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Abstract. In this paper we propose a novel refinement-based technique to for-
mally verify data transfer in an asynchronous timing framework. Novel data
transfer models are proposed to represent data communication between two lo-
cally independent clock domains. As a case study, we apply our technique to
verify data transfer in a previously published architecture for globally asyn-
chronous locally synchronous on-chip systems. In this case study, we find sev-
eral race conditions, hazards, and other dangers that were not mentioned in the
original publication, and we find additional delay constraints that avoid some of
the detected dangers.

1 Introduction

With smaller feature sizes and larger die areas, integrating systems on a chip has be-
come a feasible solution to satisfy unrelenting demands to provide more functionality
at higher clock rates. Future on-chip systems designs are expected to involve the inte-
gration of multiple subsystems with independently clocked domains, including mem-
ory cores and processor cores. An advantageous scheme for realizing communication
among clock domains is by means of glue logic circuits that operate in a self-timed
manner, i.e., without a clock. Robust glue logic circuits are critical to ensure safe and
stable data transfer at high operating speeds.

Synchronizing inputs with a local clock requires arbitration, which has a high prob-
ability of metastability at high operating speeds. Pausible clock schemes, proposed in
[20], handle metastability by extending the passive phase of the clock long enough for
metastability to resolve.

Globally-asynchronous locally-synchronous architectures (GALS), proposed by
[33], [8] and [9] among others, show that a system can be partitioned into several
independently clocked domains (subsystems) that communicate in a self-timed man-
ner. To isolate each locally-synchronous domain from its globally-asynchronous envi-
ronment, [1], [8] and [9] introduced an elegant design, called asynchronous wrapper,
used to equip each locally-synchronous domain. Asynchronous wrappers serve as
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controllers for data transfer between individual domains, and deliver a locally gener-
ated pausible clock for the synchronous part of circuitry [8].

The interface-based design methodology of [18] proposes to define a system on
chip architecture by a high-level block partition on one hand, and by multi-level com-
munication policies on the other hand. Communication refinement was promoted in
[18] as a technique for rapid development of system on chip architectures by succes-
sive refinement applied to communication policies. In this paper, we show how to
formally verify a key step of communication refinement for a GALS architecture, by
verifying that a channel configuration with asynchronous wrappers meets a higher-
level data-transfer specification that abstracts away the communication protocol used.

Verification of communication refinement is both important and non-trivial. We
believe that the adoption of GALS architectures in future on-chip systems design will
depend on the extent to which these novel architectures can guarantee safe and stable
data transfer, while preserving robustness of the system designs. These concerns can
be generally attributed to data and system safety issues. Although the simulations and
tests reported in [8] and [9] show that their design works properly, such simulations
and tests can only cover a small fraction of all possible configurations of relative de-
lays in asynchronous communication, while we find that various malfunctions may
still emerge under different relative delays. Applying formal verification, we find the
potential pitfalls and provide delay constraints that permit to size the circuits so that
the pitfalls are avoided.

The main challenges in our verification tasks are as follows: we have to combine in
uniform models two essentially different synchronization paradigms (edge-triggered
synchronous and handshake asynchronous); our data transfer specifications must be
kept simple in the presence of non-synchronized clock cycles, which entails, for in-
stance, that data can not be updated on every clock cycle on the sender and receiver
sides; and, our specification and verification must be kept simple in the presence of
interleavings of datapath and control signals.

In this paper, we: 1) propose new data transition model to represent the implicit
relationship between clock and data validity events; 2) construct comprehensive im-
plementation models for the asynchronous wrapper and the asynchronous communica-
tion scheme; 3) report several design pitfalls, including hazards in a design, obtained
from 3D synthesizing tool, which claimed by [9] to be hazard-free; 4) provide relative
timing constraints that were not mentioned by [8] and [9], along with fault diagnosis
which indicates that the disregard of these constraints can cause system deadlock or
erroneous data transfers.

Formal methods for verifying protocol conversion and refinement have been pro-
posed for instance in [2], [3], [15] and [19]; [2] applies some of these ideas to the
design of asynchronous circuits. However, our method is based on transforming high-
level specifications that use data validity events into low-level specifications that use
signal transition events, whereas the cited previous work only interfaces protocols by
means of physical circuits which add latency and buffering. The result of our specifi-
cation is similar to a CFSM (communication finite state machines) as in [15]. How-
ever, [15] does not include specifications in terms of data validity events.

Following [11], our verification method uses metric-free models for systems that
rely on relative timing. Compared to timed methods, such as [5] and [10], metric-free
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verification is less computationally-intensive and integrates more easily within a hier-
archical verification framework that permits non-determinism. Metric-free verification
methods for relative timing are also used in [17].

2 Preliminaries

In subsection 2.1, we briefly overview the necessary notions from our verification
framework, called process spaces; for more details, we refer the reader to [11] and
[12]. In subsection 2.2., we briefly overview the active-edge specifications introduced
in [7] and [13], which are used here to simplify the specification of control signals. In
subsection 2.3, we briefly overview the asynchronous data communication schemes
from [9] that are used in our verification case study.

2.1 Process Spaces

Process spaces are a general theory of concurrency, parameterized by the execution
type. Systems are represented in terms of their possible executions, which can be
taken to be sequences of events, functions of time, etc., depending on the level of
detail desired in the analysis. This permits to trade tractability against precision of
analysis by choosing an execution type. Modular and hierarchical verification are
supported. If executions are taken to be finite traces (finite sequences of events), close
relationships exist to several previous treatments of concurrency, such as [5] and [6].

Let E be the set of all possible executions. A process p is a pair (X, Y) of subsets of
E such that XUY = E. A process represents a contract between a device and its envi-
ronment, from the device viewpoint. Executions in XY, called goals, denoted by g
p, are legal for both the device and the environment. Executions from outside X,
called escapes, denoted by e p, represent bad behavior on the part of the device. Fi-
nally, executions from outside Y, called rejects, denoted by r p, represent bad behav-
ior on the part of the environment. We also use as p (accessible) and at p (acceptable)
to denote X and Y respectively.

Process spaces can be used to build models of circuit behavior in a manner similar
to conventional state machines. For an example of the models used in this paper,
consider the C-element in Fig.1 (a). If the inputs a and b have the same logical value,
the C-element copies that value at the output c; otherwise, the output value remains
unchanged. Waveforms are represented by finite sequences of actions corresponding
to signal transitions, such as abcbac for the waveform in Fig. 1 (b). In this paper, we
use the term frace to refer to such a sequence of actions. We sometimes indicate that a
certain action represents a rising or falling transition, as in a+ b+ c+ b- a- c-.
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Fig. 1. Example processes: (a) The C-element symbol we use; (b) Waveform; (c) Hazard-
intolerant model; (d) Inertial model.

If all signals start low, the C-element can be represented by the process in Fig. 1 (c),
where r, g, and e stand for reject, goal, and escape. Illegal output events lead to an
escape state with self loops on all subsequent events, call it a permanent escape, and
illegal input events lead to a reject state that cannot be left either, call it a permanent
reject. The state where ab leads is also marked e, making it illegal for the device to
complete its operation by stopping there.

The model in Fig. 1 (c) is a hazard-intolerant model. There are variations of the
CMOS cell models, because, in the presence of hazards, the behavior of a CMOS cell
is not fully standardized. A hazard is a situation where an output transition is enabled
and then disabled without being completed. For example, execution abb is a hazard
for the C-element in Fig. 1. Hazard-intolerant models simply require the environment
to avoid hazards, by stating that each execution that includes a hazard will lead to a
permanent reject. The model in Fig. 1 (d) is an inertial model. Inertial models ignore
hazards by filtering out input pulses that are shorter than the delay of the gate.

Our processes can be used to model not only gates or cells, but also relative timing
assumptions of the following form:

Db by...b) > D(aa,.. a,)

where ay, ..., a,, by, ..., b, are events such that a, is the same as b;, and the Ds are the
durations of the chains of events. Such a constraint, called a chain constraint [14],
enforces that the b chain of events will not be completed before the a chain (unless
one of the a or b actions involved occurs out of order).

Treating constraints as processes rather than linear inequalities permits us to deal
with cases of deadlock and non-determinism, where the inequalities might not apply.
Chain constraints can be implemented by transistor sizing. The absence of numerical
information in the process models for chain constraints leads to more efficient verifi-
cation using existing tools for non-timed analysis. Metric-free verification under rela-
tive timing constraints was first presented in [14] and [11].
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In this paper, we only use the following operations and conditions on processes:

e  Refinement is a binary relation, written p = ¢, meaning "process ¢ is a satis-
factory substitute for process p".

e  Product is a binary operation, written pXgq, yielding a process for a system of
two devices operating "jointly". Product is defined by as (pXq) =asp nas g
and g(pxq)=gpNggq.

e  Robustness is a unary predicate on processes, written R, defined by r p = &,
which represents a notion of absolute correctness: the device is "fool-proof™
and can operate in any environment.

e  Reflection, written - p, defined by as (- p) = at p and at (- p) = as p, repre-
sents a swap of roles between environment and device.

Refinement is reflexive, transitive, and antisymmetric. Product is commutative,
associative, and idempotent. Furthermore, for processes p, ¢, and r,

p=gq! pXxrk=gxr.

These properties suffice to break a verification problem into several layers of partial
specifications, and each layer into several modules, and to verify only one module at a
time instead of verifying the overall problem in one piece.

Manipulations of finite-word processes are implemented by a tool called
FIREMAPS [11] (for finitary and regular manipulation of processes and systems).
This tool uses a BDD library [5] which offers basic routines for manipulating large
Boolean functions. FIREMAPS implements the process space operations and condi-
tions mentioned above, and has built-in constructors for hazard-intolerant, and inertial
models, and for chain constraints. In addition, if refinement does not hold,
FIREMAPS can produce a witness execution that pinpoints the failure. Such witness
executions are used for fault diagnosis.

2.2 Active-Edge Specifications

Most digital circuit components are designed to synchronize on edges of their syn-
chronization signals. Often, only one set of edges (rising or falling) of a synchroniza-
tion signal are taken into account; such edges are called active. The other set of edges,
called passive, are not used for synchronization. Correspondingly, simpler state-
machine representations can be obtained by only referring to the active edges for con-
trol signals.

We use the term active-edge specification to refer to processes that represent circuit
components by ignoring passive edges. For example, as illustrated in [13], the role of
the clock signal in an edge-triggered flip-flop can be described by an active-edge
specification. We refer to [13] on how to build active-edge specification by a "semi-
hiding" operation, and to both [7] and [13] on how to reconstruct full specifications
from active-edge specifications.

We use the term transition-event specification to denote a process in which both
rising edges and falling edges of a signal are specified in the executions. Examples of
transition-event models including their specifications presented in subsection 2.1,
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where each signal transition is represented by an occurrence of the corresponding
action.

2.3 Asynchronous Communication

An alternative to clocking for digital circuits is to use handshake protocols to ensure
coherent data communication between modules. In such protocols, data communica-
tion is synchronized by request and acknowledge signals. This alternative is particu-
larly convenient for communication in heterogeneous designs with modules that have
different timing schemes.

The design in [9] uses an early single-rail four-phase protocol [16], illustrated in
Fig. 2. In this protocol, data should be guaranteed to be valid between the active edges
of the request and acknowledge signals (bundled data). As an example, Fig. 2 shows
an early four-phase handshake protocol for a push data channel [16], which is used in
the asynchronous wrapper configuration presented in [9].

req
ack

data

Fig. 2. Four-phase handshake protocol with early data valid scheme

Asynchronous wrappers in GALS architectures provides an interface between
locally-synchronous domains and a globally-asynchronous environment. Data com-
munication among independently clocked domains uses a four phases handshake pro-
tocol as illustrated in Fig. 2. Arbitration is required to synchronize the handshake
signals and associated data with one of the clocked domains. The asynchronous
wrapper circuits proposed in [1] and [9] attempted to realize failure-free communica-
tion in presence of metastability by performing arbitration between local clocks and
handshaking control signals.

An asynchronous wrapper is composed of one pausible clock generator for each in-
dependently clocked domain, one input port and one output controller for each data
port, and several other control ports. Two types of control ports proposed by [12],
Demand-type (D-port) and Poll-type (P-port), are employed to control data transfer
between two clock domains in a self-timed manner. Fig. 3 illustrates our specifications
for a D-input port, P-input port and D-output port from [9]. These specifications were
built by us on the basis of informal explanations, extended-burst-mode specifications
[21], and waveforms provided by [9]. The only point where we depart from [9] in
these specifications is by allowing retraction of the Pen signal in Fig. 3 (b), because
this retraction actually occurs in the channel configuration shown in [9] if the clock
domain that generates the Pen signal has a significantly higher frequency than the
other clock domain involved in the data transfer. No such retraction is needed for the
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Ri = RpRi + Den Z, + Den Ap Z,, Ri = RpRi + REPenTS RpPen Ti
Ap = RpAi + AiAp Ti = AiPen + AiTi + RiTi

Z,=RpZ,+ AiZ, + Den Rp Ap Ap = Ai

Ts = clkTs +TiZ, + TiZ,
Z, = clkTi +TiZ , + clkZ,
®

Fig. 3. Asynchronous wrapper control ports: (a) D-input port specification; (b) P-input port
specification; (c) Boolean functions of D-input port; (d) Boolean functions of P-input; (e) D-
output port specification (f) Translator specification and its implementation

Den signal, because D-type ports block their local clocks. The Boolean functions
shown in Fig. 3 are the synthesis results reported in [9].

The primary difference between D-ports and P-ports is that after an enable signal
event, a D-port will fire a request to pause the clock before next rising clock edge,
whereas a P-port does not pause the clock after an enable signal event until it receives
corresponding events from handshake line.

Local clocks are generated by ring oscillators with arbitration [20]. A clock pause
request will shift the start of the next clock cycle and stretch only the low phase of the
clock. Competition between clock pause request Ri (see Fig. 4) and clock restart re-
quest is arbitrated by a four-phase mutual exclusion element. If both requests arrive
simultaneously, then mutual exclusion element will make a non-deterministic selection
to pick up one, while guaranteeing that the grant outputs are mutually excluded at all
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Fig. 4. Data channel between two independently clocked domains

times. Since the P-port doesn’t have a predetermined clock cycle to transfer data, an
extra control unit called translator is required to synchronize data transfer from the
asynchronous wrapper to the receiver side of a local clock domain and provide the
receiver correct timing to sample the available data at its data input.

Based on different data transfer schemes, several channel configurations can be
obtained from various combinations of D-type and P-type control ports [9]. Following
[9], we select D-type output with P-type input configuration as our verification case
study. Following [8] and [9], Fig. 4 shows this control ports configuration. A mutual
exclusion element is present in each clock generator.

A data transfer cycle is started by Den+. With the constraint reported by [9], a D-
output clock pause request Ri/+ should reach the clock generator within half of its
clock cycle. After Ail+, clockl (Iclkl) remains low and Rp+ is issued. Clock2 (Iclk2)
will be stopped after both Rp+ and Pen+ are fired. Rp+ is acknowledged by Ap+.
Clock2 can restart anytime after Rp-, whereas clockl is only allowed to restart after
Ap-, which indicates the completion of the handshake operation cycle. A latch is in-
serted in the data path in order to decouple send and receive operations, and ensures
availability of stable data at its output when the latch is in opaque state. Two T flip-
flops are added as next-state logic in each clock domain, to obtain hazard-free enable
signals at their outputs. The incoming signals of the T flip-flops are not necessarily
hazard-free.

3 Data Transfer Modeling

To verify correctness of data exchange, we build a high-level specification of data
transfer, we convert the high-level specification to a low-level specification by auto-
mated means, and check refinement of the low-level specification by the implementa-
tion models of the asynchronous wrappers. Essentially, communication among locally-
synchronous blocks is implemented by data lines bundled with control signals. We
expect the specification should:
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. Include features of both control path and data path.

. Be sufficiently precise so that it can support automated verification.

. Be as simple as possible, so that it can be easily developed and under-
stood by designers.

. Be sufficiently general so that it can be easily mapped to communication
refinement.

We introduce a new technique to build data transfer specifications independently of
the synchronization scheme, and we apply this technique to our verification case
study. Although the examples we use in this paper focus on data transfer between two
independently clocked domains, the same data transfer specification modeling tech-
nique can be applied in a more general asynchronous context.

3.1 Data Transfer Specifications

A robust data transfer scheme requires that, under any circumstance, data issued by
the sender should be received correctly by the receiver after a certain delay. The no-
tion of correctness used here can be decomposed into the following aspects:

e Data integrity: received data preserves its original sending value.
e Stream integrity: no data items are lost or duplicated during data transmis-
sion, and the order of data items is preserved through the transfer.

As modeling stream integrity would require numerous states to represent data and
control signal interleavings in a transition-event representation, we use instead a ficti-
tious data event called validity event in our high-level specifications. Our technique
abstracts away any irrelevant transition events and only considers data events trig-
gered at active edges of clocks. This model fits nicely into a communication refine-
ment paradigm, by permitting to isolate data validity events from the particulars of the
synchronization signals used.

A validity-event data-transfer specification incorporates the following assumptions:

e After a control signal is fired by the sender, there is a data validity event at
the input port of the data channel.

e After data is properly sampled by the receiver, there is a data validity event
at the input port of the receiver.

e Data integrity is preserved in the data transmission, for instance, for each
valid input “0” (or “1”) there is a valid output “0” (“1”), and vice versa.

e  Stream integrity is preserved in the data transmission.
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vO vl [Drawing conventions:
- The states shown are goals.

- Missing vO and v/ events lead to permanent rejects.
o.a.e - Missing v0' and vI' events lead to permanent
escapes.

vO’ v1’ - Other actions are ignored and have self-loops at each
state.

Fig. 5. Propagation of validity events

For the asynchronous wrapper, the high-level data-validity specification is the process
shown in Fig. 5. The “0” data validity event v0 is propagated as v0' to the end of data
channel. Same applies for the “1” data validity events.

3.2 Fusion Processes

In order to transform the high-level specification of Fig. 5 into a full-blown transi-
tion-event specifications, we introduce fusion processes to “glue” validity events,
transition events, and control events (e.g. clock) which trigger the validity events.
Such processes effectively force glued events to occur simultaneously by forbidding
other events from occurring in between. For instance, Fig. 6 (a) illustrates a fusion
process where the data transition event Datal is fused with its validity events v0 and
vl by control event lclkl, which is the active edge of a local clock. Note that signal
Datal can toggle arbitrary in a clock cycle, while the validity events are related to the
logical level that signal Datal has right before active-edge of Iclkl: If Ilclkl comes
when Datal is low, validity event vO will be issued and there will be no another valid-
ity event until the next active edge of /clkl, though Datal might keep changing be-
tween two active clock events. Same as Fig. 6 (a), Fig. 6(b) fuses the transition events
of Data2, with the active edges of control signal event Ts and with corresponding

Drawing conventions:

- The states shown are goals.
- Missing transitions on the
actions of each process lead
to permanent escapes.

- Other actions are ignored
and have self-loops at each
state.

v0

c Datal-valid 6

S o

Fig. 6. Example of Fusion Processes (a). Fusion of Datal; (b) Fusion of Data2; (c) Invariant
fusion of Datal; (d) Invariant fusion of Data2
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Drawing conventions:
- The states shown are goals.

- Missing outputs lead to permanent escapes.

- Missing inputs lead to permanent rejects.

- Other actions are ignored and have self-loops at each state.

Fig. 7. Specification constructed from fusions

validity events. Fig. 6(c) and (d) are fusion processes to glue the validity events with a
higher-level data-invariant validity event, for the case that where one data-invariant
validity event is required to represent either of the lower-level validity events in analy-
sis.

We present in Fig. 7 a state diagram for the process obtained by applying fusion
process to “glue” both datal and data2. To obtain the full-blown transition-event
specification, we first compute the product of the high-level specification in Fig. 5
with the fusion events in Fig. 6 (a) and (b), then by hiding the high-level data-validity
events. In Fig. 6, only the active edges of the clock signals are represented. Further,
we transform the active-edge signals into transition-event signals using the procedures
from [7] and [13]. The result of these transformations is the full specification of signal
transitions shown in Fig. 7. These transformations are implemented in FIREMAPS.

4 Case Study

In subsection 4.1, we present the construction of asynchronous wrapper models. In
subsection 4.2, we discuss the refinement-based verification procedures. Finally, we
report our verification results and analysis in subsection 4.3.

4.1 Models Construction

We assume the initial states for each component with all signals are low. The process
space specifications for each asynchronous wrapper port type are as shown in Fig. 3.
To obtain hazard-free data (stable data) in the design from [8] and [9], the incoming
data for asynchronous wrapper are registered before being put onto data channel.
Accordingly, a D flip-flop model is included to the data path in our asynchronous
wrapper model and validity event data can be obtained at the output of D flip-flop.
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To describe the edge-triggered components (T, D), as well as the latch component,
we use the active-edge specification models of [7] and [13]. For the lowest-level equa-
tions in Fig. 3, we built hazard-intolerant models in FIREMAPS, assuming each equa-
tion is implemented by a complex gate (a single standard Boolean gate). The data
transfer model of the asynchronous wrapper is constructed based on validity events
(see section 3). Fig. 7 shows the resulting model. The translator specification is based
on the state machine shown in [8] for that component. The four-phase mutex used to
implement clock generation as shown in [8] and [9] was modeled by its standard tran-
sition-event process. D-output port timing constraint reported at [9] is included in our
model, and is built in the form of chain constraint (see subsection 2.1) to represent this
timing restriction in design.

4.2 Refinement-Based Verification Cycle

Our first refinement-based verification cycle is started by adding the D-output port
delay constraints reported in [9] to our asynchronous wrapper’s intermediate
specification model, and checking the refinement with its high-level specification.
FIREMAPS checks refinement and diagnoses the dangers detected in the implementa-
tions by providing a set of witness executions that constitute counter-examples to
refinement.

We repeat the verification cycle by adding new relative timing constraints to avoid
the witness executions detected at previous verification cycles. Relative timing con-
straints are found through a detailed analysis of asynchronous wrapper design with the
help of witness executions obtained from FIREMAPS. These cycles repeat until
FIRMAPS eventually reports that the refinement condition is satisfied.

4.3 Verification Results

To check the claim in [9] that hazard-free implementation of port controller could be
obtained by synthesizing its extended-burst-mode specification by the 3-D synthesis
tool, we verify the individual control components D-input control port and P-input
control port against the hazard-intolerant models of their equations from [9].

Subsequently, we present the most significant of our detected relative timing con-
straints. We explain the problems indicated by the counter-examples to refinement that
are obtained by FIREMAPS when one of the respective constraints is not included,
but all the other constraints are included. This shows how ignorance of each constraint
in the asynchronous wrappers design may lead to system failures and improper data
manipulation under particular timing conditions.
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Fig. 8. Illustration waveforms (drawn) of D-input port hazard

Control Ports Verification. Here we verify the refinement relationship between
specification and implementation for D-input ports and P-input ports (Fig. 3), respec-
tively. Both D-type and P-type control ports are used to control data transfer between
two independently clocked domains in asynchronous wrappers. To ensure robust data
transfer under fewer delay constraints, hazard-free control port circuitry is preferred.
Our verification results show that the refinement relationship does hold for P-input,
but does not hold for D-input. In other words, the implementation of the P-input is
hazard-free, while a hazard exits in the implementation of the D-input.

Assuming low initial states of all voltage signals, FIREMAPS reports a witness
execution: Den+ Ri+ Rp+ Ai+ Ap+ Rp- Ri- Ai- Ap- Ri+ for D-input (Fig. 3(c)),
showing that a race condition exists at Z,. Notice that: starting initially with Den+,
after Rp-, with certain propagation delay, Z, should rise (Fig. 8). However, if the
delay of Ri- to Ai- (clock pause releasing acknowledge) plus the propagation delay of
Ai- to Ap- is less than the propagation delay of Ap+ (previous Ap event) to Zy+, then
the Zy+ event will be cancelled, causing Ri to rise again. Fig. 8 depicts the
corresponding trace waveform (drawn). Further, since there are no clock events to
trigger the T flip-flop, no Den events will be generated. Therefore, the corresponding
local clock will be stopped indefinitely, and this stopping effect may ripple through
other clock domain since no data acknowledge will be fired subsequently by the local
domain, thus causing system stall.

We further find that the implementation of the translator block does not refine its
specification. Please refer to Fig. 3 (f) for detailed specification and implementation
description of the translator (after Fig. 5 in [8]). From an initial state where all signals
are low, a Ts+ event cannot occur after 7i+ is fired. This consequently halts events
that are supposed to be fired after T's+. If there are no T's events to trigger the sam-
pling action at the receiver side, no data transfers will occur. This flaw can be fixed by
re-synthesizing the state-graph specification in Fig. 3 (f).

Overall Data Transfer Verification. Here we verify a step of communication re-
finement by checking whether our data-transfer specification in Fig. 7 is satisfied by
the channel configuration in [9]. At the present stage, this part of our verification is
based on safety models, which only detect the presence of invalid events. Further
investigation will be needed to verify liveness properties by using stronger specifica-
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tions. By applying our verification techniques, we detect several relative timing con-
straints that were not reported by the designers. To simplify our presentation of re-
sults, we only refer to the validity events datal-valid and data2-valid below, instead of
any data event. Relative timing constraints are represented as chain constraints. Signal
labels refer to Fig. 4.

1. D(Ti+ Ts+ Iclk2+ Iclk2- Ts-) < D(Ti+ Ti-). The Ts+ event, which should indicate
to the receiver block that data has been received, should be fired and become stable
within two consecutive 7Ti events. In other words, the delay from Ti+ to Ts+ should be
less than half the period of clock 2. Failing to satisfy this constraint might lead to data
being sampled twice at the receiver side, which leads to erroneous duplication of data
items. The worst-case scenario is where every data item is duplicated at the receiver
side. In [12], there are no mentions of this danger for duplication. Even though the
duplication of items might be fixed inside the receiver block by another level of the
communication protocol, the duplication would still undesirable because the computa-
tion tasks for receiver would be doubled.

2. D(Ai2+ Ti+ Ts+) < D(Ai2+ Ap+ Rp- Ai2- Iclk2+). The delay from Ai2+ (which is
to acknowledge the pausing of clock2) to 7's+ (which is to indicate the receiver the
arrival of data) should be less than the delay from Ai2+ to restart the clock2. Other-
wise, the receiver will not sample the available data at its data input, due to absence of
a triggering event Ai2+; moreover, the data which was supposed to be sampled by the
receiver will be flushed away by the next incoming data by restarting of clock2. In this
situation, the data loss will be permanent and unrecoverable.

3. D(Den+ Rp+ Ap+) < D(Den+ data-valid). Data should be put at the input port of
the latch before the latch switches from transparent to opaque; otherwise, before data
getting stable, improper data states will propagate through latch and be sampled by
receiver. This constraint sets a delay time bound for the latch to switch its state.

4. D(Rp+ Ap-) < D(Rp+ Ts+ lclk2+). A Ts+ event should be issued later than the Ap-
event to ensure a stable and valid data at the output of the latch, which was triggered
by Ap- and switched to opaque state already; otherwise, the Ts+ event will trigger the
receiver to sample a data item which is not guaranteed to be correct.

5. D(Pen+ Ai2+) < D(Pen+ Iclk2+). The delay path from the P-input enabling signal
Pen+, to the clock pausing acknowledge signal, Ai2, should take less time than the
issuing of the next Iclk2 event; otherwise, the next P-input enabling signal can be
ignored as the result of a race condition.

6. D(Pen+ Rp- Ri2+ Iclk2+ Iclk2- Pen-) < D(Pen+ Rp+ Ri2+ Iclk2+ Iclk2- Ai2+ Ti+
Ri2-). The relative timing interval between Rp+ and rclk2+ is arbitrary. If Rp+ is
issued closely enough to [lclk2+, then, Ri2+, which was supposed to be triggered by
both Rp+ and a Pen event (Pen+/-) can not win the arbitration over Iclk2+. Therefore,
lclk2 will not be paused immediately after the arrival of Rp+, the next clock event
lclk2- will be fired, and, further, Pen will be reset. Thus, a 7i event would be canceled,
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before the Ts is set to high. Meanwhile, the acknowledge Ai2 will still be sent to the
D-port, though no data is sampled by the receiver. Moreover, if the implementation of
the translator is not totally hazard-free, T's will quickly return to low if Pen- is issued
right after a Ts+ event. If the clock2 pause request (Ri2) cannot withdraw before Pen-
comes, Ti will be reset again and still might affect the state of Ts. We add the above
constraint, which implies the delay from Iclk2- to Pen- is longer than the delay from
Ai2+ to Ri2-, so that the data item will not be lost during transfer.

5 Conclusion

In [9], the authors introduced an elegant design, called asynchronous wrapper, used to
interface locally-synchronous domains to a global asynchronous handshake environ-
ment. This design was reported in [9] to be synthesized by an asynchronous synthesis
tool, called 3D, and was considered in [9] to be hazard free. In addition, [9] reported
several delay constraints to avoid race conditions in their circuits.

We introduce a novel technique to construct and verify specifications for data
communication between independent clock domains. We apply our technique to the
asynchronous wrapper design in [9], and we find several hazards, additional race
conditions, and other faults. We indicate the corresponding observable failures.

Hazards and race conditions often escape detection by non-exhaustive methods,
such as simulation, prototyping, and even testing of a few fabricated circuits; given the
manufacturing variations and parameter fluctuations present in large systems on chip,
only a minor percentage of the fabricated circuits can have the same delay configura-
tion as the tested or simulated ones. We believe that the availability of formal verifica-
tion techniques for communication refinement is necessary for the creation of robust
GALS architectures and for the subsequent acceptance of such architectures by the
industry.
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