
Using Abstract Specifications to Verify
PowerPCTM� Custom Memories by Symbolic

Trajectory Evaluation

Jayanta Bhadra1,2, Andrew Martin1, Jacob Abraham2, and Magdy Abadir1

1 Motorola Inc.
2 The University of Texas at Austin

Jayanta.Bhadra@Motorola.Com

Abstract. We present a methodology in which the behavior of a switch
level device is specified using abstract parameterized regular expressions.
These specifications are used to generate a finite automaton representing
an abstraction of the behavior of a block of memory comprised of a
set of such switch level devices. The automaton, in conjunction with
an Efficient Memory Model [1], [2] for the devices, forms a symbolic
simulation model representing an abstraction of the array core embedded
in a larger design under analysis. Using Symbolic Trajectory Evaluation,
we check the equivalence between a register transfer level description and
a schematic description augmented with abstract specifications for one
of the custom memories embedded in the MPC7450 PowerPC processor.

1 Introduction

At Somerset, Symbolic Trajectory Evaluation (STE) is routinely used to check
equivalence between Register Transfer Level (RTL) and switch level views of em-
bedded custom memories [3]. The assertions are generated automatically from
the RTL description of the memory under verification using the technique de-
scribed by Wang [4]. The assertions are verified against a switch level model
of the circuit using STE. The switch level model is obtained from transistor
netlists using Anamos [5], which partitions the design into channel connected
subcomponents, and then analyzes each component as a set of simultaneous
switch equations. Although Anamos is quite sophisticated as far as switch level
analyzers are concerned, there are still many analog circuit effects that it ignores.
That is why, in spite of its sophistication, an Anamos switch level analysis, which
views the circuit as a system of switches, is unsuited to a custom static RAM
core circuit, which is an inherently analog design. It is quite easy to demonstrate
input sequences for which the resulting switch level model predicts one result,
while a more sophisticated analog simulation would predict another.

One obvious approach to address these problems would be to increase the
sophistication of the switch level model. Given that the circuitry in a custom
� PowerPC is a trademark of the International Business Machines Corporation, used
under license therefrom.

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 386–402, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Using Abstract Specifications to Verify PowerPCTM Custom Memories 387

static RAM core solves a fundamentally analog problem: how to drive a very
large load with a very small bitcell, we feel that this approach is unlikely to
prove satisfactory in the long term. This is because, an improved switch level
model would continue to suffer from the same inaccuracy problem – representing
analog devices by switches.

In reality, the array core is designed to operate over a very limited range of
input stimuli. Each such “pattern” is validated by extensive analog simulation
over a variety of process corners and operating conditions using a circuit sim-
ulator such as Spice. These “certified” patterns are known to work. Any other
pattern that has not been simulated with Spice, is assumed to fail. This paper
presents a notation, based on regular expressions, for describing such “certified”
patterns, and the effect that each has on the internal state and outputs of the
RAM core. From this notation, we build an automata based simulation model
representing an abstraction of the array cores embedded in the larger design
under analysis. This abstract model updates its internal state – representing the
state of the RAM – as specified, provided that the input conforms to at least
one “certified” input pattern. If, however, an “uncertified” input sequence is pre-
sented, the RAM internal state and its outputs are set to the “unknown” value
“X”, where they will remain until altered by a new “certified” input pattern.

In addition to being more conservative than the Anamos generated model,
our abstraction of the array cores is also more efficient. The verification method-
ology, in which the abstraction is used, is based upon symbolic simulation. In
the course of a verification, symbolic values are “written” to symbolic addresses
within the memory core. Our BDD based implementation (as reported by Kr-
ishnamurthy et al in [3]), using an Anamos generated model, must necessarily
maintain several unique BDDs for each bitcell in the array. This leads to a BDD
table whose size is at best a linear function of the size of the array being verified.
In contrast, the abstract approach is able to make use of the well known Efficient
Memory Model (EMM) due to Velev et al [1,2], which represents the state of the
memory using an association list. Each symbolic write into an array need only
add one element to the head of this list. As a result, it is possible to represent the
result of a symbolic write using only as many BDD nodes as are required to rep-
resent the address and data – typically a logarithmic function of the array size.

The approach presented here represents a fine balance between implementa-
tion efficiency and expressive power. The semantics of the regular expressions
have been designed to admit a tractable automata based implementation. More-
over, in several places the result is weakened to provide a tractable implementa-
tion at the expense of possible false negative verification results. In practice, we
do not believe that these false negative results will be problematic.

An interesting facet of the combination of regular expressions representing
an implementation, with STE, is the marriage of two opposing forms of non-
determinism. The traditional partially ordered state space of STE represents a
form of demonic non-determinism. Values that are lower in the partial order
represent an undetermined choice between the values which lie above them. A
specification is satisfied if and only if the consequent portion is satisfied by the

388 A. Hofmann et al.

weakest trajectory satisfying the antecedent. That is, every non-deterministic
choice that the implementation can make must satisfy the specification. Increas-
ing the amount of non-deterministic choice reduces the number of specifications
a given model will satisfy. In contrast, non-determinism that results from al-
ternation in a regular expression describing legal input sequences for a RAM,
is angelic. It suffices to find one satisfactory production for any given input se-
quence. Increasing the amount of non-deterministic choice increases the number
of specifications a given model will satisfy.

In this paper we present a methodology by which the user is allowed to
represent or abstract a block of switch level devices by a set of regular expression
specifications. A state machine model is obtained from the specifications and an
EMM is used to store values written into the devices. The state machine controls
the read/write operations performed on the EMM and provides the outputs from
the abstracted block. Our goal is to show that the assertions generated from the
RTL description of the circuit corresponds to the switch level description of the
circuit augmented with the composition of the state machine model and the
EMM. As a future work, we propose to show that the composition of the state
machine model and the EMM is a conservative approximation of the abstracted
switch level device block. This would let us claim that the switch level model
implies the RTL model.

2 STE Background

Symbolic Trajectory Evaluation [6] requires a system expressed as a model of
the form 〈S,�, y〉 where S is a set of states, � is a partial order on the states
(�⊆ S×S) and y : S → S is a state transition function. S must form a complete
lattice and y must be monotonic under �, i.e., if s � t then y(s) � y(t).

00 10

1X X0

XX

01 11

X1 0X

(a)
(b)

T

X

1 0

Fig. 1. Lattice Structures

Traditionally, for switch level verification, STE operates over the ternary
logic domain T = {0, 1, X}, where X denotes an “unknown” value. In order to
formalize the concept of an “unknown” value, define a partial order � on T as
illustrated in Fig. 1(a), so that X � 0, and X � 1. States of an STE model are
vectors of elements taken from T . The partial order over T is extended pointwise
to yield a partial order on the space T n. Unfortunately, 〈T n,�〉 is not a complete
lattice, since the least upper bound does not exist for every pair of vectors in
T n. Introduction of a new top element,
, solves this problem. Intuitively,
 can

Using Abstract Specifications to Verify PowerPCTM Custom Memories 389

be viewed as an “overconstrained” state, in which some node is both 0 and 1 at
the same time. This makes the state space to be S = T n ∪ {
}. For example,
Fig. 1(b) shows S for n = 2.

In STE, the state of the circuit model includes values on the input, internal
and output nodes of the circuit. So n is the collective number of all circuit nodes.
The state transition function expresses constraints on the values the nodes can
take one time unit later, given the node values at the current time, under some
discrete notion of time. Since the value of an input is controlled by the external
environment, the circuit does not constrain its value; hence the transition func-
tion sets it to X. On the other hand, the value of any other node is determined
by the functionality of the circuit and the circuit state. Figure 2 shows the next
state function of a unit delay inverter.

X.X 1.X

1.1

1.0

X.0X.1

0.1

0.X

0.0

Fig. 2. Transition function of a unit delay inverter (in.out)

A sequence of states, or behavior, σ = s0s1s2 . . . defines a trajectory if it
has at least as much information as given by the application of the next-state
function to successive elements,

∀i ≥ 0 : (y(si) � si+1)

The set of all trajectories {σ} is called the language of the system, L. Specifica-
tions are trajectory assertions of the form Aφ → Cφ. Aφ and Cφ are functions
(called trajectory formulas) from valuations, φ, of a set of symbolic variables to
predicates over state sequences. STE gives a procedure to determine the set of
assignments of values to the variables such that every trajectory of the system
that satisfies Aφ also satisfies Cφ.

The complete lattice, S, represents a form of non-determinism that funda-
mentally affects the validity of a specification in S. Consider two distinct trajec-
tories σ1, σ2 ∈ L. If σ1 � σ2, where � is naturally extended over state sequences,
then the states in σ1 are not higher than those in σ2 in the partial order over S.
Each state in σ1 contains less information, or, more Xs or unconstrained node
values than the corresponding state in σ2. Any specification that is satisfied by
σ1 has to be satisfied by all the trajectories that are obtained by all possible
choices on the unconstrained node values in the states of σ1. Constraining nodes
to values stronger than those in the states of σ1 means obtaining trajectories
that are necessarily higher than σ1. Since σ2 is one of the non-deterministic
choices that can be made by constraining the node values in the states of σ1, the
specifications that are satisfied by σ1 constitute a subset of those satisfied by σ2.
So, as one moves down the lattice, thus weakening the states in the correspond-
ing trajectories, one decreases the number of specifications that are satisfied by
a given circuit model. Hence, the partially ordered state space S represents a
demonic non-determinism.

390 A. Hofmann et al.

Observation 1 If Θ is a specification and functions y1 and y2 are such that
∀s ∈ S, y1(s) � y2(s), then if the STE model 〈S,�, y1〉 satisfies Θ, then the STE
model 〈S,�, y2〉 also satisfies Θ.

3 Preliminaries of Array Abstraction

3.1 The Broader Picture

We aim at establishing that the state machine model produced from the regular
expression definitions, when combined with the surrounding switch level model
of the circuit, satisfies the RTL specification. Let M be the block of an array
being abstracted, E be its environment circuitry and M̂ be the abstraction. Let
VRTL be the set of variables in PRTL, the RTL specification, and φ ∈ BVRT L be
some assignments to the variables, where B = {0, 1}. The verification obligation
is to show that the composition of the environment and the abstraction models
the property: ∀φ ∈ BVRT L{(E ‖ M̂) |= PRTL(φ)}. As a future work, we intend
to show that the state machine model is a conservative approximation of the
switch level model, thus establishing (M → M̂), which in turn would imply
(E ‖ M) → (E ‖ M̂). This, in conjunction with the current work, would prove
that the switch level model satisfies the RTL specification.

Array
Core

M

Logic
L1

Logic
L2

Logic
L1

Logic
L2

EMM

(a) (b)

M

Transducer
Engine

Fig. 3. Abstracting an Array Core

The array core (M) is a piece of logic containing all the bitcells of the ar-
ray, that accepts certain inputs from some logic module (L1 in Fig. 3(a)), stores
the values of the bitcells and produces outputs to another logic module (L2).
The environment E is modeled collectively by L1 and L2. Figure 3(b) shows
the abstract module (M̂) that replaces the array core. The sub-module labeled
“Transducer Engine” is a state machine model generated from abstract speci-
fications of the array core. It accepts the inputs from L1, updates its internal
state(s), writes or reads data to and from the sub-module labeled as “EMM”
and provides its outputs to L2.

3.2 A Simple Example

Bitcells represent an integral part of an array core in custom-designed memo-
ries. They are read from or written to by the application of complex sequences

Using Abstract Specifications to Verify PowerPCTM Custom Memories 391

of values to specific control signals (like precharge, word selects etc). In order to
abstract an entire column of bitcells forming a single channel connected subcom-
ponent, one needs to look at the inputs of the column and enumerate the set of
legal sequences of control signal assignments for reads and writes on the column.
One way to represent such a set is by using what we call Parameterized Regu-
lar Expressions (PREs). PREs extend regular expressions to include variables
and outputs. Variables provide a way in which the description becomes succinct
and outputs help define an automaton that produces output strings when input
strings are provided. Before we present the PRE syntax details in Sect. 4, let us
give a simple example.

In our example the array core is controlled by the signals wl, precharge, wr en
and din which are the set of word select lines, the precharge line, the write enable
and the set of data input lines respectively. We define a predicate “safe state”
to represent the condition in which none of the w word select lines (wl) are high.

safe state() =
∧

w

(¬wl[i]), i = 0, 1, . . . , w − 1

The predicate safe state is special since both read and write condition sequences
start from and terminate in the safe state. Also safe state represents the state
of the circuit when nothing is happening as far as read or write is concerned.

In the following discussion, high and low mean logical one and zero respec-
tively. Consider a write operation where data d is written into location i. Initially,
the safe state condition holds. After that, the safe state condition should keep
holding and at the same time the precharge should be high for at least 10 time
steps. Following that the safe state condition should keep holding even if the
precharge goes low. Then exactly one word select line (line i) should go high and
the write enable should be low. Then the same word select line should remain
high in conjunction with the write enable being high, precharge being low and
some data (d) being on the data lines. This is maintained for at least 6 time steps
and then the write happens in the addressed bitcell. After that the condition is
weakened to keep the same word select line high and if the write enable is high
then the data lines are also maintained at d.

This family of conditions is expressed by the following PRE in which one can
specify sequences of conditions by using semi-colons; provide annotations for the
time for which a particular condition should hold; and specify when the writes
to the bitcells actually occur. In the following PRE, the predicate one hot(wl)
represents the condition that exactly one word select line is high and all others
are low.

var i : 0..3; ; (* address width *)
var d : 0..31; ; (* data width *)
write(i, d) =safe state();

(safe state() ∧ precharge)10;
safe state()∗;
(one hot(wl) ∧ wl[i] ∧ ¬wr en)∗ ;
(one hot(wl) ∧ wl[i] ∧ wr en ∧ (din = d) ∧ ¬precharge)5;

392 A. Hofmann et al.

(one hot(wl) ∧ wl[i] ∧ wr en ∧ (din = d) ∧ ¬precharge)∗;
one hot(wl) ∧ wl[i] ∧ wr en ∧ (din = d) ∧ ¬precharge :: WR(i, d);
(one hot(wl) ∧ wl[i] ∧ (wr en ⇒ (din = d)))∗; ;

The annotation WR signifies that the write (updating the bitcell contents)
completes at this point of execution. Similar to the write operation, we can spec-
ify the read operation using condition sequences over input signals of the bitcell
column. A bitcell column can thus be abstracted by a set of PREs representing
all its transactions (reads and writes).

4 Parameterized Regular Expressions and STE

In this section, we will define a syntax for Parameterized Regular Expressions
(PREs) and show how a finite automaton can be generated from a PRE def-
inition. We will then prove that the finite automaton is suitable for use in a
symbolic simulator employing STE.

4.1 PRE Definition and Finite Automaton

A PRE expresses a family of legal behaviors. Each behavior represents (a) a
sequence of assignments to the inputs of the abstraction, M̂ , (b) a sequence of
assignments to the outputs of M̂ and (c) a set of writes to the memory in M̂ . All
of these are associated with precise timing information detailing durations and
relative times. The alternations in the PRE definition result in an angelic form
of non-determinism. A sequence of conditions on the input signals that matches
any of the alternative behaviors defined by a PRE, is accepted as legal. Thus
by increasing the alternation in a PRE definition one can increase the number
of legal behaviors. PREs are defined with respect to a set of boolean valued
variables, A, a finite input alphabet Σi, and a finite output alphabet Σo which
is partially ordered by the relation �Σo

. Σo forms a complete lattice with respect
to �Σo

with ⊥Σo
and
Σo

as the bottom and the top elements respectively.

Definition 1 PRE:

R ::= P ; Q
| P + Q
| P ∗

| Pn

| a :: o

Here P and Q are PREs, and the operators ; + and ∗ are sequence, choice, and
Kleene Star respectively. Pn represents a short hand for the sequence P ;P ;P ; . . .
(n times). In the terminal “a :: o”, a is a predicate over variable assignments
in BA and input symbols in Σi; o is a function mapping variable assignments
in BA to output symbols in Σo, where B = {0, 1}. Given a PRE R, the Non-
Deterministic Finite Automaton (NDFA) with ε is a tuple Nε(R) = 〈s, t, S, T,W,
A,Σi, Σo〉 where A,Σi, Σo are the set of variables, the input alphabet and the

Using Abstract Specifications to Verify PowerPCTM Custom Memories 393

output alphabet of the PRE respectively, S is a finite set of states, s ∈ S is the
start state, t ∈ S is the end state, T is a set of transitions, T ⊆ S × BA × (Σi ∪
{ε})×S and W is an output function, W : S×BA → Σo ∪{ε}. A transition in T

is of the form s1
I,v−→ s2, where s1, s2 ∈ S are the source and destination states

respectively, v is an assignment of values from B to the variables, and I ∈ Σi∪{ε}
is either an input symbol, or the special symbol ε. A run of Nε is a sequence

vs0, vs1, vs2, . . . where v ∈ BA is a variable assignment, ∀j ≥ 0 : sj
Ij ,v−→ sj+1 ∈ T ,

where ∀j ≥ 0 : Ij ∈ Σi ∪ {ε}, ∀j ≥ 0 : sj ∈ S and s0 = s, the starting state
of Nε. The corresponding output of Nε is the sequence σ0σ1σ2 . . . ∈ Σ∗

o , such
that ∀j ≥ 0 : σj = W (sj , v). The role of v can be understood by considering a
different run v′s0, v′s1, v′s2, . . ., such that v′ �= v. Although the state sequence
involved in this run is same as that of the former, the outputs obtained from the
two runs are different as v′ �= v.

Hopcroft and Ullman give a description of regular expressions and the cor-
responding construction of automata from them [7]. The regular expressions
described by Hopcroft result in automata that are language acceptors. PREs, in
contrast, are transducers – automata that output a string when provided with
an input string. Moreover, PREs have explicit variables which are absent in the
classical automata theory. Nonetheless, a few simple modifications enable us to
construct an NDFA with ε transitions (Nε) in a fashion that resembles the classi-
cal automata theory. For a PRE R, Nε(R) can be constructed inductively using
the definition of PREs. For the PRE of the form “a :: o”, we construct an NDFA
containing only two states s and t and a set of transitions T = {s I,v−→ t|a(I, v)}.
The resultant NDFA is 〈s, t, {s, t}, T,W,A,Σi, Σo〉, where A is a set of variable
names, W (s, v) = ⊥Σo

and W (t, v) = o(v).

sQ tQsP Pt

R = P;Q

Rs

sP Pt

sQ tQ

t R

R = P+Q

Rs sP Pt t R

R = P*

Fig. 4. Inductive Construction of Nε

The method for inductively constructing NDFAs from PREs of the form
P ;Q, P + Q and P ∗, given the NDFAs of P and Q, can be derived by simple
modifications of the techniques described in Hopcroft [7] as illustrated in Fig. 4.
Let PREs P and Q generate ε-NDFAs Nε(P) = 〈sP , tP , SP , TP ,WP , A,Σi, Σo〉
and Nε(Q) = 〈sQ, tQ, SQ, TQ,WQ, A,Σi, Σo〉 where the respective state sets are
disjoint, i.e., SP ∩SQ = φ. The general inductive construction procedure can be
characterized by one that adds a few new transitions to merge the NDFAs and
unites the state spaces and the rest of the transitions. In the following discussion,
we assume that sR, tR /∈ SP , SQ. If R = P ;Q thenNε(R) = 〈sP , tQ, SP ∪SQ, TP ∪
TQ ∪ {tP ε→ sQ},WR, A,Σi, Σo〉 where WR(x, v) = ε if x = sQ, WP (x, v) if
x ∈ SP , and WQ(x, v) otherwise. If R = P + Q then Nε(R) = 〈sR, tR, SP ∪

394 A. Hofmann et al.

SQ ∪{sR, tR}, TP ∪TQ ∪{sR
ε→ sP , sR

ε→ sQ, tP
ε→ tR, tQ

ε→ tR},WR, A,Σi, Σo〉
where WR(x, v) = ε if x ∈ {sP , sQ, tR}, ⊥Σo if x = sR, WP (x, v) if x ∈ SP , and
WQ(x, v) otherwise. If R = P ∗, then Nε(R) = 〈sR, tR, SP ∪{sR, tR}, TP ∪{sR

ε→
sP , sR

ε→ tR, tP
ε→ sP , tP

ε→ tR},WR, A,Σi, Σo〉 where WR(x, v) = ⊥Σo if
x = sR, ε if x ∈ {tR, sP }, and WP (x, v) otherwise.

4.2 Obtaining a Deterministic Automaton from Nε

Given a PRE, we aim at constructing an STE-usable Deterministic Finite Au-
tomaton (DFA)1 . Given a regular expression described by Hopcroft [7], we can
construct an NDFA with ε transitions (state space say S) and then convert it
to an NDFA without ε transitions (state space S) and then determinize it using
standard subset construction methods to obtain a DFA (state space 2S) that
acts as an acceptor of the language of the regular expression. However, since we
are dealing with variables and outputs and our final automaton is going to be
a transducer over infinite strings, the conversion from a PRE definition to an
STE-usable DFA involves a series of automata constructions. Parallels can be
drawn between our procedure and the standard procedure.

We begin by removing the so-called ε transitions to yield an automaton
that consumes one input symbol and produces one output symbol during each
state transition. At this “ε-removal” step we also introduce some additional non-
determinism to enable non-deterministic restarting of runs in the automaton 2.
We then perform a determinization step, yielding a deterministic automaton, D.
The standard determinization procedure would result in an exponential blowup
in the size of the state space, which would be impractical. Instead, we use a
sparse state space representation and construct a determinized conservative ap-
proximation to the original automaton N . Finally, we introduce the standard
STE lattice structure over the input, state and output spaces to yield a deter-
minized transition system suitable for use as a model for STE. The construction
thus produced is a conservative approximation of the precise intended seman-
tics of PREs, and thus in theory may give false negative verification results.
Our admittedly limited experience to date suggests that this does not become a
problem in practice.

Given a state q in Nε, let ε-closure(q) denote the set of all states that are
reachable from q via only ε transitions. Let ε-closure(Q), where Q is a set of
states, be

⋃
q∈Q ε-closure(q), that is, the union of the ε-closures of all the elements

of Q.
Given a PRE R and Nε(R) = 〈s, t, S, T,W,A,Σi, Σo〉, define an NDFA with-

out ε transitions, N with state space S × BA. States of N consist of two compo-
nents – a control component represented by S and a data component represented

1 A DFA that has i) a state space that forms a complete lattice under a certain partial
order and ii) a monotonic next state function.

2 The non-determinism is added at this stage rather than being included in the original
automaton Nε purely as a technical convenience to facilitate the inductive definition
of Nε.

Using Abstract Specifications to Verify PowerPCTM Custom Memories 395

by assignments of boolean values to the variables in A. Define the starting state
sN = {s0} × BA as the set of starting states of N , signifying that the variables
can be non-deterministically assigned values when the execution of N starts. The
transitions of N are derived from two sources. The first, TN1 , results from the
non-ε transitions of N in the classical way: (s, v) I−→ (t, v) ∈ TN1 if and only if

∃r : r ∈ ε-closure(s)∧r
I,v−→ t ∈ T . The second source, TN2 , is introduced to allow

the automaton to “restart” at any point, assigning new values to the variables,
(s, v1)

I−→ (t, v2) ∈ TN2 if and only if there is a starting state (s0, v2) ∈ sN such
that (s0, v2)

I−→ (t, v2) ∈ TN1 .

Definition 2 NDFA:
Given a PRE R and Nε = 〈s0, t, S, T,W,A,Σi, Σo〉, define an NDFA N obtained
from Nε to be the tuple N = 〈sN , SN , TN ,WN , A,Σi, Σo〉 where A remain un-
changed from Nε, SN = S × BA is the set of states and sN = {s0} × BA is the
set of starting states of N . Define the transition relation TN = TN1 ∪TN2 , where
TN1 and TN2 are as already defined. Define the output function WN : SN → Σo

to be WN (〈s, v〉) = ⊥Σo if W (s, v) = ε, else, W (s, v) for all s ∈ S, v ∈ BA.

The standard subset construction method for computing a deterministic au-
tomaton, say D̂, from N , results in a state space SD̂ = 2S×BA

, which is doubly
exponential in A. To arrive at a more efficient solution, we define a DFA D with
a state space SD = 2S ×QA, where Q = {0, 1, X,
}. Thus, a state in SD consists
of a control component from S and a data component consisting of an assign-
ment from Q to every variable in A. SD encodes the state information of SD̂ in
a conservative but concise manner. The subset construction method represents
a set of states (P) from N by a single state in D̂. The state in D that maps to
P is obtained by computing the greatest lower bound of the states in P in the
partially ordered state space SD (the partial order defined later) and hence is
a conservative approximation of the entire set P . Every state in the state space
SD can be associated with a set of states in SD̂, but not vice versa; thus making
SD more sparsely populated than SD̂.

Define a partial order �D over SD as ∀〈s1, φ1〉, 〈s2, φ2〉 ∈ SD, 〈s1, φ1〉 �D

〈s2, φ2〉 if and only if s1 ⊆ s2 and φ1 � φ2. For example, if S = {s, t} and
A = {v0, v1}, and states s0 = 〈{s}, 00〉, s1 = 〈{s}, 01〉 and s2 = 〈{s}, 0
〉 are
members of SD, then, s0 �D s2 and s1 �D s2. The partially ordered state space
SD represents a form of angelic non-determinism. The state s2, that is higher
in the partial order, represents a non-deterministic choice between related lower
states s0 and s1. A specification that is satisfied by a trajectory σ containing
either s0 or s1, is also satisfied by one that can be obtained from σ by replacing
occurrence of s0 or s1 by s2. As one goes higher up in the partial order the
number of specifications that are validated by a given circuit model increases.

The automaton D has a starting state which assigns
 to all the variables in
A, representing an angelic non-deterministic choice between all possible values.
An execution along a path inD weakens the value of each variable as it is assigned
in order to satisfy a predicate along a particular arc. A state D represents a set
of states in N . A transition in N takes place when its predicate is satisfied by

396 A. Hofmann et al.

the values of the inputs as well those of the variables associated with the source
and destination states. A transition in D assigns the greatest lower bound of
the values that are necessary to take the corresponding set of transitions in N .
Thus the assignment of variables in D is a conservative approximation. Also, the
output generated from a state in D is the greatest lower bound of the outputs
generated by the corresponding set of states in N , thus making it weaker than
the weakest output produced by any state in the state set in N . In practice,
being conservative in this construction does not affect the verification.

Definition 3 DFA:
Let R be a PRE with ε-NFA and NDFA respectively defined as
Nε = 〈s0, t, S, T,W,A,Σi, Σo〉 and N = 〈sN , SN , TN ,WN , A,Σi, Σo〉 where the
symbols are as described earlier. Define a DFA obtained from R as
D = 〈〈{s0},
A〉, SD, TD,WD, A,Σi, Σo〉 where
A is the assignment of
 to all
the variables in A and the state space SD = 2S × QA. The transition function
TD : SD × Σi → SD is defined using a function ψ

ψ(α, φ, i) = {(t, a)|∃s ∈ α : a � φ ∧ (s, a) i−→ (t, a) ∈ TN}

Define the state transition function, TD, as

∀α, φ : 〈α, φ〉 ∈ SD, α �= {} : TD(〈α, φ〉, i) = 〈α′, φ′〉

where, α′ = {t|∃a : (t, a) ∈ ψ(α, φ, i)}, is the set of projections onto the states
obtained from ψ, and, φ′ = glb{a|∃t : (t, a) ∈ ψ(α, φ, i)}, is the glb of the set of
projections onto the assignments to variables obtained from ψ. Define the output
function, WD : SD → Σo as WD(〈α, φ〉) = glb{WN (〈t, φ〉)|t ∈ α}, where WN is
extended from its previous definition by simple monotonic quarternary extension
of its domain, making it WN : S × QA → Σo.

The state 〈{},
A〉 can be reached only by accepting an input symbol that neither
starts any fresh legal input string nor satisfies any of the outgoing transitions
from any state of D. This in turn means that 〈{},
A〉 is the state which acts as a
recognizer of an illegal input symbol. Also the output generated from 〈{},
A〉 is
⊥Σo . However, we can encounter certain strings that might have a legal prefix of
length zero or more followed by substrings that do not start any legal transaction.
These illegal substrings need to have an execution on the automaton. This is
served by adding some new edges to D.

Whenever the starting state of DA is reached, the automaton is starting
afresh and the EMM is initialized to the empty list. This is accomplished by the
⊥Σo output at the starting state. Also all the variables are reset to
. DA can
reach the sink state 〈{},
A〉 via transitions inherited from D, where the EMM
is reset to the empty list by producing the output ⊥Σo . All the variables are also
reset to
. The new edges in DA enables it to continue to remain in 〈{},
A〉
and maintain the variables and the EMM at
 and empty list respectively until
the start of a fresh legal transaction is recognized. This mechanism enables DA

to recognize illegal input substrings and produce the required output strings.

Using Abstract Specifications to Verify PowerPCTM Custom Memories 397

Definition 4 Augmented DFA:
Let R be a PRE with ε-NFA, NDFA and DFA respectively defined as
Nε = 〈s0, t, S, T,W,A,Σi, Σo〉, N = 〈sN , SN , TN ,WN , A,Σi, Σo〉, and
D = 〈〈{s0},
A〉, SD, TD,WD, A,Σi, Σo〉 where the symbols are defined as ear-
lier. Define the augmented DFA DA = 〈〈{s0},
A〉, SD, TA,WD, A,Σi, Σo〉,
where TA : SD × Σi → SD is defined as: TA(〈{},
A〉, i) = TD(〈{s0},
A〉, i)
and for all other states s ∈ SD : TA(s, i) = TD(s, i).

4.3 Obtaining an Automaton for STE

Until now the input variables were assumed to be assigned boolean values. In
order to function in a ternary simulation environment we have to extend the
input alphabet to the ternary domain – one that is partially ordered. This results
into a further extension of the state space. As the input weakens, one encounters
values that are lower in the partial order of the input space. Weaker values
represent an undetermined choice between stronger input values that lie above.
A state transition that is certain for a given input might become uncertain
as the input weakens. Hence the state space extends to SF = (T S × QA) ∪
{
}, where T = {0, 1, X} and Q = {0, 1, X,
}, in order to incorporate this
non-determinism. Weaker state assignments represent an undetermined choice
between stronger state assignments. For instance, being “uncertainly present”
in a state is weaker than either being “definitely present” or being “definitely
not present” in the state. Also, being “uncertainly present” represents the non-
deterministic choice between being “definitely present” and being “definitely not
present” in the state. A specification is satisfied if and only if the consequent
portion is satisfied by the weakest trajectory (sequence of states) satisfying the
antecedent. As the trajectory weakens (via the weakening of the constituent
states), every nondeterministic choice that is possible in the state space must
satisfy the specification. So increasing the amount of nondeterministic choice
reduces the number of specifications a given model will satisfy. Thus the state
space SF represents a form of demonic non-determinism, wherein, increasing
non-determinism results into non-acceptance of input strings. Parallels can be
drawn between the non-determinism exhibited by SF and the state space of an
STE circuit model, as discussed in Sect. 2. Later in this section, we will show
that SF is suitable for STE. An automaton having SF as its state space, when
viewed as a transducer, has a weaker state (that is lower in the partial order)
producing outputs that are weaker than the stronger states lying above it.

We extend Σi to another finite alphabet Σ′
i such that Σ′

i is partially ordered
by the relation �Σ′

i
, Σi ⊆ Σ′

i and Σ′
i is a complete lattice with
Σ′

i
and ⊥Σ′

i
as

the top and bottom elements respectively. Also, two unequal symbols a, b ∈ Σi

are incomparable in �Σ′
i
. Next, we extend the definition of DA into one which

is obtained by simple monotonic ternary extension of the inputs of DA.

Definition 5 Final DFA:
Let R be a PRE with ε-NFA, NDFA and augmented DFA respectively defined as
Nε = 〈s0, t, S, T,W,A,Σi, Σo〉, N = 〈sN , SN , TN ,WN , A,Σi, Σo〉, and

398 A. Hofmann et al.

DA = 〈〈{s0},
A〉, SD, TA,WD, A,Σi, Σo〉. Define the final DFA DF =
〈sf , SF , y,WF , A,Σ′

i, Σo〉 where A,Σi and Σo are as defined before. The state
space is SF = T S × QA, and the next state function is y : SF ×Σ′

i → SF , which
is defined using the functions ϕ and ξ. In the following definitions α ∈ T S,
α′ ∈ 2S and φ ∈ QA. Let ϕ(α, φ, i) =

{〈αD, φD〉|∃α′ ∈ 2S ,∃φ′ ∈ QA,∃i′ ∈ Σi : α � ξ(α′) ∧ φ � φ′

∧ i �Σ′
i
i′ ∧ TA(〈α′, φ′〉, i′) = 〈αD, φD〉}

where if the states in S be arbitrarily one-to-one mapped to the set
{0, 1, 2, . . . , |S| − 1} by the function λ then,

ξ(α′) = α′
0α

′
1 . . . α

′
|S|−1 such that α′

λ(i) = 1 if i ∈ α′, α′
λ(i) = 0 otherwise.

Define the starting state as sf = 〈ξ({s0}),
A〉 and the next-state function as
y(〈α, φ〉, i) = 〈α̂, φ̂〉 where

α̂ = glb{ξ(αD)|∃φD : 〈αD, φD〉 ∈ ϕ(α, φ, i)}

φ̂ = glb{φD|∃αD : 〈αD, φD〉 ∈ ϕ(α, φ, i)}
Let ξ(α) = α0α1 . . . α|S|−1. Define a function ρ as ρ(α) = 1 if and only if ∃k ∈
{0, 1, . . . , |S| − 1} such that αk = 1; otherwise 0. Finally, the output function,
WF : SF → Σo, is defined as

WF (〈α, φ〉) = if ρ(α) = 1 then glb {WN (〈k, φ〉)|αλ(k) � 1}, otherwise, ⊥Σo

where αi is the i-th bit of ξ(α).

Intuitively, the automaton DF does not output the bottom element, ⊥Σo
, if and

only if DF is definitely in at least one of the states of N . In such a case, DF

outputs the glb of the outputs of all the states in which it is definitely or possibly
present in. DF has a partially ordered state space. States that are weaker lie
below the ones that are stronger. In situations where DF reaches a weak state
where it is not certainly present in at least one of the states of N then it outputs
⊥Σo

. This situation results from inputs that are not strong enough to push DF

to be present in stronger states. The output ⊥Σo is also produced in cases where
an illegal input sequence has been detected by DF . In such cases because of the
output ⊥Σo

, the EMM is re-initialized to an empty list, where it is maintained
until the start of a fresh legal string is recognized. Unlike DF , the output of
N is never supposed to be ⊥Σo in any situation other than when N is present
in its start state. The fundamental reason why the outputs generated by DF is
weakened under the certain situations arises because of a fundamental difference
between DF and N . R and hence N only refer to exact, legal and finite input
strings which can definitely take N to some states in N whereas DF has the
capability of recognizing weak, or illegal, or infinite input strings as well.

Using Abstract Specifications to Verify PowerPCTM Custom Memories 399

4.4 Using the Final DFA in an STE Engine

In order to establish that the final DFA is suitable for symbolic simulation pur-
poses in an STE environment, we need to demonstrate that its state space forms
a complete lattice under a partial order relation and that its next-state function
is monotonic under that relation. We define a partial order relation on the state
space SF .

Definition 6 Define �, a partial order over SF ∪{
}. Let 〈a, φa〉, 〈b, φb〉 ∈ SF .
Define 〈a, φa〉 � 〈b, φb〉 if and only if a � b ∧ φa � φb and ∀〈a, φa〉 ∈ SF :
〈a, φa〉 �
.

Lemma 1 〈SF ∪ {
},�〉 forms a complete lattice.

Proof Outline. The proof follows from a) both 〈T S ,�〉 and 〈QA,�〉 are partial
orders, b) � is defined using � and c) ∀〈a, φa〉 ∈ SF : 〈a, φa〉 �
. ��

Lemma 2 The function y is monotonic under the � partial order.

Proof Outline. Let us take two elements of SF , say, 〈α, φα〉 and 〈β, φβ〉 such that
〈α, φα〉 � 〈β, φβ〉, then we are required to prove that 〈α̂, φ̂α〉 � 〈β̂, φ̂β〉 where,
for an input i ∈ Σ′

i, y(〈α, φα〉, i) = 〈α̂, φ̂α〉 and y(〈β, φβ〉, i) = 〈β̂, φ̂β〉. The proof
can be divided into two parts: showing α̂ � β̂ and φ̂α � φ̂β .

Using 〈α, φα〉 � 〈β, φβ〉, one can show ϕ(β, φβ , i) ⊆ ϕ(α, φα, i). That, in turn
can be used to show that φ̂α � φ̂β and α̂ � β̂ and hence the proof. ��

4.5 Outputs from PREs

Until this point, we have been able to define PREs, give an operational account
of their semantics based on a sequence of automata constructions without being
specific about the precise nature of the output alphabet. In practice, however,
PRE outputs are used to provide inputs to the EMMs, and to represent the
outputs of the circuit elements that they are intended to abstract. The same
generic format write(enable, addr, data) can be used to represent both cases. In
this format enable is a ternary value, while addr and data are both vectors of
ternaries. The entire PRE output is a vector of such values. The tuples have the
obvious meaning when writing to an EMM – the enable bit determines whether
to write to the EMM or not, while the vectors addr and data supply the address
and data for the write respectively. In case of primary outputs of the block
being abstracted, the tuple is a degenerate case in which the address is of length
0, that is, an output is represented as an EMM with only a single address. If
the enable bit is on, new data is output, if it is off, the most recent output is
repeated. In both the general case of the EMM output and the special case of
a primary output the output symbols are partially ordered by bitwise extension
of the standard ternary partial order.

400 A. Hofmann et al.

As defined in Sect. 4.1, the terminal in a PRE definition is of the form
“a :: o”, where a is a predicate on the input symbols and assignments to variables
of the abstraction M̂ and o is the output defined as functions mapping from
assignments to variables to output symbols of M̂ .

o ::= / ∗ empty ∗ /
| WR(i, d)
| output[output pin name := val, . . .]

The annotations WR and output enable the user to specify write operations
to the EMM in M̂ and the signal values to be assigned at the output pins of
M̂ . The write annotation “WR(i, d)” stands for a memory write that happens
with variable i as the address and variable d as the data and produces a “write
tuple” write(1, i, d) where the 1 stands for the enabled bit being high signifying
a definite write. The output pin name and val are the name and the specified
value of an output pin respectively. val can be any of {0, 1, X,RD(j),¬RD(j)}
where RD(j) represents a read of the value of the array entry symbolically
indexed by a variable j. When o produces the empty terminal, the predicate a
can be viewed as augmented with the write tuple write(0,
,
) to represent no
change to the memory contents.

The EMM is modeled using an associative list mapping symbolic data to
symbolic addresses. The state of the EMM is a finite lattice formed by ternary
partial order �. The write command, write(enable, address, data), is monotonic
over the EMM state space with respect to the ternary partial order. The “no
change” command, which is the identity function for the state space of the EMM,
is write(0,
,
). The output ⊥Σo from the PRE meant for an EMM translates
to the write tuple write(X,X,X), which resets the EMM to an empty list.

The outputs can be treated as an EMM with one bit of memory. When an
output becomes 0, 1, X, or some value a (result of an array read) the corre-
sponding EMM commands would be write(1, , 0), write(1, , 1), write(1, , X) and
write(1, , a) respectively. The address in this case does not matter and hence is
omitted.

If in a particular terminal in a PRE nothing is specified about a memory write
or value assignments to an output, we assume that the corresponding write tuple
generated for the corresponding EMM is the identity write(0,
,
), preserving
its contents.

5 Experimental Results

We prototyped a tool building on that reported by Krishnamurthy et al [3] and
augmented it with the technique presented in this paper. We conducted our ex-
periments on a 360MHz Sun UltraSparc-II with 512MB of memory. Our example
circuit was a segment array from the MPC7450 PowerPC microprocessor. The
array had 512 bitcells, a read port and a write port. At first the PRE definitions
of the read and the write operations were written. Then the RTL description
was verified against the switch level model augmented with the abstract PRE

Using Abstract Specifications to Verify PowerPCTM Custom Memories 401

descriptions in about 4 minutes time. The method reported by Krishnamurthy
et al [3] takes about a minute to do the same correspondence check without the
PREs. The time difference is due to some BDD reordering taking place and we
speculate that this is because of the way we handle variables in the implemen-
tation. This issue is currently being addressed.

The real effectiveness of the methodology was demonstrated by a fault injec-
tion experiment. We injected a fault by tying the precharge to ground, so that
the bitcells are never precharged before a read or a write operation takes place.
The earlier method [3] failed to discover the bug whereas our prototype was
able to discover it and generate a witness execution sequence exposing it. The
bug that we found is an instance of an “uncertified” input pattern that is not
allowed as an input to the memory but is permitted by the switch level model.
Thus, the bug is a member of a class of circuit level bugs that are abstracted
away by the switch level model but are exposed by the current methodology.
This experiment points out the importance of our methodology as it can serve
as a “stricter check-point” when the custom memories have passed the earlier
verification flow [3]. Although we believe that more time is consumed by our
prototype because of implementation details, it hardly seems fair to compare a
method that checks a schematic against an RTL with another that checks a com-
position of a schematic and an abstraction of the rest of the schematic against
an RTL, since they are doing two fundamentally different things.

6 Related Work, Conclusions, and Future Directions

Checking the correspondence between the switch and the gate level views of
the memory has been addressed by many researchers [5], [10], [11], [12], [4], [3].
While others focussed on using STE to verify equivalence by proving functional
properties on both the RTL and the schematic view of the circuit, Krishnamurthy
et al reported work on generating the assertions automatically from the RTL and
to cross-check them against the schematic [3]. This removes the onus off the user
to come up with a so-called “complete” set of assertions. Our work advances
this approach by enabling the schematic view to be “weaker” in order for us to
discover more buggy behavior.

We have provided a way in which memory can be modeled using regular
expressions which represent a family of conditions that are visible to the portion
of the memory that is being abstracted out. We have shown that the state
transition model obtained from such a specification can be used in an STE
framework. We have conducted experiments on an industrial strength circuit
and demonstrated the applicability of our approach.

Future work will address the issue of checking whether the state machine
model produced is a conservative approximation of the actual bitcell behavior.
This could be done by verifying the specifications against a switch level bit-cell
model, or even better, by verifying against a suite of Spice simulations. One way
to get behavioral specifications is to obtain them automatically from the Spice

402 A. Hofmann et al.

simulations performed on these switch level designs. Work in this area is another
candidate for future work.

References

1. M. N. Velev, R. E. Bryant, A. Jain. Efficient “Modeling of Memory Arrays in
Symbolic Simulation”. CAV, 1997, Proceedings. LNCS, Vol. 1254, Springer, 1997,
pp. 388-399.

2. M. N. Velev, R. E. Bryant. “Efficient Modeling of Memory Arrays in Symbolic
Ternary Simulation”. TACAS, 1998.

3. N. Krishnamurthy, A. K. Martin, M. S. Abadir, J. A. Abraham. “Validating Pow-
erPC Microprocessor Custom Memories” IEEE Design and Test of Computers,
Vol. 17, No. 4, Oct-Dec 2000, pp. 61-76.

4. L.-C. Wang, M. S. Abadir, N. Krishnamurthy. “Automatic Generation of Asser-
tions for Formal Verification of PowerPC Microprocessor Arrays Using Symbolic
Trajectory Evaluation”. 35th ACM/IEEE DAC, June, 1998.

5. R. E. Bryant. “Algorithmic Aspects of Symbolic Switch Network Analysis”. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(4),
July 1987.

6. C.-J. H. Seger and R. E. Bryant. “Formal verification by symbolic evaluation of
partially-ordered trajectories”. Formal Methods in System Design, 6(2):147-189,
March, 1995.

7. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing Company, 1979, pp. 1-45.

8. R. E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”.
IEEE Transactions on Computers, 35(8), August 1986.

9. R. E. Bryant. “Verifying a Static RAM Design by Logic Simulation”, Fifth MIT
Conference on Advanced Research in VLSI, 1988, pp. 335-349.

10. N. Ganguly, M. S. Abadir, M. Pandey. “PowerPC array verification methodology
using formal techniques”. International Test Conference 1996, pp.857-864.

11. M. Pandey, R. Raimi, D. L. Beatty, R. E. Bryant. “Formal Verification of PowerPC
arrays using Symbolic Trajectory Evaluation”. 33rd ACM/IEEE DAC, June 1996,
pp.649-654.

12. M. Pandey, R. Raimi, R. E. Bryant, M. S. Abadir. “Formal Verification of Content
Addressable Memories using Symbolic Trajectory Evaluation”. 34th ACM/IEEE
DAC, June 1997.

	Introduction
	STE Background
	Preliminaries of Array Abstraction
	The Broader Picture
	A Simple Example

	Parameterized Regular Expressions and STE
	PRE Definition and Finite Automaton
	Obtaining a Deterministic Automaton from $N_epsilon $
	Obtaining an Automaton for STE
	Using the Final DFA in an STE Engine
	Outputs from PREs

	Experimental Results
	Related Work, Conclusions, and Future Directions

