
T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 275-292, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Efficient Debugging in a Formal Verification
Environment

Fady Copty, Amitai Irron, Osnat Weissberg, Nathan Kropp*, and Gila Kamhi

Logic and Validation Technology, Intel Corporation, Haifa, Israel
Microprocessor Group*, Intel Corporation, USA

gila.kamhi@intel.com

Abstract. In this paper, we emphasize the importance of efficient debugging in
formal verification and present capabilities that we have developed in order to
augment debugging in Intel’s Formal Verification Environment. We have given
the name the “counter-example wizard” to the bundle of capabilities that we
have developed to address the needs of the verification engineer in context of
counter-example diagnosis and rectification. The novel features of the counter-
example wizard are the “multi-value counter-example annotation,” “multiple
root cause detection,” and “constraint-based debugging” mechanisms. Our ex-
perience with the verification of real-life Intel designs shows that these capabili-
ties complement one another and can considerably help the verification engi-
neer diagnose and fix a reported failure. We use real-life verification cases to il-
lustrate how our system solution can significantly reduce the time spent in the
loop of model checking, specification and design modification.

1 Introduction

Verification is increasingly becoming the bottleneck in the design flow of electronic
systems. Simulation of designs is very expensive in terms of time, and exhaustive
simulation is virtually impossible. As a result, designers have turned to formal meth-
ods for verification.

Formal verification guarantees full coverage of the entire state space of the de-
sign under test, thus providing high confidence in its correctness. The more auto-
mated and therefore the more popular formal verification technique is symbolic
model checking [2]. While gaining success as a valuable method for verifying
commercial sequential designs, it is still limited with respect to the size of the veri-
fiable designs.

The capacity problem manifests itself in an additional obstacle—low productiv-
ity. A lot of effort is spent decomposing the proofs into simpler proof obligations
on the modules of the design. A global property to be verified is usually deduced
from local properties verified on the manually created abstraction [10] of the envi-
ronment for each module. The abstractions and assumptions needed to get a verifi-
cation case through increase the chance of getting false failure reports. Further

276 F. Copty et al.

more, in case of valid failure reports, back-tracing to the root cause is especially
difficult.

Given the inherent capacity and productivity limitation of symbolic model check-
ing, we emphasize in this paper the importance of efficient debugging capabilities in
formal verification, and we present capabilities that we have developed in order to
augment debugging in a commercial formal verification setting. Our solution provides
debugging capabilities needed at three major stages of verification.

• Specification Debugging Stage. In the early stages of verification, most of the
bugs found are not real design errors, but rather holes in the specification. In this
stage, which we call specification debugging [4,5], the verifier is in the loop of
model checking and specification modification based on the feedback from the
symbolic model checker. The turn-around time of the model checker becomes then
very critical to the productivity of the verification engineer.

• Model Debugging Stage. In order to find the root cause of a bug reported by a
formal verification system, one needs intimate knowledge of the design behavior.
In order to check whether a bug is spurious or not, one must understand in detail
the effect of pruning and environmental assumptions made to verify the design un-
der test. Additionally, once a fix has been made as a result of a counter-example
report, one must ensure that the previously reported counter-example does not hold
any more in the fixed design.

• Quality Assurance Stage. A significant problem in industrial-size projects is
ensuring that the process of fixing one design error does not introduce another
one. In the context of conventional testing this is checked through regression
testing[7]. If consecutive test suites check several properties, a failure in one
property may require re-testing all the previous suites, once the failure has been
rectified. Efficient regression testing clearly requires techniques useful for de-
bugging.

In the case of a failing verification, the output of a formal verification system is a
counter-example—a trace illustrating that the design under test does not satisfy a
given property. It is especially difficult to diagnose a verification failure reported as a
counter-example. On one hand, the verification engineer suffers from too much data
and the difficulty to distinguish the relevant data (i.e., the signal values that cause the
failure). On the other hand, he has too little information. Rectification of the error
displayed by a single counter-example trace does not guarantee the overall correction
of the failure. A trace is just one of the many witnesses that demonstrate that the
model does not satisfy the given property. In that sense, a counter-example has too
little information. Trace analysis is even more difficult in formal verification, where
obscure corner cases can produce complex failures and consequently complex
counter-examples to debug.

We have given the name ”counter-example wizard” to the bundle of capabilities
that we have developed to address the needs of the verification engineer in context of
counter-example diagnosis and rectification during the above stages of verification.
The novel features of the counter-example wizard are the “multi-value counter-
example annotation,” “multiple root cause detection,” and “constraint-based debug-
ging” mechanisms. Our experience with the verification of real-life Intel designs

Efficient Debugging in a Formal Verification Environment 277

shows that these capabilities complement one another and can considerably help the
verification engineer diagnose and fix a reported failure.

The “multi-value” nature of the counter-example annotation mechanism enables
the concise reporting of all the failures (i.e., counter-examples) as a result of one
model checking run. Hence, the understanding of more than one root cause of a fail-
ing verification facilitates the rectification of the failure. The ability to fix more than
one root cause can reduce the number of model checking runs needed to get to a pass-
ing verification run. Most importantly, multi-value counter-example reports enable
the user to pinpoint the pertinent signal values causing the failure and aid in detecting
how to change the values to correct the failure.

“Constraint-based debugging” allows the verification engineer to restrict the set of
failures (i.e., counter-example traces) to only those that satisfy a specific sequential
constraint. If this subset is empty for a given sequential constraint, this means that the
constraint is sufficient to eliminate all counter examples found so far. However, the
model checker must still be run again to find out if the constraint is sufficient to re-
solve all counter-examples of all lengths.

The system solution that we provide reduces the time spent in the loop of model
checking, specification and design modification. The usage flow consists of running
the model checker, dumping all the model checking data needed to compute all the
counter-examples of a given length, and then debugging in an interactive environment
by loading the pre-dumped model checking data. The fact that we have taken the
model checker out of the “check-analyze-fix” loop reduces the debugging loop to
“analyze-fix” and consequently improves the time spent in debugging considerably.
The effective usage of secondary memory allows the verification engineer to post-
process model checking data and debug without the need to add the model checking
run to the verification loop.

This paper is organized as follows. In Sect. 2, we present an overview of the formal
verification system with enhanced debugging capabilities. Section 3 depicts in detail
the capabilities of the “counter-example wizard" Section 4 explains the algorithms
underlying our system solution. In Sect. 5, we illustrate the efficiency of these tech-
niques through verification case studies on Intel’s real-life designs. We summarize
our conclusions in Sect. 6.

2 System Overview

The formal verification system with the counter-example wizard consists of three
major components:

1. A state-of-the-art symbolic model checker which accepts an LTL-based formal
specification language

2. An interactive formal verification environment which enables access to all the
model checking facilities

3. A graphical user interface which allows the user to display annotated counter-
example traces and access interactive model checking capabilities

The usage flow consists of two major stages:

278 F. Copty et al.

1. Model Checking. The model checker is run with the option to dump the relevant
model checking data and counter-example information to secondary memory.

2. Interactive Debugging. The user loads and interacts with the model checking data
to access different counter-examples and perform “what-if analysis” on the exis-
tence of counter-examples under specific conditions.

The easy storage and loading of relevant model checking data is due to the “data
persistency mechanism” of the model checker. At any point of the model checking
run, the data persistency mechanism can represent all the relevant, computed model
checking information in a well-defined ASCII format which later can be loaded in
an interactive model checking environment and analyzed through the usage of a
functional language.

The fact that the model checker can dump the relevant information for debugging
at any point, enables easy integration of this mechanism into regression testing. When
regression test suites are run with the “counter-example data dump” facility enabled,
the analysis of the failing verification test cases can be done without rerunning the
model checker and regenerating the failing traces, which can be computationally
expensive. The computational benefit of the system is also witnessed in the specifica-
tion , model verification, and modification loop.

3 Counter-Example Wizard

Traditional symbolic model checkers provide a single counter-example as the output
of a failing verification. To diagnose a verification failure reported as a counter-
example is difficult. On one hand, we suffer from too much data and the difficulty
identifying the relevant data. On the other hand, we often do not have sufficient in-
formation to find the root cause of the failure and rectify it. In this section, we present
the “counter-example wizard” that addresses the counter-example analysis and rectifi-
cation problem and has three novel capabilities: multi-value counter-example annota-
tion, multiple root cause detection, and constraint-based debugging.

3.1 Multi-value Counter-Example Annotation

We address the counter-example diagnosis problem by introducing a concise and
intuitive counter-example data representation. We call this advanced representation
“multi-value counter-example annotation.” This novel annotation relies on the ex-
haustive nature of the symbolic model checking and hence the ability to represent
all the counter-examples of a given length1. The enhanced counter-example report-
ing classifies signal values at a specific phase of a counter-example trace into three
types:

1 The model checker generates counter-examples of the shortest path length. The underlying
symbolic model checking algorithms that enable “multi-value counter-example annotation”
will be explained in detail in Section 4.

Efficient Debugging in a Formal Verification Environment 279

• Strong 0/1 indicates that in all possible counter-examples that demonstrate the
failure, the value of the signal at the given phase of the trace is 0 or 1, respectively.

• Weak 0/1 indicates that although the value of the signal at the given phase is 0 or 1
respectively for this counter-example, the value of the signal at this phase can be
different for another counter-example illustrating the failure. Even though the
model checker has some leeway in the choice of a value for this signal, this signal
must preserve some relation with other signals at this phase.

• Weaker 0/1 is similar to “weak” designation, except that weaker values are basi-
cally arbitrary, and have little or no influence on the generation of a failure.

The strong values provide the most insight on the pertinent signals causing a fail-
ure. For example, if the value of a signal at a certain phase of a counter-example is
a strong zero, this means correcting the design so that the value of the signal will be
one at that phase will often correct the failure. Hence, the error rectification
problem is often reduced to determining how to cause a strong-valued signal to take
on a different value.

The counter-example wizard can make use of a waveform display to represent
the multi-value counter-example annotation. Figure 2 illustrates a screen shot of
the multi-value annotated counter-example graphical display. (Later we will show
the use of a text-based display.) The counter-example in the figure demonstrates
the violation of the specification “if X is high, W will be high a cycle later.” The
value of Y is clearly not relevant (i.e., weaker); therefore its waveform is shad-
owed out. Furthermore, the values of X and Z in the second cycle do not affect
the failure, so their waveforms in that cycle are shadowed out as well. Examina-
tion of the waveform reveals that the cause for the failure is the value of the sig-
nal Z, which causes the output of the AND gate to be low.

Our experience shows that strong values alone sometimes provide sufficient infor-
mation to figure out the root cause of a failure and speed up the debugging. Neverthe-
less, we have also witnessed many verification cases where the answer to the root
cause of failure lay in the weak values (as seen in Fig. 3). The debug of traces with
weak values is facilitated by the sequential constraint-based debugging capability
which is the second major feature of the counter-example wizard.

3.2 Constraint-Based Debugging

“Sequential constraint-based counter-examples” are traces displaying the failure
while obeying some temporal constraint. A sequential constraint in the debugging
wizard is described as an associated list of pairs of a Boolean condition and a corre-
sponding phase in which the Boolean condition must hold. In other words, the user
specifies a function over the signals in the design and a point in time when the func-
tion should hold. The counter-example wizard then looks for traces that satisfy the
constraint, and recalculates all weak and strong signal values relative to this subset
of traces.

Constraint-based debugging facilitates the rectification and the diagnosis of the
root cause of a failure. If no counter-example that holds the constraint is found, then
the constraint describes a condition sufficient to make the erroneous design or specifi-

280 F. Copty et al.

cation correct. Consequently, “sequential constraint-based debugging” can help sig-
nificantly in the correction of design or specification errors.

Fig. 2. Graphical counter-example display using multi-value annotation. In the waveform (top),
the strong (i.e., significant) signal values are represented by bold lines, while the weaker values
are represented by gray boxes

For example, let us assume that some input vector foo should be one-hot encoded
(exactly one of the bits in the vector is high and the rest are low), but in the counter-
example presented it is not encoded as one-hot. In the absence of constraint-based de-
bugging, the user would have to add an environmental assumption that foo is one-hot
and rerun the model checker to see if the erroneous encoding is indeed the root cause of
the failure—a task that can take hours. With constraint-based traces the user can write
the environmental assumption as a sequential constraint, and if there are no counter-
examples that satisfy the constraint, then the user knows that assumption is sufficient to
eliminate all current counter-examples. Thus the user is able to check whether an as-
sumption will cure the current failure without rerunning the model checker.

Additionally, constraint-based debugging allows “what-if analysis” and the ability
to investigate the relationships between signals. For example, setting the value of a
signal to a constant value at a specific phase and observing other signal values that
have consequently become strong, helps the user to understand the relationships be-
tween signals over time. Thus, constraint-based debugging refines the information
that weak values provide.

Efficient Debugging in a Formal Verification Environment 281

Figure 3 illustrates how the usage of two different constraints help debug a
failing verification task. The task is to check that the model illustrated in the
lower half of the figure satisfies the specification “if Z is high, W will be high a
cycle later.” On the upper half of the figure, three multi-value annotated counter-
example traces are illustrated. The leftmost trace shows all the counter-examples
of length three violating this specification. Viewing this trace, we observe that
only W, Z and the clock C get strong values in the annotated trace. The signals X
and Y have weak values for the first phase and weaker values for all the rest of
the phases (indicating that the values of these signals in second and third phases
are irrelevant to the failure). In this case, the strong values do not provide enough
information; therefore we analyze the weak values (i.e., the relationship between
X and Y in the first phase). The middle trace and the rightmost trace demonstrate
all the counter-examples of length three, under two constrained values of the sig-
nal X in the first phase (one and zero, respectively). When the value of X is high,
we can ignore the value of Y. Therefore, the value of Y becomes weaker under
this constraint as illustrated in the middle annotated trace. The second constraint,
as illustrated by the rightmost trace, assigns X a low value in the first phase. Un-
der this constraint, the signal Y gets a strong one value. Therefore, our conclusion
from this constraint-based debugging session is that Y must be high in the first
phase to get a violation. Furthermore, to rectify the violation both X and Y need
to get a low value in the first phase.

Fig. 3. An illustration of the usage of constraint based debugging. The significant (i.e., strong)
signal values are highlighted. The weak values are shadowed out, and weaker values are dis-
played as gray boxes

282 F. Copty et al.

3.3 Multiple Root Cause Detection

The user can request a predetermined number of interesting traces that may give clues
to several root causes of a failure. The underlying algorithm chooses traces that are
unique, and do not share the same prefix and usually share the same postfix. The
selection uses a heuristic that selects states to be as different from one another as
possible. The purpose is to maximize the parity between states returned by the selec-
tion procedure. Usually the design under test has some initialization sequence; there-
fore, when generating a set of interesting traces, traces with the same prefix but dif-
ferent postfix are chosen. The intuition is that traces with different postfix will give
hints on more root causes for the violation.

This mechanism works naturally under the constraint-based debugging mechanism. By
request of the user all the interesting traces that comply with a given constraint are pro-
duced.

4 Underlying Algorithms

A finite state machine is an abstract model describing the behavior of a sequential
circuit. A completely specified FSM M is a 5-tuple M = (I,S,δ,λ, So), where I is the
input alphabet, S is the state space, δ is the transition relation contained in S x I x S,
and So ⊆ S is the initial state set. BDDs [2] are used to represent and manipulate func-
tions and state sets, by means of their characteristic functions. In the rest of paper, we
make no distinction between BDDs and a set of states.

4.1 Background

A common verification problem for hardware designs is to determine if every state
reachable from a designated set of initial states lies within a specified set of “good
states” (referred to as the invariant). This problem is variously known as invariant
verification,2 or assertion checking [4,5,6].

According to the direction of the traversal, invariant checking can be based on ei-
ther forward or backward analysis. Given an invariant G and an initial set of states A,
forward analysis starts with the BDD for A, and uses BDD functions to iterate up to a
fixed point, which is the set of states reachable from A, using the Img operator. Simi-
larly, in backward analysis, the PreImg operator is iteratively applied to compute all
states from which it is possible to reach the complement of the invariant. The BDDs
encountered at each iteration are commonly referred as frontiers.

The counter-example generation algorithm [8] is a combination of backward and for-
ward analysis. In Figure 4, we see that counter-example generation starts with the BDD
for all the states that do not satisfy the invariant (i.e., Fo) and the PreImg operator is ap-
plied until a fixed point or a non-empty intersection (i.e, F i+1 ∩ So ≠ ∅) of the last back-
ward frontier with the initial states is reached. A counter-example is then constructed by

2 Although the “debugging wizard” is a valid tool both for invariant and liveness property
verification, for the sake of simplicity, in this section we will explain the underlying algo-
rithms of the debugging wizard in the context of invariant verification.

Efficient Debugging in a Formal Verification Environment 283

applying forward image computation to a state selected from the states in the intersection
(i.e., all the states from which there is a path to the states that complement the invariant).
Again by iteratively intersecting the forward frontiers with the corresponding backward
frontiers and choosing a state from each intersection as a representative for the corre-
sponding phase in the counter-example, the counter-example trace is built.

Target frontiers [4] are the sets of states obtained during backward analysis, start-
ing from the error states (states that violate the invariant) and iteratively applying the
PreImg operator till reaching an intersection with the initial states. More precisely, we
define the nth target frontier, Fn, as the set of states from which one can reach an error
state in n (and no less than n) steps.

U
n

1i

-PreImg
=

+ =

¬=

in1n

0

F)(FF

InvariantF (1)

In what follows, we denote by N the index of the last target frontier before the
fixed-point, such that Target frontierN+1 = Target frontierN . The target frontiers are
disjoint, and their union, which we denote as Target represents all the states from
which a state violating the invariant can be reached:

U
N

1i=

= iFTarget
(2)

As can be seen in the counter-example generation algorithm depicted on the left-
hand side of Figure 4, the frontiers Fo, F1, …, FN represent the target frontiers. In
order to obtain reachable target frontiers, we need to filter out the states unreachable
from FN ∩ S0 in each frontier. The filtering is done by applying forward analysis start-
ing from the states in FN ∩ S0 as seen in the right-hand side of Figure 4. From here on,
we will refer to this version of target frontiers as “reachable target frontiers”.

The underlying data structure for all the algorithms of the counter-example wizard
is the reachable target frontiers. Two major characteristics of reachable target fron-
tiers make them very useful for the computations needed for debugging.

• Any trace through the frontiers is guaranteed to be a counter-example.
All possible counter-examples in this verification of length N (when N is the number
of frontiers) are included in the frontiers.

Therefore, these frontiers store all the information needed for the querying and ex-
traction of counter-examples in a very concise and flexible way. In our system, the
model checker dumps the BDDs representing the reachable target frontiers to secon-
dary memory. Interactive debugging is done by restoring the target frontiers in the
interactive environment and querying them through the functional language.

284 F. Copty et al.

COUNTER-EXAMPLE (δ, So, p)
i = 0;
Target = F0 = {pi | pi does not satisfy p};
// F0 - all the states that do not satisfy p
C = {} // Counter-example initialized, an
empty list
While (Fi ≠ ∅) {

F i+1 = PRE-IMG(δ,Fi);
if (F i+1 ∩ S0 ≠ ∅) {

// the property is violated
F i+1 = F i+1 ∩ S0;

j = i;
while (j >= 0) {

s = SELECT_STATE(F j+1);
Fj = Img(δδδδ, s) ∩∩∩∩ Fj; j= j – 1;
C = PUSH(s,C);

}
return REVERSE(C);
// return a counter-example

} //end the property is violated
i = i + 1;
Fi = F i - Target;
Target= Target U Fi ;

} // the property is satisfied
return C; // return an empty list

TARGET-FRONTIERS(δ, So, p)
i = 0;
Target = F0 = {pi | pi does not satisfy p};
// F0 - all the states that do not satisfy p
C = {} // Target frontiers initialized, an
empty list
while (Fi ≠ ∅) {

F i+1 = PRE-IMG(δ,Fi);
if (F i+1 ∩ S0 ≠ ∅) {
// the property is violated
F i+1 = F i+1 ∩ S0;

j = i ;
while (j >= 0) {

Fj = Img(δδδδ, F j+1) ∩∩∩∩ Fj; j= j – 1;
C = PUSH(Fj,C);

}
return REVERSE(C);
// return Target Frontiers

} //end the property is violated
i = i +1;
Fi = Fi – Target;
Target = Target U Fi ;

} // the property is satisfied
return C; // return an empty list

Fig. 5. Classic counter-example generation and target frontiers calculation algorithms

4.2 Annotating the Counter-Example Values

Annotating the counter-example values becomes rather simple, once we have the
“reachable target frontiers” at hand. The value of signal x at phase i is

• Strong, if Fi | x=0 = 0 or Fi | x = 1 = 1
• Weak, if Fi | x=0 ≠ Fi | x=1

• Weaker, if Fi | x=0 = Fi | x=1 (i.e., x is not in the support of Fi)

when Fi is the reachable target frontier corresponding to phase i. The value of the
signal is chosen according to the specific trace at hand.

4.3 Constraint-Based Debugging

As described above, a sequential constraint in the counter-example wizard is de-
scribed as an associated list of pairs of a Boolean condition and a corresponding
phase in which the Boolean condition must hold. In other words, the user speci-

Efficient Debugging in a Formal Verification Environment 285

fies a function over the signals in the design and a point in time when the function
should hold. The counter-example wizard looks for a trace that leads to a failure
and satisfies the constraint, and recalculates all the weak and strong signal values
relative to this subset of traces.

Constraints are internally represented as BDDs, and each phase constraint after-
wards is intersected with the corresponding reachable target frontier. When a condi-
tion is applied to the target frontiers, not every possible trace through the target fron-
tiers is a counter-example any more. States in a frontier that do not comply with the
constraint are thrown out leaving some of the traces through the frontiers dangling
(i.e., they are not of length N, when N is the number of target frontiers). We remedy
the target frontiers by performing an N-step forward propagation followed by an N-
step backward propagation through all the frontiers.

The task of calculating a new trace under the constraint now becomes simply find-
ing any trace through the newly calculated target frontiers. The multi-value annotation
is applied to the new set of target frontiers.

4.4 Computation Penalty

In this section, we present data that compares the CPU time that took our system to
compute all the data needed for multi-value annotation and single-value annotation.
As seen in the numbers reported in Table 1. based on typical Intel verification cases,
multiple-value annotation computation is more costly than single-value annotation
computation. Table 1. supports the fact that for average size test cases the multi-value
annotation can take 2-3 X more time than single-value annotation. On average the
number of single-value counter-example sessions needed to root-cause a failure is
more than three. Thus, the computation penalty paid in multi-value annotation is less
than the single-value annotation. Additionally each session with a single-value
counter-example requires analysis time of the verification engineer. Therefore, our
conclusion based on computation data and the utility’s deployment in Intel is that
although multi-value annotation computation takes more time than single-value anno-
tation, it reduces the overall verification time significantly.

Table 1. Experimental results comparing the model checking time required to compute
counter-examples with multi-value annotation and single value annotation making use of eight
typical Intel verification test cases

Test case Multi-value annotation Single-value annotation
Real 1 31.0 s 21.0 s
Real 2 4.3 s 1.8 s
Real 3 10.7 s 5.2 s
Real 4 292.7 s 89.9 s
Real 5 129.7 s 44.6 s
Real 6 173.0 s 64.2 s
Real 7 8091.8 s 7250.2 s
Real 8 2118.4 s 1421.1 s

286 F. Copty et al.

5 Experimental Results from the Deployment of the “Counter-
Example Wizard”

The counter-example wizard has been used to help debug numerous real-life Intel
verification cases. The tool has been found to be beneficial during proof devel-
opment in reducing the time spent analyzing counter-examples and reducing the
number of “check-analyze-fix” iterations, consequently speeding up convergence
to a proof. The main advantages of the wizard have been observed to be in deter-
mining the root cause of a set of counter-examples and identifying a resolution to
the failure.

In this section, we illustrate the benefits of the counter-example wizard through
real-life examples. Our productivity claim of the counter-example wizard relies on
our experience in its deployment at Intel.

5.1 Determining a Root Cause

5.1.1 Strong versus Weak Values
From our experience, the most important benefit of counter-example wizard has been
the ability to home in quickly on the root cause of a counter-example by pinpointing
pertinent signal values. The distinction between weak and strong values often indi-
cates which signal values are responsible for a failure and which signal values do not
affect the failure (i.e., not related to the root cause). For example, if a signal has weak
values in all but one phase, this is a good indication that the one strong phase is the
only important phase for this signal. Similarly, if only one of the inputs to a logic gate
has a strong value, this is often an indication that the other input signal values can be
ignored as being unrelated to the root cause of the failure.

Multi-value counter-example annotation, by reducing the number of relevant
signals and phases, reduces the amount of data to be comprehended in the
counter-example report. Instead of being distracted by insignificant information,
the verification engineer can concentrate on pertinent signals, phases, and values
and ignore all the rest. Consequently, it is easier to comprehend the essential be-
havior of the model, and identify values related to the root cause of a counter-
example. In practical use, this characteristic of the counter-example wizard has
been its most direct and immediate advantage.

To illustrate how multi-value annotation helps pinpoint the root cause of a fail-
ure, we present an example from our experience of the verification of a property
involving ten pipe stages of control signals. In one failure report, we observed that
almost all the signals in the model had weak values. One signal stood out, however,
with a single strong value assignment in a particular phase. This gave us immediate
indication that the failure was related to the value of this signal and phase. By trac-
ing the staging of the signal through its several pipe stages, we shortly discovered
that at one point the signal was not getting flopped into the next stage (see Fig. 5).
Note that the value of the pipelined signal Reg_Rd changes from a strong 1 to a
strong 0 at cycle 4. A simple examination of the flip-flop revealed that its clock was
not toggling during the phase in which Reg_Rd_s05 took on a strong zero value,
illustrating the root cause of the failure. This is a simple case that we could have

Efficient Debugging in a Formal Verification Environment 287

debugged even with traditional single-value counter-example reporting. Neverthe-
less, multi-value signal annotation allowed us to debug much more quickly and
without unnecessary trial and error. This is exemplary of the more complex counter-
examples with which the wizard has proved helpful.

5.1.2 Sequential Constraints
The “sequential constraint” capability has furthermore helped in root cause determi-
nation in our verification problems. There are several cases of when constraints can
be useful. First, signals relevant to a counter-example could be related but not con-
stant. For example, if two signals are equivalent in the design under test, but their
equality is not guaranteed in the verification, and the verification failure is due to this
lack of an equivalence guarantee, then the counter-example report would show both
signals having weak values. To see if there is a relationship between the signals, the
value of one of the signals would need to be constrained. In this example, if the value
of one of the signals is constrained to 0, then the other signal will take on a strong 1
value. When this happens, we know there must be some relationship between these
signals with respect to this set of counter-examples (namely, that they should be
equivalent but are not in the verified model). The advantage that the wizard has pro-
vided us in cases like this is the ability to identify relationships between signals in the
counter-examples and thus help direct us to the root cause.

@ @1 @@ @@ @@ @@ @@ @@ @@ @@ RegRd_s02
! !! 11 @@ @@ @@ @@ @@ @@ @@ RegRd_s03
@ @@ @@ 11 @@ @@ @@ @@ @@ @@ RegRd_s04
@ @@ @@ @@ @0 @@ @@ @@ @@ @@ RegRd_s05
@ @@ @@ @@ @@ 00 @@ @@ @@ @@ RegRd_s06

0 1 2 3 4 5 6 7 8 9

Fig. 6. In this text-based multi-value annotated counter-example trace, the columns represent
phases, and the rows represent the values of each of the signals at each phase. The ‘@’ and ‘!’
symbols represent weak 0 and weak 1 values, respectively, whereas ‘0’ and ‘1’ represent the
strong values

Another case for which constraints are useful is when the set of counter-examples
is due to multiple root causes. Constraints can be used to partition the set of counter-
examples to identify the different root causes. This partitioning is not explicit but hap-
pens naturally during analysis while experimenting with constraints and searching for a
root cause. Once one root cause is identified, analysis is then switched to the cases not
covered by that root cause. This is repeated until the set of counter-examples has been
fully covered. The set is thus partitioned according to the various root causes.

Multiple root causes usually cannot be identified when working with a single
counter-example at a time. A given counter-example may be due to only one of the
root causes; therefore only one root cause could be found from that counter-example.
Even when a single counter-example is due to multiple root causes, it is unlikely that

288 F. Copty et al.

all would be identified: When one apparent root cause is found, the verification engi-
neer typically assumes that this is the sole cause. Therefore when multiple root causes
exist, the counter-example wizard provides an additional advantage over traditional
single-counter-example debugging.

5.2 Identifying a Solution

The counter-example wizard has also been helpful in identifying solutions to a set of
counter-examples. In general, once the root cause of a failure is found, the root cause
is usually eliminated either by expanding the model to include necessary guaranteeing
logic, or by making an environmental assumption about the behavior of signals. The
model is then re-verified after the necessary changes have been made. The expecta-
tion is that the changes will eliminate any counter-examples, yielding a successfully
completed proof.

Analyzing counter-examples one at a time is often a process of trial and error. In a
typical verification workflow, a verification run generates a single counter-example,
the verification engineer tries to determine the root cause of the failure, a solution is
implemented, the model is rebuilt, and the verification is run again. Unfortunately, the
root cause may or may not have been correctly identified. Often it results in another
counter-example report. When working with only a single counter-example at a time,
there is no way to avoid this trial and error process.

The counter-example wizard can eliminate some of this trial and error. Potential
solutions can be tested to see if they really do resolve the current set of counter-
examples. As noted above, a solution usually takes the form of either an expansion of
the model to include necessary guaranteeing logic, or an environmental assumption.
Therefore, a solution is essentially a restriction on signal behavior that disallows the
behavior observed in the counter-example. To check whether the proposed solution
will work, this restriction is given as a sequential constraint to the counter-example
wizard. If the wizard determines that there are no counter-examples that satisfy this
constraint, then the proposed solution successfully resolves all counter-examples of
the given trace length for this verification.

If the wizard does find counter-examples that satisfy the constraint, then the pro-
posed solution does not completely resolve the current set of counter-examples. In
this case a different solution can be tried, or the remaining counter-examples can be
analyzed to determine why the proposed solution did not resolve them. Possible solu-
tions to verification failures can thus be tested without implementing the solution and
rerunning the verification. This can significantly reduce the time spent in the trial and
error loop. The wizard gives feedback within seconds, instead of the minutes or some-
times hours it takes to rerun the verification.

In the example in Section 5.1 concerning the flip-flop whose clock failed to
toggle, we could quickly test our guess that this was the root cause by specifying
to the wizard the constraint that the clock should be high in the phase in which it
failed to toggle. We then searched for counter-examples under this constraint, and
when none were found, we knew that getting the clock to toggle during the phase

Efficient Debugging in a Formal Verification Environment 289

in question would be sufficient to resolve all counter-examples of this trace
length.

5.3 Evaluating Counter-Example Wizard Capabilities through an Example

In this section, we present the benefits of counter-example wizard by comparing
multi-value annotation versus single-value through an example from a real-life formal
property verification case.

Let us first briefly explain the inputs of the verification case: the model, the prop-
erty to be verified, and the design assumptions.

• Property: If a request is killed, then the register that contains the request gets
cleared. More specifically, if this “Active Register” holds a request that receives a
kill, then it will be clear for the next two cycles.

• Model Behavior:
− Eventually a request is received and is retained in the Holding Register.
− When the Active Register becomes free, the request moves from the Holding Reg-

ister into the Active Register.
− When the request is finished being serviced, it is cleared out of the Active Register.
• Micro-architectural Assumption :
The same request cannot be made twice.

0 00 00 00 00 00 00 00 00 00 01 00 01 00 00 Valid request
0 00 00 00 00 00 00 00 00 00 00 00 01 00 00 Kill request

0 00 00 00 00 00 00 00 00 00 00 11 00 11 00 Holding reg. Valid
0 00 00 00 00 00 00 00 00 00 00 00 11 00 11 Active reg. Valid

0 00 00 00 00 00 00 00 00 00 11 00 11 00 00 Holding reg. Write enable
0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 Holding reg.

written/reset
0 00 00 00 00 00 00 00 00 00 00 11 00 11 00 Holding -> Active

0 00 00 00 00 00 00 00 00 00 00 00 00 01 00 Holding - special bit
0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Active - special bit

--
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 6. Traditional single counter-example trace. The columns represent phases, and the rows
represent the values of each of the signals at each phase

290 F. Copty et al.

@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @! @@ @1 @@ @@ Valid request
@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @1 @@ @@ Kill request

@ 00 00 00 00 00 00 00 00 @@ @@ !! @@ 11 @@ Holding reg. Valid
@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ 11 00 11 Active reg. Valid

@ @@ @@ @@ @@ @@ @@ @@ @@ @@ !! @@ !1 @@ @@ Holding reg. Write enable
@ 11 11 11 11 11 11 11 11 11 !! !! !! 11 11 Holding reg.

written/reset
@ 00 00 00 00 00 00 00 00 @@ @@ !! 00 !1 00 Holding -> Active

@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @1 @@ Holding - special bit
@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @@ @0 Active - special bit

--
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 7. Multi-value counter-example trace. The columns represent phases, and the rows repre-
sent the values of each of the signals at each phase. The ‘@’ and ‘!’ symbols represent weak 0
and weak 1 values, respectively, whereas ‘0’ and ‘1’ represent the strong values

In the above traces two requests (Valid request) arrive one cycle apart. For the first
request, the Write Enable for the Holding Register goes high in cycle 10, causing the
Holding Register to be valid in the next cycle (cycle 11). Also in cycle 11, the Hold-
ing→Active signal goes high, causing the request to move from the Holding Register
into the Active Register. Consequently, the Active Register is valid in cycle 12. Fur-
thermore, the trace shows a Kill request arriving in cycle 12. (This should kill the
request by clearing the Active Register, which it does: the Active Register is not valid
in cycle 13.)

However, the property states that the Active Register should remain clear for two
cycles, yet we see that it becomes valid again in the next cycle (cycle 14). This occurs
due to the second request, which moves into the Active Register by the same process
as the first request. Thus the Active Register becomes valid again after only one cy-
cle, rather than the two cycles specified by the property. Hence the violation of the
property and the failure of the proof.

Let us now illustrate how multi-value annotation helps the verification engineer to
find the root cause of the failure.

• Multi-value annotation helps narrow the scope of the search for the root cause.
− More strong values are associated with the second request than with the first.

Therefore, the focus should be on the second request.
• Multi-value annotation helps identify which logic has to be guaranteed to resolve

all counter-examples of the given length.
− Despite the assumption that the same request cannot be made more than once, the

first and second requests arrive two cycles apart from one another. A closer exami-
nation (not seen in the above trace) of the second request shows that it is indeed
identical to the first request but with one exception: its “Special” bit. Multi-value
annotation is helpful in identifying this conclusion. With single counter-example
debugging, there is no indication that the Special bit is the only exception; it sim-

Efficient Debugging in a Formal Verification Environment 291

ply receives a zero or one, just like every other bit that comprises the request.
However, with multi-value annotation the Special bit takes on strong values, so it
is certain that here the Special bit is the only important component of the request.

− Now that the second request, in particular its Special bit, has been identified as
important, the Special bit can be followed from the request through the registers, as
shown in the above trace. The Special bit is not getting passed from the Holding
Register to the Active Register in cycles 13-14, even though the request is getting
passed. Since the Special bit takes on strong values, we know that if the passing of
the Special bit from the Holding to the Active Register can be guaranteed, then we
will have resolved all counter-examples of this length.

This debugging session helped the verification engineer pinpoint the missing logic
that guarantees the transfer of the Special bit. Once that logic was included in the
model, the proof succeeded.

The verification case just described is derived from an actual debugging session
from our verification work. We have indeed encountered much more complex
counter-examples than the one just demonstrated. They include some with multiple
root causes that could be identified all at once using multiple counter-example capa-
bilities, but which single counter-example debugging could identify only one at a
time. Such examples are quite complex and are beyond the scope of this paper.

6 Conclusions

In this paper we have introduced a novel formal verification debugging aid, the
“counter-example wizard.” The novelty of the wizard is in its multi-value counter-
example annotation, sequential constraint-based debugging, and multiple root cause
detection mechanisms. The benefits of counter-example wizard have been observed in
an industrial formal verification setting in verifying real-life Intel designs.

The demonstrated advantages of the formal verification system augmented with the
counter-example wizard are a shorter debugging loop and unique help in diagnosing
and resolving failures. The time saved was due to faster determination of the root
cause of a set of counter-examples, and the ability to identify and resolve multiple
root causes in a single proof iteration. Furthermore, the wizard allows the verification
engineer to test solutions to verification failures and observe if they really do resolve
the apparent root cause.

References

[1] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulations”,, IEEE Trans-
actions on Computers,C-35:677-691, August 1986.

[2] K.L. McMillan. “Symbolic Model Checking”, Kluwer Academics, 1993.
[3] K. Ravi, F. Somenzi, “Efficient Fixpoint Computation for Invariant Checking”, In Pro-

ceedings of ICCD’99, pp. 467-474.

292 F. Copty et al.

[4] R. Fraer, G. Kamhi, L. Fix, M. Vardi. “Evaluating Semi-Exhaustive Verification Tech-
niques for Bug-Hunting” in Proceedings of SMC’99.

[5] R. Fraer, G. Kamhi, B.Ziv, M. Vardi, L. Fix. “Prioritized Traversal: Efficient Reachability
Computation for Verification and Falsification”, in Proceedings of CAV’00,Chicago,IL.

[6] I. Beer, S. Ben-Davis, A. Landver. “On-the-Fly Model Checking” of RCTL Formulas”, in
Proceedings of CAV’98.

[7] R.H. Hardin, R. P. Kurshan, K.L. McMillan, J.A. Reeds and N.J.A. Sloane, “Efficient
Regression Verification”, Int'l Workshop on Discrete Event Systems (WODES '96)

[8] E. Clarke, O. Grumberg, K. McMillan, X. Zhao, ``Efficient generation of counterexam-
ples and witnesses in symbolic model checking'', in the proceeding of DAC'95.

[9] B. Kurshan, “Formal Verification in a Commercial Setting”, In Proceedings of DAC’97.
[10] J. Jang, S.Quader, M. Kaufmann, C. Pixley, “Formal Verification of FIRE: A Case

Study”, in Proceedings of Design Automation Conference, 1997, Anaheim, CA
[11] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F.Somenzi, A.Aziz, S.T.Cheng,

S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S.Qadeer, R.K. Ranjan, S. Sarwary, T.R.
Shiple, G. Swamy, T. Villa, “VIS: A system for Verification and Synthesis”, in Proc. of
DAC’94.

[12] I. Beer, S. Ben-David, C. Eisner, A. Landver. “RuleBase: An industry-oriented formal
verification tool”. In Proc. of Design Automation Conference 1996 (DAC’96)

	1 Introduction
	2 System Overview
	3 Counter-Example Wizard
	3.1 Multi-value Counter-Example Annotation
	3.2 Constraint-Based Debugging
	3.3 Multiple Root Cause Detection

	4 Underlying Algorithms
	4.1 Background
	4.2 Annotating the Counter-Example Values
	4.3 Constraint-Based Debugging
	4.4 Computation Penalty

	5 Experimental Results from the Deployment of the “Counter-Example Wizard”
	5.1 Determining a Root Cause
	5.1.1 Strong versus Weak Values
	5.1.2 Sequential Constraints

	5.2 Identifying a Solution
	5.3 Evaluating Counter-Example Wizard Capabilities through an Example

