution and requires no special predicates. The specifi-
cation is allowed to stutter, e.g. consecutive implementation states may align with the
same specification state.

Definition 5 (Stuttering induction clause: SGNN).
∀ qi , q

′
i ∈ Qi . ∀ qs ∈ Qs . ∃ q′

s ∈ Qs .[
∧Ni(qi , q′

i)
R(qi , qs)

]
=⇒

[
∧ (Ns(qs , q′

s) ∨ (q′
s = qs))

R(q′
i , q

′
s)

]

Pointwise alignment (Definition 6) drops the stuttering disjunct from Definition 5.

Definition 6 (Pointwise Induction Clause: PGNN).

∀ qi , q
′
i ∈ Qi . ∀ qs ∈ Qs . ∃ q′

s ∈ Qs .

[
∧Ni(qi , q′

i)
R(qi , qs)

]
=⇒

[
∧Ns(qs , q′

s)
R(q′

i , q
′
s)

]

Section 4 describes other correctness statements as points in the correctness space
by optionally instantiating R and the next-state relations in each of the above four
definitions. Instantiating next-state relations with functions removes the need for some
quantified variables.

3.6 Limitations

As with most formal verification approaches, the correctness framework presented in
this paper does not exclude certain “pathologically bad” matching relations. A matching
relation that includes all implementation and specification state pairings will result in a
vacuously true correctness statement, as any pair of consecutive implementation states
can be related to any pair of consecutive specification states. Another vacuous state-
ment results from using stuttering alignment with an abstraction function that maps all
implementation states to the same specification state.

4 Literature Survey

In this section, we show how a variety of correctness statements for out-of-order mi-
croprocessors are points in the correctness space created by the framework. While the
phrase “we use the correctness statement of Burch and Dill [BD94]” appears in many
papers, detailed examinations reveal that this is something of an approximation. For
conciseness, we discuss only the inductive clauses of the correctness statements.



A Framework for Microprocessor Correctness Statements 441

4.1 Historical Perspective

Milner’s [Mil71] work in software verification led to a definition of simulation that is
pointwise alignment of a general relation between a deterministic implementation and
a deterministic specification (PGDD). Milner does not include a base clause. PGDD is
derived from Definition 6 (pointwise alignment) by substituting next-state functions (ns
and ni ) for the next-state relations (Ns and Ni ).

Definition 7 (Milner’s simulation: PGDD).
∀ qi ∈ Qi . ∀ qs ∈ Qs . R(qi , q) =⇒ R(ni(qi), ns(q))

Abadi and Lamport [AL91] define refinement maps, which in our parlance is stutter-
ing refinement between non-deterministic machines (SRNN). They use refinement as a
verification strategy to prove SENN (stuttering equivalence), which they call implements.
Both SRNN and SENN are derived from Definition 5 (SGNN). For SRNN, refinement
(abs(qi) = qs ∧ qi

Π= qs ) is substituted for the match R, which results in Definition 8.

Definition 8 (Abadi and Lamport’s refines: SRNN).
∀ qi , q

′
i ∈ Qi .[

∧Ni(qi , q′
i)

qi
Π= abs(qi)

]
=⇒

[
∧Ns(abs(q′

i), abs(qi)) ∨ abs(q′
i) = abs(qi)

q′
i

Π= abs(q′
i)

]

Their main result is that if SENN holds, then it is possible to construct an intermedi-
ate model from an implementation using history and prophecy variables such that the
intermediate model will satisfy SRNN with the specification.

Several verifications of scalar pipelines use correctness statements that are relevant to
this paper. Bose and Fischer [BF89] used PADD in the verification of a pipelined stack. In
the first published verification of pipelined microprocessor, Srivas and Bickford [SB90],
and Windley and Coe [WC94] verified PADD between their implementations and specifi-
cations. Srivas and Miller [SM95] proved MADD between a pipelined microprocessor at
the instruction and micro-instruction levels of abstraction.All of the abstraction functions
in these efforts were manually constructed. The complexity of superscalar microproces-
sors has led to efforts to automatically (Sect. 4.2) or systematically (Sect. 4.4) create
abstraction functions.

4.2 Flushing

Burch and Dill [BD94] use PADD (pointwise abstraction) as their correctness state-
ment. They observed that for in-order pipelines, it is possible to construct an abstraction
function by forcing the implementation to issue a stream of bubbles that flush all of
the in-flight instructions out to retirement. In this case, abs ≡ flush. Notions similar to
flushing are also used for correctness criteria in other domains, such as cache-coherence
protocol verification (e.g. [PD96,SA97,NG98]).

To flush a microprocessor, the implementation must be forced to issue a bubble. An
implementation n̂i must be constructed that has the necessary input and control circuitry
for flushing. The function flush and the next-state function ni used in the correctness
statement are defined as shown below, where k is the number of bubbles used to flush
the pipeline, i.e. the maximum latency of the pipeline:



442 M.D. Aagaard et al.

flush(qi) ≡ n̂i
k(qi , True)

ni(qi) ≡ n̂i(qi , False)
Stalls complicate the flushing abstraction, because the implementation cannot fetch

an instruction to take a “productive” step. The framework provides us with several options
for handling this. The first two are instances of PADD. The other three options; which
use PADN, SADD, and MADD; are slightly more general than PADD.

Explicit Stalling of Specification. The first option is to construct a revised specification
(n̂s ) that takes a stall input s to indicate whether to self-loop or not:

n̂s(qs , s) ≡ if s then qs else ns(qs)
The correctness statement provides this stall information to the specification (Defini-
tion 9) [BD94,Bur96,HSG98,JSD98].

Definition 9 (Burch and Dill flushing: an instance of PADD).
∀qi ∈ Qi . n̂s(flush(qi), isStalled(qi)) = flush(ni(qi))

This definition is derived from Definition 6 by replacing R with a match abstraction that
uses flush as the abstraction function and using next-state functions rather than relations.
Burch generalized this idea to superscalar microprocessors [Bur96], by generalizing
the isStalled predicate to be a function that indicates to the specification how many
instructions the implementation issued.

Modified Pointwise. The second option is to use the isStalled predicate directly in the
PADD correctness statement rather than modifying the specification:

∧ isStalled(qi) =⇒ flush(qi) = flush(ni(qi))
¬isStalled(qi) =⇒ ns(flush(qi)) = flush(ni(qi))

Non-deterministic Specification. The third option is to use a non-deterministic specifi-
cation that includes a state element that says whether the specification self-loops (PADN).
The abstraction function maps the value of the implementation predicate isStalled to the
new specification state element.

Stuttering. The fourth option is to use stuttering abstraction with flushing as the ab-
straction function. This method avoids the need to alter the specification. However, this
permits the specification to stutter at anytime, not just when the implementation stalls.
This is the approach taken by Bryant et al. [BGV99] and by Arvind and Shen [AS99].
Bryant et al. use SADD to verify a superscalar machine. Stuttering alignment for this
kind of implementation allows the specification to issue 0–k instructions, where k is the
maximum number of instructions the implementation can issue in one cycle. Arvind and
Shen prove FRND for an out-of-order implementation with in-order retirement. Both the
specification and implementation are represented as term rewriting systems. They omit
the details of their proof, but it appears to rely on stuttering abstraction (SAND) between
the implementation and specification.



A Framework for Microprocessor Correctness Statements 443

Must-Issue. The fifth option is to use must-issue alignment with flushing as an abstrac-
tion function (Definition 10). Berezin et al. [BBCZ98] prove must-issue abstraction
(MADD) for a processor with out-of-order retirement. The model is deterministic but
some of the scheduling is left underspecified. They introduce intermediate models of the
implementation and specification that are optimized for model-checking efficiency. They
prove MADD between the intermediate implementation and intermediate specification.
They relate this result to the real specification and implementation by proving pointwise
abstraction (PADD) between each of the intermediate models and its respective concrete
counterpart.

Definition 10 (Must-issue abstraction with flushing: an instance of MADD).
∀qi ∈ Qi . ∀ k. ∀ j < k. isStalled(nj

i (qi)) ∧ ¬isStalled(nk
i (qi))

=⇒ ns(flush(qi))
Π= flush(nk+1

i (qi))

When the abstraction function used in MADD is flush, then an implementation step
from a stalled state should result in a state that matches the same specification state, i.e.
isStalled(qi) =⇒ abs(qi) = abs(ni(qi)) which is equivalent to SADD.

4.3 Trace Tables

Sawada and Hunt [SH97] verified that a non-deterministic processor with out-of-order
retirement satisfies flush-point equality with a deterministic specification (FEND, Def-
inition 11). FEND results from substituting the equality match (qi

Π= qs ) for R and a
next-state function ns for the next-state relation in Definition 3 (FGNN).

Definition 11 (Flush-point equality: FEND).
∀ qi , q

′
i ∈ Qi . ∀ qs ∈ Qs .[

∧ isFlushed(qi) ∧ ∃ k. Nk
i (qi , q′

i) ∧ isFlushed(q′
i)

qi
Π= qs

]
=⇒

[
∃ j. q′

i
Π= nj

s(qs)
]

In later work, they enhanced their implementation to support in-order retirement,
external interrupts, and precise exceptions [SH98,SH99]. The inclusion of interrupts
led them to add non-determinism to their specification, to account for the problem of
predicting how many instructions the implementation will have completed when an
interrupt occurs. They kept flush-point equality as their alignment and match criteria,
making their correctness statement FENN.

Throughout this work, their verification strategy was to build an intermediate model
with history variables. The intermediate model contains an unbounded table, called a
MAETT, with one entry for each issued instruction. In their first work [SH97], they prove
pointwise equality (PEND) between the implementation and intermediate model and
FEND (flush-point equality) between the intermediate model and specification, which
together imply FEND. Similarly for their second model, they prove PENN and FENN
respectively to conclude FENN.

4.4 Completion Functions

Hosabettu, Srivas, and Gopalakrishnan [HSG98,HSG99] prove that a deterministic out-
of-order implementation satisfies flush-point refinement with a deterministic specifica-
tion where the match is projection (Definition 12).



444 M.D. Aagaard et al.

Definition 12 (Flush-point refinement with projection: an instance of FRDD).
∀qi ∈ Qi . ∀k. isFlushed(qi) ∧ isFlushed(nk

i (qi)) =⇒ ∃j. nj
s(Πe(qi)) = Πe(nk

i (qi))

Because their verification is completely within a theorem prover, they are able to
use underspecified next-state functions (rather than relations) for their scheduler. They
prove FRDD in three steps. They prove pointwise abstraction (PADD) and then apply
induction to prove flush-point abstraction (FADD). They go from FADD to FRDD by
proving that the abstraction of a flushed state is equivalent to projection. The abstraction
is constructed with completion functions. Completion functions describe the effect of
the completion of each in-flight instruction on the observable state, and are composed
in program order. Hosabettu et al. [HGS00] also use the same correctness statement to
verify an implementation with speculative execution and precise exceptions.

4.5 Incremental Flushing

Skakkebæk et al. [SJD98] verify that a deterministic implementation with in-order re-
tirement satisfies flush-point refinement with a deterministic specification (FRDD). They
build a non-deterministic intermediate model that computes the result of each instruction
when it enters the machine and queues the result for later retirement. This intermediate
model has hidden state relative to the implementation. The verification of the implemen-
tation against the intermediate model shows PEDN (pointwise equality). The verification
of the intermediate model against the specification establishes FRND (flush-point refine-
ment) by incrementally decomposing the monolithic flushing abstraction function into
a set of simpler flushing steps. In [JSD98], they use a non-deterministic intermediate
model with an abstracted scheduler that provides fine-grained control over instruction
progress. This reduces the amount of manual abstraction required by strengthening the
simpler flushing steps.

4.6 Variations on Refinement

The four works by the authors Damm, Pnueli, and Arons use a wide range of correctness
statements and implementations. Damm and Pnueli [DP97] prove PANN (pointwise ab-
straction) for an implementation with out-of-order retirement. Their non-deterministic
specification (NonDet) generates all possible traces of a program that obey data-
dependencies, which allows them to use pointwise alignment. They introduce an in-
termediate model with auxiliary variables (Tomasulo) and prove PENN (pointwise
equality) between the implementation and the intermediate model, and PANN between
the intermediate model and the specification. For PANN their abstraction projects the
current implementation state if all instructions have retired and otherwise returns the
initial implementation state.

Arons and Pnueli [AP99] prove FRNN (flush-point refinement) for an implementa-
tion with out-of-order retirement. The specification can self-loop at every state, but is
otherwise deterministic. They use an intermediate model with history variables and prove
that whenever the implementation is flushed, the history variables match the implemen-
tation (FRNN). They verify that the intermediate model satisfies pointwise refinement



A Framework for Microprocessor Correctness Statements 445

(PRNN) with the specification. Subsequently, Pnueli and Arons change their synchro-
nization point from instruction issue to instruction retirement, which allows them to
tighten their top-level correctness statement to be PRNN (pointwise refinement) for an
implementation with in-order retirement [PA98].

Arons and Pnueli [AP00] verify SANN (stuttering abstraction) for a machine with
speculative execution, precise exceptions, and in-order retirement. Their abstraction
computes the abstract program counter based on the contents of the reorder buffer.
They perform two different verifications, one based on induction over the size of the
reorder buffer and one using abstraction functions. In the inductive proof, they use three
intermediate models, and prove SRNN (stuttering refinement, relying on the result of
[AL91]), PANN (pointwise abstraction), and SANN to conclude SANN overall.

4.7 Assume-Guarantee

Henzinger et al. [HQR98,Qad99] use a top-level correctness statement of pointwise
equality (PENN), which they call trace containment, to prove the correctness of an
out-of-order retirement processor where both the specification and implementation may
have internal state. Their specification includes a non-deterministic stall signal and the
scheduling in their implementation is non-deterministic. They construct abstraction and
witness modules to bridge the gap between the specification and implementation. Us-
ing assume-guarantee reasoning, they reduce the problem to smaller proof obligations
where the specification has no internal state. In these cases (which they call projection
refinement), they prove PRNN (pointwise refinement).

4.8 Related Correctness Statements

Manolios [Man00] defines correctness based on well-founded bisimulation. He allows
both the specification and implementation to be non-deterministic and to stutter, but also
includes a liveness property that guarantees that they will stutter for only finitely many
steps. This approach has not yet been applied to out-of-order implementations. If we
excise the liveness criteria from his correctness statement, his work can be characterized
as verifying that the implementation satisfies stuttering equivalence (SENN) against the
specification and that the specification satisfies SENN against the implementation.

Fox and Harman [FH98] define a correctness statement that uses explicit time and
temporal abstraction. Their theory supports arbitrary alignments based on temporal ab-
straction, that they call retimings, but the only supported matching instantiation is ab-
straction. They have used this statement in the verification of a superscalar machine with
in-order retirement. For superscalar implementations, they align both the implementation
and specification to an intermediate clock.

5 Discussion

We have presented a framework for describing microprocessor correctness statements
that helps us to compare existing correctness statements and to highlight the differences
among them. Our classification is meant as a stepping stone towards understanding



446 M.D. Aagaard et al.

the links between an implementation’s features, the desired “strength” of correctness
statement, and the verification techniques. Indeed, the framework has led us to a number
of observations that we now discuss.

Machines with out-of-order retirement are problematic, because they can reach states
that are not possible when executing instructions sequentially. One possibility is to
use equality match, a deterministic specification, and flush-point alignment. Two other
approaches support point-wise alignment: a non-deterministic specification that allows
different retirement orderings [DP97] or an abstraction function that retires all in-flight
instructions (e.g. flushing [BD94], or completion functions [HSG98]).

Sawada and Hunt [SH97] have verified the same implementation using flush-point
equality (Definition 11) and Burch-Dill style pointwise abstraction (Definition 9). They
found flush-point equality to be significantly easier.We speculate that flush-point equality
is a verification convenience, i.e. realistic machines that satisfy flush-point equality
will also satisfy pointwise abstraction or stuttering abstraction. In the case of machines
without external interrupts, a flushing-style abstraction function should suffice, while a
machine with interrupts would require a more sophisticated abstraction function to keep
the interrupt trace aligned between the specification and implementation.

Stalls complicate the alignment of the implementation and specification. Pnueli and
Arons [PA98] use PRNN (pointwise refinement) with a specification that self-loops
when no instruction retires. Many others use pointwise abstraction where the abstraction
function flushes the implementation and the specification self-loops when no instruction
is issued.An emerging trend is to use flush-point equality or flush-point refinement, where
the implementation and specification are compared only when the implementation is in
a flushed state.

Verifying machines with exceptions complicates the instantiation of the match pa-
rameter. Most approaches in the literature synchronize the implementation and speci-
fication machines at instruction issue. However, Damm and Pnueli [DP97] and Pnueli
and Arons [AP00] synchronize at retirement, an approach that makes it easier to handle
exceptions. The synchronization point is encapsulated in the definition of the match
parameter and is not distinguished by our framework.

In Fig. 3 almost all of the intermediate correctness statements lead to the top-level
correctness statements by tracing along the edges in the graph. The two exceptions
are incremental flushing [SJD98] and completion functions [HSG98], whose use of
mechanized theorem proving enables these more complicated verification strategies.

We are formalizing the framework in a theorem prover and mechanically verifying
the partial order between correctness statements. For a general matching relation, we
have verified that pointwise implies stuttering, and stuttering implies flushing. We are
investigating the logical relationships between must-issue and the other three.

Our framework is not an end in itself. Rather, it should be used as a foundation
for further investigations and a deeper understanding of developments in the formal
verification of microprocessors. There are values for the framework’s parameters that we
have not enumerated, and we anticipate that some of these will find useful application.
For example, as other approaches besides Sawada and Hunt [SH98] begin to include
external interrupts, we anticipate that additional points in the correctness space will be
explored. It remains to be determined what the framework indicates about the relative



A Framework for Microprocessor Correctness Statements 447

“quality” of correctness criteria. It would also be fruitful to explore the potential of using
the framework to predict the difficulty of different verification approaches.

Acknowledgments. We thankAndrew Martin of Motorola and the anonymous reviewers
for their helpful comments on this work. The first and third authors are supported by the
Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 2(82):253–284, 1991.

[AP99] T. Arons and A. Pnueli. Verifying Tomasulo’s algorithm by refinement. In Int’l
Conference on VLSI Design, pp 92–99, 1999.

[AP00] T. Arons and A. Pnueli. A comparison of two verification methods for speculative
instruction execution with exceptions. In TACAS, vol 1785 of LNCS, pp 487–502.
Springer, 2000.

[AS99] Arvind and X. Shen. Using term rewriting systems to design and verify processors.
IEEE Micro, 19(3):36–46, 1999.

[BB94] D. Beatty and R. Bryant. Formally verifying a microprocessor using a simulation
methodology. In DAC, pp 596–602, 1994.

[BBCZ98] S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out-of-order processor verification. In FMCAD, vol
1522 of LNCS, pp 369–386. Springer, 1998.

[BD94] J. Burch and D. Dill. Automatic verification of pipelined microprocessor control. In
CAV, vol 818 of LNCS, pp 68–80. Springer, 1994.

[BF89] S. Bose andA. Fisher. Verifying pipelined hardware using symbolic logic simulation.
In ICCD, pp 217–221, 1989.

[BGV99] R. Bryant, S. German, and M. Velev. Processor verification using efficient decision
procedures for a logic of uninterpreted functions. In TABLEAUX, vol 1617 of LNAI,
pp 1–13. Springer, June 1999.

[Bur96] J. Burch. Techniques for verifying superscalar microprocessors. In DAC, pp 552–
557, 1996.

[DP97] W. Damm and A. Pnueli. Verifying out-of-order executions. In CHARME, pp 23–47.
Chapman and Hall, 1997.

[FH98] A. Fox and N. Harman. An algebraic model of correctness for superscaler micropro-
cessors. In Prospects for Hardware Foundations, vol 1546 of LNCS, pp 138–183.
Springer, 1998.

[HGS00] R. Hosabettu, G. Gopalakrishnan, and M. Srivas. Verifying advanced microarchi-
tectures that support speculation and exceptions. In CAV, vol 1855 of LNCS, pp
521–537. Springer, 2000.

[HQR98] T. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: Methodology
and case studies. In CAV, vol 1427 of LNCS, pp 440–451. Springer, 1998.

[HSG98] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Decomposing the proof of correct-
ness of pipelined microprocessors. In CAV, vol 1427 of LNCS, pp 122–134. Springer,
1998.

[HSG99] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of correctness of a processor
with reorder buffer using the completion functions approach. In CAV, vol 1633 of
LNCS, pp 47–59. Springer, 1999.



448 M.D. Aagaard et al.

[JSD98] R. Jones, J. Skakkebæk, and D. Dill. Reducing manual abstraction in formal verifi-
cation of out-of-order execution. In FMCAD, vol 1522 of LNCS, pp 2–17. Springer,
1998.

[Man00] P. Manolios. Correctness of pipelined machines. In FMCAD, vol 1954 of LNCS, pp
161–178. Springer, 2000.

[McM98] K. McMillan. Verification of an implementation of Tomasulo’s algorithm by com-
positional model checking. In CAV, vol 1427 of LNCS, pp 110–121. Springer, 1998.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc. of
2nd Int’l Joint Conf. on Artificial Intelligence, pp 481–489. The British Comp. Soc.,
1971.

[NG98] R. Nalumasu and G. Gopalakrishnan. Deriving efficient cache coherence protocols
through refinement. In Formal Methods for Parallel Programming: Theory and
Applications (FMPPTA’98), 1998.

[PA98] A. Pnueli and T. Arons. Verification of data-insensitive circuits: An in-order-
retirement case study. In FMCAD, vol 1522 of LNCS, pp 351–368. Springer, 1998.

[PD96] S. Park and D. Dill. Protocol verification by aggregation of distributed transactions.
In CAV, vol 1102 of LNCS, pp 300–310. Springer, 1996.

[PJB99] V. Patankar, A. Jain, and R. E. Bryant. Formal verification of an ARM processor. In
Int’l Conf. on VLSI Design, pp 282–287. IEEE; New York, NY, January 1999.

[Qad99] S. Qadeer. Algorithms and Methodology for Scalable Model Checking. PhD thesis,
Elec. Eng. and Comp. Sci., University of California at Berkeley, 1999.

[SA97] X. Shen andArvind. A methodology for designing correct cache coherence protocols
for DSM systems. Technical Report CSG Memo 398 (A), MIT, June 1997.

[SB90] M. Srivas and M. Bickford. Formal verification of a pipelined microprocessor. IEEE
Trans. on Software Engineering, pp 52–64, September 1990.

[SH97] J. Sawada and W. Hunt. Trace table based approach for pipelined microprocessor
verification. In CAV, vol 1254 of LNCS, pp 364–375. Springer, 1997.

[SH98] J. Sawada and W. Hunt. Processor verification with precise exceptions and specula-
tive execution. In CAV, vol 1427 of LNCS, pp 135–146. Springer, 1998.

[SH99] J. Sawada and W. Hunt. Results of the verification of a complex pipelined machine
model. In CHARME, vol 1703 of LNCS, pp 313–316. Springer, 1999.

[SJD98] J. Skakkebæk, R. Jones, and D. Dill. Formal verification of out-of-order execution
using incremental flushing. In CAV, vol 1427 of LNCS, pp 98–109. Springer, 1998.

[SM95] M. K. Srivas and S. P. Miller. Applying formal verification to a commercial micro-
processor. In CHDL, pp 493–502, August 1995.

[WC94] P. Windley and M. Coe. A correctness model for pipelined microprocessors. In
Theorem Provers in Circuit Design, pp 32–51. Springer, 1994.


	Introduction
	Modeling with State Machines
	Correctness Statements
	Alignment
	Match
	Execution
	Correctness Space
	Mathematical Formulation
	Limitations

	Literature Survey
	Historical Perspective
	Flushing
	Trace Tables
	Completion Functions
	Incremental Flushing
	Variations on Refinement
	Assume-Guarantee
	Related Correctness Statements

	Discussion

