A Specification Methodology by a Collection of
Compact Properties as Applied to the Intel®
Itanium™ Processor Bus Protocol

Kanna Shimizu', David L. Dill', and Ching-Tsun Chou?

1 Computer Systems Laboratory, Stanford University, Stanford, CA 94305, USA
kannas@stanford.edu, dill@cs.stanford.edu
2 Intel Corporation, 3600 Juliette Lane, SC12-401, Santa Clara, CA 95052, USA
ching-tsun.chou@intel.com

Abstract. In practice, formal specifications are often considered too
costly for the benefits they promise. Specifically, interface specifications
such as standard bus protocol descriptions are still documented infor-
mally, and although many admit formal versions would be useful, they
are dissuaded by the time and effort needed for development.

We champion a formal specification methodology that attacks this cost-
value problem from two angles. First, the framework allows formal spec-
ifications to be feasible for signal-level bus protocols with minimal effort,
lowering costs. And second, a specification written in this style has many
different uses, other than as a precise specification document, resulting
in increased value over cost. This methodology allows the specification
to be easily transformed into an executable checker or an simulation
environment, for example.

In an earlier paper, we demonstrated the methodology on a widely-
used bus protocol. Now, we show that the generalized methodology can
be applied to more advanced bus protocols, in particular, the Intel®
Ttanium™ Processor bus protocol. In addition, the paper outlines how
writing and checking such a specification revealed interesting issues, such
as deadlock and missed data phases, during the development of the pro-
tocol.

1 Introduction

As digital circuits become larger, designs are broken up into more and more
pieces, increasing the importance of design integration. The popularity of IP
(Intellectual Property) cores, and the increased awareness that their interfaces
must be clearly defined, is an affirmation of this trend. This development ne-
cessitates that functional interface specifications be correct and precise because
they serve a pivotal role when integrating designs. However, specifications are
still written in natural languages and not formal languages, forfeiting an oppor-
tunity for analysis, automated checks, and preciseness. In many cases, specifica-
tions widely in use are wordy, ambiguous, and contradictory; all problems that
can be resolved by formal specification development. A subtle point missed in

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 3403541 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Specification Methodology by a Collection of Compact Properties 341

practice is that an informal specification may have inconsistencies that a human
reader will not notice, or may be missing rules that a human reader may infer
automatically, but, because it is inconsistent and incomplete, any correctness
reasoning is impossible. A practical consequence of this is that a good protocol
compliance checker can not be created from such a document.

Despite these arguments, in practice, formal specifications are rarely used.
The reason seems to lie with the perceived high cost of formal development:
mainly, the lengthy development time and the investment needed for formal
verification training. For many, the value of a correct specification does not
justify these costs. This paper is one step in a broader effort to reduce the cost
by making the specification process more reasonable, and to increase the value
of formal documents by developing direct applications for them. Methodology,
as opposed to tool or language development, is the key to achieving this goal.

Until recently, formal specification research has focused mostly on developing
tools or languages. Very little work has been done on how to develop complete
specifications. Tools assume the existence of them, or are just used with an ad
hoc list of properties. Our goal is to develop a methodology that produces a self-
contained, complete, behavioral specification, while adhering to the cost-value
goal. Currently, we are focusing on signal-level bus protocol descriptions, since
they are both important and challenging to specify.

There has been a few other bus protocol specification projects. In 1999,
Chauhan, Clarke, Lu and Wang [CCLW99] specified PCI (Peripheral Compo-
nent Interconnect) protocol [SIG95] using CTL. Our specification has advantages
that a CTL one does not have. In 1998, Mokkedem, Hosabettu, and Gopalakr-
ishnan formalized higher-level properties of PCI involving communication over
bus bridges [MHGY§|. Their specification is almost unrelated to the one here,
which focuses on the low-level behavior of individual signals. In fact, the method-
ology is most closely related to a 1998 paper by Kaufmann, Martin, and Pixley
[KMP9g|, which proposed using logical constraints for environment modeling.
However, they do not give guidance on how the constraints should be written,
which is the focus of this project.

In [SDHO0], we present a specification style that was developed using the
core subset of the PCI protocol as an example. We also describe two debugging
methods based on model checking, that were found to be effective with the style.
As a second paper in this series, the primary contributions of this paper are the
following. First, the work shows that the generalized methodology can be applied
to more advanced bus protocols, in particular, the Intel® Ttanium™ Processor
bus protocol[Cor|. Second, it demonstrates how writing and checking such a
specification reveals interesting issues during the development of the protocol.
This point is illustrated with a few examples from the specification effort.

It has been found that the expressiveness of the style is not a problem despite
the protocol’s pipeline feature, that the increased complexity did not affect model
checker performance, and the method’s debugging strategy is still effective. The
technique uncovered several issues in a development version of the protocol which
allow deadlock of the bus and missed data phases. The protocol engineers have

342 K. Shimizu, D.L. Dill, and C.-T. Chou

recognized the significance of these discoveries and subsequently made changes
to the protocol to disallow such scenarios. Furthermore, with this method, the
total time to write and check the description was 2 man-months.

The Specification Style

The specification style addresses the cost problem in two ways. First, formal
verification expertise is not required to write the specification. In contrast,
many specification frameworks require knowledge of LTL (linear time tempo-
ral logic) or CTL (computation tree logic)[CESI] as evidenced by numerous
projects such as CMU’s PCI specification [CCIW99] and IBM Haifa’s FoCs
software [ABG™00]. Because it does not require the complex constructs of these
languages, the formal specification can be and has been written in a hardware
description language such as Verilog, a language familiar to many engineers.
This feature partly counters the training cost argument against formal specifi-
cations. More generally, the style is language-independent (indeed, the specifi-
cation can still be written in LTL or CTL if desired). The methodology can be
applied to any of the existing tool frameworks and languages such as SMV[McM],
FoCs|[ABG™00] or LUSTRE [HCRP91].

Second, because the style is based on writing many small protocol rules and
purposely avoids writing large state machines, the specifications have been found
to be easier to write and maintain. Many descriptions comprise of one large state
machine with actions specified for each state. Designing such a state machine
correctly is a complex, error-prone task. This method instead relies on many
small state machines, but the bulk of the specification is done using compact
rules.

To maximize its value, the style allows the specification to have multiple func-
tions. For a formal verification framework using a model checker, with no extra
work, the specification can be used to constrain the inputs to the design under
test, and at the same time, it can be used as the list of properties to check for.
For example, this was done by Govindaraju and Dill; using the PCI specification
written in this style, they were immediately able to formally verify a PCI driver
implementation [GDO0]. The specification constrained the state space, and also
gave them properties to check for. This assume-guarantee approach is not new,
but the style easily allows it while an ad hoc specification probably would not. For
designs that are too complex to be formally verified and can only be simulated,
the specification can be directly used as a conventional checker monitor during
simulation runs. This is possible because the specification is executable and can
be written in a language such as Verilog. For example, at Intel®7 the specifica-
tion that was developed for the Itanium™ processor bus has been translated
into a C++ simulation checker.

Specification Writing. At the foundation of the specification style is the con-
cept of monitors. Monitors observe the output signals of interacting agents, flag
illegal behavior, and assign blame to the erring agent. The monitor concept al-
lows executable specifications to be written for non-deterministic behavior, and

A Specification Methodology by a Collection of Compact Properties 343

allows specifications to be written as a conjunction of simple properties (in these
respects, monitors have many of the advantages of temporal logic). The concept
is not new; numerous specification frameworks are based on monitors.

Fig.1. A Monitor

Within this monitor framework, the style is based on using multiple con-
straints to collectively define the correctness of an agent’s signalling behavior.
The constraints are simple propositional formulas with a time construct. The
basic form is,

prev(signalyg A ... A signaly V (statemachine = value)) — signal; V ... A signal,

where “—” is the logical symbol for “implies”. The antecedent is an expression
containing signal values and state machine values, and the consequent is an
expression of signal values. The prev construct allows the state of the signal
a cycle before to be expressed, and it can be nested although in the examples
attempted, only up to a doubly nested prev was needed. For readability and
to facilitate debugging and implementation, the constraints are written as an
implication with the past condition as the antecedent and the current condition
as the consequent. For example, the protocol constraint,

prev(trdy A stop) — stop

means “if the signals trdy and stop were true in the previous cycle, then stop
must be true in the current cycle” where a “true” signal is asserted and a “false”
signal is deasserted.

Due to various desired characteristics on the specification, such as guaran-
teeing the existence of an implementation, there is one important restriction
placed on the constraints. Each constraint can only constrain the behavior of
one agent. This leads to the ability to blame just one agent when a specification
constraint is violated during agent interaction. If signals o, and g, are outputs
of the same agent and r}, is an output of another agent, the first constraint obeys
this restriction, while the second doesn’t.

correct : previous(ry) — 04 A g

incorrect : previous(ry) — 04 ATy

The PCI protocol was specified with this restriction, and the targeted subset of
the Itanium™ processor bus protocol was also successfully specified with this
restriction.

The prev construct is not enough to retain state information. State machines
are needed for this. But instead of relying on large state machines, the style

344 K. Shimizu, D.L. Dill, and C.-T. Chou

relies on many, small, standard state machines which each track one thread of
information. An example is a 2-state, set-and-reset machine which becomes set
when a certain event happens and stays set until it is no longer needed. It is
used to record certain information such as whether the transaction is a read or
a write. Another example is a counter which counts the number of cycles from
a certain event, or counts the number of occurrences of a special event. Only
these two types of state machines were needed. A key point is that a protocol
can be written with a few standard state machines, even if it is as complex as a
pipelined protocol.

In addition to the benefits already described, there are numerous advan-
tages to writing a specification as a “collection of small constraints and state
machines.” Since most existing natural-language specifications, such as the PCI
specification, are already written as a list of rules, the translation to this type
of specification requires less manipulation and results in fewer opportunities for
error. Furthermore, not only is such a specification easier to write, it is easier to
read and understand than a complicated, large state machine description. And
finally, on a theoretical note, this specification style together with a simple-to-
check property guarantees the existence of a implementation (and more precisely,
a stronger property called receptiveness). Although many of these qualities are
hard to quantify, is it noted that our PCI specification has been used by others
working on related projects such as Clarke et al. [CGY 00| and Aloul et al.
[AS00].

Specification Checking. Two debugging methods were found to be effective
for this style when developing the PCI specification. Their main purpose is to
check if the specification is overly restrictive, or under-restrictive, and whether
it agrees with the protocol designer’s intent.

The dead state check finds contradictions in the specification. It searches for
a state where all the specification constraints have been true so far, but there
is no next state where all of the constraints are true. This indicates that the
specification places contradictory requirements on the system at some point in
its execution. To determine this, it is sufficient to model check the specification
with the following property,

AG(all_correct — EX (all_correct))

where all_correct true indicates that none of the constraints have been violated
so far. This property guarantees that the system can execute infinitely obey-
ing the protocol no matter which path it chooses, as long as at each step, an
all_correct next state is chosen.

The characteristic check checks whether the specification guarantees certain
properties. These characteristics are logical statements about agent events and
are expressed in crLll They are checked against the specification using a CTL

! It must be emphasized that the specification constraints are simple, bounded, linear
time properties and these checking properties are more complex, unbounded, CTL
formulas.

A Specification Methodology by a Collection of Compact Properties 345

model checker and by the counterexamples provided by the model checker, the
check finds bad scenarios allowed by the specification. This technique requires
knowledge of the protocol because the characteristics cannot be deduced auto-
matically from the specification.

2 Specification

A core subset of the Itanium™ Processor bus protocol was specified; the request
phase, the snoop phase, the response phase, the data phase, and the deferred
phase are all covered, but, for example, the arbitration phase is not. Higher level
properties of deferred transactions, such as the assurance of completion, are
not specified or checked because they are probably better treated in a different
specification.

In this section, it is illustrated how the specification style specifies advanced
features that were not part of the simpler PCI protocol. There is a description
of pipeline specification, the treatment of the protocol’s time-unbounded rules,
and an explanation of a reaction timing issue.

Definitions Here are some terms that are used throughout this paper.

constraints The small, propositional formulas in the formal protocol
specification describing agent behavior
rules Specification properties in the informal, English specifica-

tion provided by the protocol designer. There is no one-
to-one relationship between constraints and rules. In most
cases, one rule corresponds to multiple constraints.

history variables Variables that retain information from the past. This can
be as simple as the value of a single bus signal from one
cycle ago, or as complicated as a counter.

agents The entities communicating with one another using the in-
terface, or in this case, the bus.

2.1 Pipelining

First, an un-pipelined version of an example constraint will be described. The
protocol has six phases. Transactions must go through the arbitration phase,
request phase, error phase, snoop phase, response phase, and data phase. The
type of transaction, whether it is a write or a read, is determined during the
request phase. An important signaling event, the assertion of trdy, happens
during the response phase. Thus, the example rule, “trdy must be asserted for
a write transaction,” requires the transaction type (write) to be stored from the
request phase until the response phase. Also, the end of the response phase is
defined by the assertion of rs and so the rule requires that trdy be asserted
before 7s.

Consequently, to specify the constraint, two auxiliary variables are sufficient.
First, there is a history variable write which becomes true during the request
phase if the transaction is a write, and stays so until the transaction is completed.

346 K. Shimizu, D.L. Dill, and C.-T. Chou

The second history variable, trdy_happened, becomes true when trdy is asserted
and stays so for the duration of the transaction.

Using these variables, the constraint becomes, “if a transaction is a write,
then if trdy assertion hasn’t happened yet, rs cannot be asserted (i.e. the re-
sponse phase can’t complete).”

prev(write) — (prev(—trdy_happened) — —rs)

For a pipelined version, while transaction i is in the response phase for ex-
ample, transaction ¢ — 1 can be processed concurrently, say in its request phase.
Thus, there needs to be multiple write variables and trdy_happened variables
for each outstanding transaction. Assume that there is a mechanism to tag each
transaction with an ID number. This same number can be used as a subscript on
the history variables to create separate variables for each transaction. Thus, the
history variables become write; instead of write, and trdy_happened; instead
of trdy_happened. Also, the constraints are activated only when a particular
transaction reaches a particular pipeline phase. Consequently, each constraint
developed in the un-pipelined version is (indirectly) indexed by a transaction ID
in the pipelined version. The example constraint now becomes,

prev(write; A (response_phase = 1)) — (prev(—trdy_happened;) — —rs)

which is, “if transaction ¢ is a write and is undergoing the response phase, then
if trdy assertion hasn’t happened yet, rs cannot be asserted.” Thus, to create a
pipelined version from an un-pipelined specification, the constraints and history
variables are replicated and indexed by transaction IDs.

The transaction ID assigning process is implemented by counters. In this
scheme, the transaction ID corresponds to the order in which the transaction
started. The first transaction that undergoes the arbitration phase (which is the
first phase in the pipeline) is assigned the ID of 0. The ith transaction that
undergoes the arbitration phase is assigned the ID of ¢ — 1. Since there can
only be eight outstanding transactions, the IDs are assigned modulo 8. This ID
scheme works because most phases for a transaction happen in—orderE the ¢th
transaction to undergo the request phase is the the ¢th transaction to go through
the response phase.

For each phase, there is a signal expression which indicates that the phase
has completed. For a particular phase, if the number of occurrences of these
“complete” signaling is known, the number of transactions that have undergone
this phase so far is also known. In this way, the specification can keep track of
which transaction is being processed in each phase. For example, the request
phase’s completion event is the assertion of ads. The request phase counter
increments at every occurrence of this, and the counter value indicates the ID of
the transaction currently in the request phase. As this transaction moves onto
subsequent phases, each phase counter will have this same value.

2 Data phases can be deferred and completed later so they do not necessarily happen
in order.

A Specification Methodology by a Collection of Compact Properties 347

Thus, the general form for constraints is, “if transaction ¢ is a write (or read)
and it is currently undergoing the response (or request or snoop) phase, then p
must hold.”

prev(transaction_type; A (some_phase = 1)) — p

(where for example, transaction_type; is a “write” and some_phase is a “response
phase” counter)

Thus, using these counters and appropriate history variables, a pipelined pro-
tocol can be easily specified with small constraints. The one drawback of this
methodology is the linear increase in the number of state variables, which may be
a problem when model checking. However, this is only a problem with verifica-
tion and not the specification. The specification scales well; the constraints only
have to be duplicated with the counter values and variable subscripts changed. In
fact, the methodology specifies a certain intricate Itanium™ bus feature effec-
tively and simply. Although there are only five main pipeline stages, the protocol
supports eight outstanding transactions at any time. The extra transactions are
buffered at each stage. With the monitor-style constraints, the buffers do not
have to be explicitly modeled to specify the agent-bus behavior. There are simply
eight copies of the constraints for the eight outstanding transactions.

2.2 Time-Unbounded Rules

Compared to the tightly timed PCI protocol, the Itanium™ Processor bus has
a less constrained timing relationship among the different signal events. With
PCI, most rules fall into the category, “exactly n cycles after event a happens,
event b must happen.” The PCI protocol is a time-bounded protocol where most
events are guaranteed to happen within a certain time span.

In comparison, there are no such guarantees with the Itanium™ Processor
bus protocol. Most of the rules follow the form, “any time after n cycles have
elapsed since event a, event b may happen.” The environment must expect that
the event can happen at n, or n+ 1, or n 4+ 2, and so on, and be designed ac-
cordingly. An example from the protocol is “trdy may be deasserted a minimum
of 3 cycles after the deassertion of the previous trdy”.

Furthermore, there are no rules stating that an event must eventually happen
(the so-called liveness property). In essence, the protocol is a time-unbounded
protocol. Hence, the protocol allows the bus agents to have more freedom in
ordering events, and optimizing bus performance. However, this extra degree of
freedom leads to more corner cases in the specification that need to be checked.

Constraint Style. In the prior section, it is explained that the constraints for
this protocol are written in the form,

prev(transaction_type; A (some_phase = 1)) — p

The form of p will now be described. The most natural form, considering the
“time-unbounded” characteristics of the protocol, is

p: —prev(q) — —r

348 K. Shimizu, D.L. Dill, and C.-T. Chou

“If ¢ is true in the previous cycle, then r may be true in the current cycle.”
The expression for ¢ is a trigger condition which enables a certain exchange
or a change of state. A trigger condition which signals that an agent is ready
to receive data is one example. Another example is a trigger condition which
indicates the completion of an event so that a bus signal can be deasserted.

One consequence of this time-unbounded feature, is that the dead state check,
in its original form, does not catch contradictions. This is due to the fact that
because most actions are not required to happen at any given time (the time-
unbounded characteristic), the bus can always choose to loop in the current
state and “do nothing.” If the check searches for a legal (all the specification
constraints are true) current state which has no legal next state, with a time-
unbounded protocol, the current state is always a legal next state and so the
check is vacuous. Therefore, the dead state definition needs to be expanded so
that the test check for the following desired property,

AG(all_correct — EX (all_correct A\ —~same))

where same is true if all the state variables, except the timer-like variables which
increment at each clock, have the same value as in the previous state. Thus, this
check ensures that, at every legal state, there is at least one possible legal next
state where some change happens and the bus is not forced to stay in the current
state. And so, a check that was effective for PCI is modified for the Itanium™
protocol so that a wider class of anomalies are detected.

2.3 2-Clocks or 1-Clock Reaction Time

Unlike the PCI protocol, the Itanium™ process bus is a latched protocol where
there is a 1 cycle delay from when the bus agent asserts (or deasserts) a signal to
when the action appears on the bus. Thus, when observing events on the bus, a
reaction to a trigger event happens (at earliest) in two cycles instead of one. On
cycle n, a trigger condition becomes true on the bus; on cycle n 4+ 1, the agent
asserts a signal in response; and on cycle n+ 2, the assertion appears on the bus.
And so most time-bounded constraints are in the form, prev(prev(input)) —
output where input and output are bus signal expressions.

A asserted B asserted
A sampled B sampled
O Sample P % P
1 A
[Assert
i B
The Bus

Fig. 2. The Latched Bus Protocol - 2 Cycle Response Time

However, the response to a trigger from the same agent may happen in one
cycle. There is no one-cycle delay through the latched bus in this case. For

A Specification Methodology by a Collection of Compact Properties 349

example, there is a rule, “ids cannot be asserted in cycle N if ¢rdy is sampled
asserted on clock N.” As a constraint, this becomes prev(trdy) — —ids. This
requirement is possible only because both trdy and ids are controlled by the
same agent at all times. The agent does not need to wait for the trigger (¢rdy)
to appear on the bus to react (—ids) to it.

The difficulty arises when the trigger condition of a rule is a mixz of external
and internal signals. An example is “input A outputy true requires output; to
become true.” If an external signal causes the trigger expression to become true
(outputy was already true and input just became true), then a two cycle reaction
time is needed. However, if the agent’s own signal causes the trigger condition to
become true (input was already true and outputy just became true), it can react
in one cycle. Thus, the rule needs to be separated into two constraints depending
on the situation. However, the English specification fails to distinguish between
the two cases, and states a blanket requirement allowing a one cycle reaction
timing at all times. This is problematic because if a particular agent asserts a
reaction earlier (one cycle) than expected by other agents (two cycles), it may
lead to an undefined state. In fact, the modified dead state check detected a
scenario where this misstated rule led to a contradiction.

3 Debugging

Several issues were found with the development version of the Itanium™ pro-
cessor bus protocol using the methodology’s debugging procedures. Some are
omission of rules that are arguably implicit in the official specification, but vio-
late the completeness concept. Others are serious enough to cause data phases
to be missed unnoticed, or cause a deadlock. These were resolved by revising the

Intel® protocol specification.

3.1 Found by Dead State Check

The dead state check mainly found cases of missing rules. The informal specifica-
tion tends to state the sufficiency conditions of an action, while leaving necessary
conditions implicit. For example, a sufficient condition for the assertion of trdy,
“if the transaction is a write, then a trdy assertion must happen,” is stated
in the specification. Logically, it specifies write_transaction — trdy_happens.
However, a necessary condition that trdy can only be asserted at certain times,
is missing. The specification should state that “trdy can be asserted only if the
transaction is a write or has a snoop-initiated data transfer.” Else, the system
will reach an undefined state because the agents do not expect trdy to be as-
serted during a read, for example. By adding such a rule, the specification is
made more complete so that a simulation checker can catch erroneous behavior
at the earliest time. Overall, there were five cases of such omissions where the
specification does not state that a particular event can happen only if certain
conditions are true.

350 K. Shimizu, D.L. Dill, and C.-T. Chou

3.2 Found by Characteristic Check

Missing Trigger Condition and Resulting Deadlock. There is a pair of
communicating agents: a data sending agent, the Sender, and a receiving agent,
the Receiver. When the bus signal trdy is true, the Receiver is signaling that
it is ready to receive data. When dbsy is true, the Sender is sending data. So
when —dbsy is true, the Sender is idle, and is ready to start the next data
transfer. Thus, when trdy A —dbsy is true, both agents are ready; consequently,
trdy A —dbsy is a trigger condition that allows a new data phase to start.

The protocol is designed so that the Receiver keeps trdy true until the data
sending agent is idle and dbsy is deasserted (—dbsy). Thus, the normal sequence
of events is as shown in Fig.[3l Note the one cycle delay between a signal change
and its appearance on the bus because of the latched property.

trdy
deasserted Time|Receiver Sender
Em! 1 |asserts trdy and observes| driving dbsy
trdy T that dbsy is active
2 |keeps trdy asserted deasserts dbsy
dbsy 3 |observes that dbsy is low idle
dbby 4 |in response, deasserts idle
sanipled trdy
deasserted 5 lidle idle

Fig. 3. trdy and dbsy relation

What makes the protocol tricky is that if dbsy is already deasserted, as an
optimization, trdy can assert and deassert right away (Fig.[]). Note that, unlike
the normal sequence, the trigger (trdy A —dbsy) is true for only one cycle in this
case. Thus, this scenario lets the idle state, =trdy A —~dbsy, happen a cycle earlier
(that is why it’s an optimization).

1 2 3
trdy
deasserted
trdy Time|Sender Receiver
1 |asserts trdy and observes| idle
dbsy that dbsy is inactive .
2 |deasserts trdy as an op-| idle
sg %}ie d timization
deasserted 3 lidle idle

Fig. 4. When Optimized : trdy and
dbsy relation

A Specification Methodology by a Collection of Compact Properties 351

1 2 3

trdy (O sampled
dbSy L] asserted/

deasserted

Fig.5. Missed Trigger Condition : trdy A —dbsy is missed

It is important that trdy and dbsy never become true on the same clock
because of the following possibility (Fig. [Bl). On cycle 1, the Receiver samples
dbsy low so it does the optimization, but because in cycle 2, dbsy is high, trdy
is inadvertently deasserted before the trigger condition becomes true. So the
awaited trigger condition never happens and a data phase cannot start.

In most cases, the protocol is designed so that trdy and dbsy cannot become
true on the same clock, but, in a special case, a loophole in the protocol al-
lows this. Normally, because trdy and dbsy are handshake signals between two
communicating agents, they are not asserted at the same time. However, there
is a case where a third agent can assert dbsy and thereby break this rule. This
special case is when an agent which previously deferred to complete a data phase
(the Deferrer), takes advantage of the apparently idle bus to complete the de-
ferred data phase. Meanwhile, there is a separate ongoing transaction where an
Receiver agent is about to assert trdy to communicate to a Sender agent. The
Deferrer asserts dbsy to start the data transfer at the same time the Receiver
asserts trdy, and, as a result, trdy and dbsy are asserted at the same time. Note
that, in this scenario, the trdy and dbsy assertions are not for the same data
transfer. This overlooked case causes the normal data transfer to wait forever
for the (missed) trigger condition of trdy A —dbsy.

In a similar case a deadlock occurs because a transaction cannot proceed
unless the data phase completes@ But the data phase can not happen because
the trigger condition did not become true.

Since this trigger condition is crucial for data phases, and optimizations often
lead to unexpected scenarios, the existence of the sequence shown in Fig. [l was
one of the first checked properties. Although the model checking properties can-
not be automatically deduced, after the specification process, properties testing
for suspicious sequences can be developed with little difficulty.

3 For the protocol experts: this happens when 1. the responding agent and the re-
questing agent are the same and 2. it is a write with a snoop-initiated data transfer,
where the second trdy, which is for the snoop-initiated transfer, happens exactly
when the data phase (which was allowed to be indefinitely delayed because of 1.) for
the first trdy starts.

4 For the protocol experts: this requirement is because the second data phase is snoop-
initiated, and it must happen together with the response.

352 K. Shimizu, D.L. Dill, and C.-T. Chou

Dropped Data Phase. Under certain circumstances, a write data phase can
be delayed indeﬁnitely The immediate danger of this is that the data phase
never happens, and the system proceeds without any trace of the phantom data
phase. The basic signalling mechanism of a write transaction is,

1. The Receiver indicates a “ready” state by asserting trdy true.

2. The Receiver may deassert trdy false before the Sender starts the data phase.

3. The Sender, acknowledging the “ready” signal, starts the data transfer by
asserting dbsy.

Thus, the normal sequence of events is, “trdy is asserted and then deasserted,
data is transmitted, trdy is asserted and then deasserted, data is transmitted,
... .7 Now, consider the sequence “trdy is asserted and then deasserted, trdy is
asserted again, data is transmitted, ... (Fig.[d]).” The one-to-one correspondence
between a trdy assertion and a data transfer breaks down. The second trdy
assertion should not have happened before the start of the first data transfer.
Consequently, the data phase for the first ¢trdy misses its window to start the
transfer. This happens only in the case where a data phase can be delayed
indefinitely.

/Ready signal happens twice—|

trdy
This coulld be either the first data phase or the second (with the first mi singg\)/,i

dbsy

Fig. 6. Early second trdy assertion

This was found by model checking whether the specification allows a second
trdy assertion before the start of a pending data phase. Coincidently, this prob-
lem was also discovered using simulation by the testing team at Intel, but since
our methodology does not require an implementation, it found the problem in a
shorter time with less effort.

4 Conclusion

The formal specification for the core subset of the Itanium Processor bus pro-
tocol consists of 46 independent constraints which can be replicated eight times
for the pipeline depth of eight. To minimize model checking complications, a
pipeline depth of two was used for debugging the specification. Again, this is not
a limitation of the specification methodology, which scales well. The description

5 For the protocol experts: this happens when the responding agent and the requesting
agent are the same.

A Specification Methodology by a Collection of Compact Properties 353

file for a pipeline depth of two, written in Cadence SMV [McM], is 650 lines
long, excluding the variable declarations. The formal specification was debugged
using the techniques described; the current specification has no dead states and
all characteristics checked for, hold. Model checking was done using Cadence
SMV [McM] and all characteristics checks can be completed within two minutes
on a Pentium Pro system with 128Mb of memory.

Acknowledgement. This research was supported by GSR contract SA2206-
23106PG-2. Many thanks to Mani Azimi and Sridhar Lakshmanamurthy at
Intel®, and Chris Wilson at Stanford University.

References

[ABGT00] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. FoCs -
Automatic Generation of Simulation Checkers from Formal Specification.
In International Conference on Computer-Aided Verification, volume 1855
of Lecture Notes in Computer Science. Springer-Verlag, 2000.

[AS00] F. Aloul and K. Sakallah. Efficient Verification of the PCI Local Bus
using Boolean Satisfiability. In International Workshop on Logic Synthesis
(IWLS), 2000.

[CCLW99] P. Chauhan, E. M. Clarke, Y. Lu, and D. Wang. Verifying IP-Core based
System-On-Chip Designs. In Proceedings of the IEEE ASIC conference,
September 1999.

[CES1] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In Logic of Programs: Workshop, volume
131 of Lecture Notes in Computer Science, May 1981.

[CGYT00] E.Clarke, S. German, Y. Lu, H. Veith, and D. Wang. Executable Protocol
Specification in ESL. In Proceedings of the Third International Conference
of Formal Methods in Computer-Aided Design, November 2000.

[Cor] Intel Corporation. Itanium Processor Bus Protocol Specification. Internal
document.
[GDOO] Shankar G. Govindaraju and David L. Dill. Counterexample-guided choice

of projections in approximate symbolic model checking. In Proceedings of
International Conference on Computer-Aided Design, November 2000. San
Jose, CA.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language lustre. Proceedings of the IEEE,
79(9):1305-1320, September 1991.

[KMP98] M. Kaufmann, A. Martin, and C. Pixley. Design Constraints in Sym-
bolic Model Checking. In International Conference on Computer-Aided
Verification, 1998.

[McM] Kenneth McMillan. http://www-cad.eecs.berkeley.edu/ ~kenmcemil /smv/.

[MHG98] A. Mokkedem, R. Hosabettu, and G. Gopalakrishnan. Formalization and
Proof of a Solution to the PCI 2.1 Bus Transaction Ordering Problem.
In Proceedings of the Second International Conference, Formal Methods
in Computer-Aided Design, volume 1522 of Lecture Notes in Computer
Science. Springer-Verlag, 1998.

354 K. Shimizu, D.L. Dill, and C.-T. Chou

[SDHO00] Kanna Shimizu, David L. Dill, and Alan J. Hu. Monitor-Based Formal
Specification of PCIL. In Proceedings of the Third International Conference
of Formal Methods in Computer-Aided Design, November 2000.

[SIG95]

PCI SIG. PCI Local Bus Specification, Revision 2.2, 12 1995.

	Introduction
	Specification
	Pipelining
	Time-Unbounded Rules
	2-Clocks or 1-Clock Reaction Time

	Debugging
	Found by Dead State Check
	Found by Characteristic Check

	Conclusion

