
Parameterized Verification of the FLASH Cache
Coherence Protocol by Compositional Model

Checking

K.L. McMillan

Cadence Berkeley Labs

Abstract. We consider the formal verification of the cache coherence
protocol of the Stanford FLASH multiprocessor for N processors. The
proof uses the SMV proof assistant, a proof system based on symbolic
model checking. The proof process is described step by step. The protocol
model is derived from an earlier proof of the FLASH protocol, using the
PVS system, allowing a direct comparison between the two methods.

1 Introduction

The verification of cache coherence protocols was perhaps the earliest commer-
cial application of model checking [MS91]. Later, more efficient model checking
methods were developed for this application [CD93], and compositional meth-
ods were applied to show that a verified protocol was implemented correctly in
hardware [Eir98]. However, these techniques were unsound, in the sense that
they could be applied only to fixed number N of nodes in the network, whereas
in fact N had no useful upper bound. This left open the possibility that a pro-
tocol error was missed, which only manifested itself for N greater than the size
verifiable by model checking.

Verification for arbitrary N can be accomplished in a number of ways. For
example, Park [PD96] applied the general purpose theorem prover PVS [ORS92]
to the verify the cache protocol of the Stanford FLASH multiprocessor [KOH+94]
for arbitrary N . This is a laborious process, since inductive invariants must be
devised, and the theorem prover must be manually guided. It was also shown
that in some cases, a protocol could be verified automatically for arbitrary N ,
using finite state methods with a “symbolic state” abstraction [PD93,ID96]. This
abstraction cannot be applied to all protocols, however, and is too coarse to prove
liveness. In fact, the first error detected in a cache protocol by model checking
was a liveness error.

Thus, there is some interest in finding methods of proof for arbitrary N
that are at the same time general, capable of proving liveness, and not unduly
time consuming. Here, we consider applying methods of compositional model
checking to the problem. This approach has the advantage that parameterized
systems can be proved correct without the need to state inductive invariants,
since invariant information is obtained by model checking abstract systems. We
use the SMV proof assistant [McM99] to verify both safety and liveness of the

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 179–195, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



180 K.L. McMillan

FLASH protocol. This protocol has the advantage that it has been approached
previously using a variety of methods, and thus offers a good basis for compari-
son. In particular, we verify the same model used in Park’s PVS proof (with one
minor change). Relative to that proof, the proof we obtain is at least an order
of magnitude more concise. We will begin in Sect. 2 with some background on
the SMV proof assistant and compositional model checking. Then in Sect. 3, the
protocol model is described. The next section covers the proof of correctness.
Then in Sect. 5, a comparison is made with previous approaches.

2 Background

The SMV proof assistant [McM99] is designed to support the reduction of cor-
rectness conditions for unbounded or infinite-state systems to lemmas that can
be verified by model checking checking finite state systems. The reduction to
finite-state is done by methods of abstract interpretation. In effect, we throw
away information about the model that is not needed to prove a given property.
To make this effective, however, we must first break the desired property into
localized properties that rely on only part of the system state. SMV provides two
alternatives for this purpose: compositional proof and temporal case splitting.
Compositional Proof. The correctness of an implementation model is specified
by a collection of temporal logic properties, usually with respect to a reference
model. In our case, the reference model defines the programmer’s model of the
memory. Temporal specifications relative to a reference model are called refine-
ment relations. In the SMV system, these can be specified in one of two ways.
We might, for example, write a linear time temporal logic property, such as the
following:

p : assert G (cnd ⇒ impl data = ref data);

This says that, at all times, if condition cnd holds, then impl data (some data
value in the implementation) must be equal to ref data (some corresponding
value in the reference model). Typically, ref data will refer to some data com-
puted by the reference model in the past. That is, there is no need for the
implementation and the reference model to operate in “lockstep”. On the other
hand, we might express the same property as a “layer”:

layer p: if(cnd) impl data := ref data;

This has the same semantics as the property above, but it tells SMV that we wish
to use p as an abstraction of variable impl data when proving other properties.

The refinement relations are proved by mutual course-of-values induction
over time [McM99]. Each refinement relation must be a temporal property of
the form Gφ, meaning that φ is true for all times t. To prove that φ is true at
time t, we can assume by induction that the other refinement relations hold for
all times less than t. This is useful in a methodology based on model checking,
because the notion that ψ up to time t− 1 implies φ at time t can be expressed
in temporal logic as ¬(ψ U ¬φ). Hence, this proposition can be checked by a



Parameterized Verification of the FLASH Cache Coherence Protocol 181

model checker. To tell SMV to use property p up to t− 1 to prove property q at
time t, we use the following notation:

using (p) prove q;

The parentheses indicate that p is to be used up to time t − 1 and not t. If p
is expressed as a layer, we don’t need to use this directive. SMV will determine
whether impl data is relevant to property q, using a dependency analysis. If so
it will use property p in place of the implementation definition of impl data. In
this way, the proof of q can be localized to a small part of the implementation.

This mutually inductive approach is important because it allows us to as-
sume, for example, when proving correctness of data in one cache, that the data
in other caches have been correct in the past. Note this technique is quite dif-
ferent from the method of proof by invariant, in which we show that some state
property at time t−1 implies itself at t. In our case, the properties are temporal,
and the inductive hypotheses are assumed for all times less than t, and not just
at t−1. This is important, since it allows us to avoid writing inductive invariants.
Temporal Case Splitting. An alternative approach to localization is to spe-
cialize the properties we wish to prove, so that they depend on only a finite part
of the overall state. For example, suppose that we have a state variable v, which
is read and written by a collection of processes 1 . . . n. We wish to prove a prop-
erty p of v, of the form Gφ. We add an auxiliary state variable w to the model
which records a pointer to the most recent process to write the variable v (this
is supported by a definitional mechanism in the proof assistant). Now, suppose
we can prove for all process indices i that G((w = i) ⇒ φ), that is, φ holds
at all those times when the most recent writer is process i. We can then infer
that Gφ holds, since at all times w must have some value. We call this “splitting
cases” on the given variable, since it generates a parameterized property with
one instance for each value of the given variable. We can tell SMV to do this as
follows:

forall(i in PROCS)
subcase p[i] of p for w=i;

where PROCS is the type of process indices. This generates, for every i, an
instance p[i] of p, of the form G((w = i) ⇒ φ). The importance of this approach
is that for any given parameter value i, we may be able to verify the property by
abstracting away all processes except process i, since the particular case w = i
depends directly only on process pi.
Abstract Interpretation. SMV uses abstract interpretation to reduce the ver-
ification of each parameterized property to a tractable model checking problem.
The difficulty is that there may be variables in the model with large or un-
bounded ranges (such as memory addresses) and arrays with a large or un-
bounded number of elements (such as memory arrays), and the number of in-
stances of the property may be unbounded. We deal with this problem by using
abstract interpretation to reduce each data type to a small number of abstract
values. For example, suppose that we have a property with a parameter i that



182 K.L. McMillan

ranges over memory addresses. We can reduce the type T of memory addresses
to a set containing two values: the parameter value i, and an abstract sym-
bol T \ i that represents all values other than i. In the abstract interpretation,
accessing a memory array m at location i will produce the value m[i] of that
location, whereas accessing the array at T \ i produces ⊥, a symbol representing
no information about the value. The net effect of this abstraction is that, for
each time we create a parameter by “splitting cases” on a variable of type T ,
there is one value in the abstract type and one element in each abstracted array
indexed by that type. Thus, case splits come at the cost of increased verification
complexity.

Normally, a suitable abstract interpretation for each data type can be chosen
automatically. However, it can also be specified manually, as in the following:

using T ⇒ {i,j} prove q;

This tells SMV to distinguish the values i and j of type T, but to represent all
other values by an abstract symbol. If there are two parameters i and j of type
T , then the proof assistant may, for example, split the problem into two cases:
one where i = j and one where i 	= j. Alternatively, it may consider separately
the cases i < j, i = j and i > j, if information about the order of these values is
important to the property. This behavior depends on the declaration of the data
type: a scalarset type considers only equality, while an ordset type considers the
relative order of parameter values as well.

The abstractions used by the proof assistant are sound, in the sense that
validity of a formula in the abstract interpretation implies validity in the concrete
model for all valuations of the parameters. Thus, we need not check all parameter
valuations separately. Of course, it is possible that the abstraction used may be
too coarse to verify the given property (i.e., the truth value of the property in
the abstract model may be ⊥) even though the property is true. Note, however
that the user does not need to verify the correctness of the abstractions used,
since these are drawn from a fixed set that is built into the proof assistant.

The proof process thus proceeds in the following steps. First, the user spec-
ifies refinement relations (and other lemmas, as necessary), which are proved
by mutual temporal induction. These properties are parameterized by “splitting
cases” on appropriate variables, so that any particular case depends on only a
finite part of the system state. Finally, the proof assistant abstracts the model
relative to the parameter values, reducing the types with large or unbounded
ranges to small finite sets. The resulting proof obligations are discharged by a
model checker. In the sequel we will consider how this general methodology can
be applied to Park’s model of the FLASH cache coherence protocol.

3 The Protocol Model

A FLASH system consists of a collection of N processors, each with a local
cache memory. We will refer to a processor/cache pair as a node. The nodes act
asynchronously, exchanging messages via a network with arbitrary latency. The



Parameterized Verification of the FLASH Cache Coherence Protocol 183

protocol ensures that multiple cached copies of a given address are consistent, in
an appropriate sense. Each memory address has a home node. The home node
contains the master copy of the address in main memory, and also a directory
entry, indicating the set of caches that may hold the given address, and whether
the cached data may be modified (dirty). In the actual system, this set is main-
tained in a list structure. In Park’s model, there is a variable containing the
head of the list, and a set representing the remainder of the list. The model has
only one memory address. Generalization to an arbitrary number of memory
addresses is trivial, however.

A cache may contain the given address in one of three states: invalid (not
present), shared (readable) and exclusive (readable and writable). As the name
implies, there can be only one cache in the exclusive state at any time.

The protocol works roughly as follows. A node requiring read access to a
given address sends a Get message to the home node. If there are no exclusive
copies in the system (the directory entry is not marked dirty), then the home
fetches the value from main memory, and returns it in a Put message. The index
of the requesting node is added to the sharing list in the directory, and the
requesting cache enters the shared state. On the other hand, if the address is
dirty, there must be an exclusive copy at some node (the owner) and the data
in main memory are obsolete. The home thus forwards the Get request to the
owner. The owner is then expected to send the data to the original requester and
change to the shared state. Modified data are also returned to the home node
via a sharing write-back (ShWB) message. This leaves the address clean, with
two nodes on the sharing list. While this transaction is in progress, the directory
remains in the pending state, and will not accept new requests.

When a node requires write access, it sends a GetX message to the home, to
obtain an exclusive copy. If the address is not dirty, the home sends invalidation
messages (Inv) to each node on the sharing list. It immediately returns the data
in a PutX message without waiting for the invalidations to complete (that is, we
model the “eager” mode [KOH+94]). The directory then remains in the pending
state until acknowledgments (InvAck) are obtained for all the invalidations sent.
On the other hand, if the address is dirty, the GetX is forwarded to the owner,
which is expected to send a PutX to the requester, enter the invalid state, and
send an acknowledgment message FAck to the home. Again, the directory stays
in the pending state until the FAck is received.

The owner may eject the address from its cache at any time, by sending
modified data to the home in a write-back message (WB). This introduces a
race condition, since a forwarded Get or GetX may be on its way to the owner.
If this happens, the former owner will return a negative acknowledgment to the
home, aborting the transaction.

Park’s model encodes the network state in an unusual way. That is, instead of
a uniform collection of message buffers, it has specialized sets of message buffers
for each class of messages. For example, unet holds the Put and Get messages
(with one entry per requester), while invnet holds the Inv and InvAck messages
(one per node) and wbnet holds the write-back messages (one global entry). In



184 K.L. McMillan

particular, unet[i] holds Get messages for requester i, even if the destination of
the message is some other node, due to forwarding. This encoding is in some
ways convenient for model checking, although we will observe one case in which
it is inconvenient.

This model was translated rather directly from PVS into the SMV notation.
One notable difference is that the original uses a counter real to hold the number
of pending invalidations. Since SMV has no reasonable way to deal with the
cardinality of sets, this is replaced by the set of processor indices that have
pending invalidations. As stated earlier, we would like to prove both coherence
and liveness of this model.

4 Proof of Coherence

We begin with the specification. Ideally, a cache coherence protocol would satisfy
the condition of sequential consistency [Lam79]. That is, there should always ex-
ists a global sequence of reads and writes that agrees with the local observations
of each processor, and in which every read gets the value of the most recent write
to the given address. Our version of the FLASH protocol does not satisfy this
condition. However, it does satisfy the weaker condition that reads and writes
to a given cache line are sequentially consistent. We will refer to this condition
as coherence.

In fact, we will prove a considerably stronger condition than coherence. That
is, a read at a given node gets the value of the most recent write at the last time
the address was observable to that node. We require that all values written by a
given node be observable to that node. However, other than this, the definition
of observable is up to the implementer. It is easy to show that any protocol
implementing this model is coherent. We do not do that here, however, since this
is a generic theorem, not related to the FLASH protocol per se. The intuition
behind this definition is that if a node is holding a shared copy that is pending
invalidation, then the address is not observable. Instead, the node sees the value
of the address before the invalidating transaction began.

To express our specification, we add an auxiliary state variable m to the
model, which holds the most recent value written to the address:

if(store) next(m) := store data;

Here, store is an implementation variable indicating that a store is occurring,
and store data is the data value being stored. This definition says that when
store is true, m is modified to hold the value of store data. SMV allows such
definitions of new variables to be added, so long as the implementation does not
depend on them. We now specify correctness of data in the caches relative to this
variable. It is most convenient to write the specification as a layer in the SMV
system, which will cause it to be used by default in the proof of any property
involving the cache data. We could, however, write the property as an ordinary
temporal assertion. Here is the specification as a layer:

layer L1: forall(i in Proc)



Parameterized Verification of the FLASH Cache Coherence Protocol 185

if(readable[i]) cache[i].data := m whenlast (obs[i] ∨ last writer = i);

That is, the cache sees the value of m at the last time it was observable. Note
that “x whenlast c” is a shorthand for the value of x at the most recent time
that c was true (and is undefined if c has never been true). The “forall” prefix
creates one instance of the property for each node. The property requires that
the address must be observable if the most recent writer was i (as indicated by
the auxiliary variable last writer). Otherwise, observability is determined by the
predicate obs[i]. Note that obs is not defined in the specification. We need only
show that the specification holds for some definition of obs. To prove L1, we use
the following witness function for obs:

obs[i] := ¬(dir.pending ∧ collecting) ∨ cache[i].state = exclusive;

That is, shared copies are “out of date” when there is a transaction pending in
the directory that is collecting invalidation acknowledgments. Here, collecting is
an auxiliary variable that records whether the current pending transaction sent
invalidations. It is needed because the directory does not directly record this
fact. Figure 1 shows the structure of the SMV input file at this point.1

The first thing we do is to use the model checker to check that the property
is true for N = 3. To do this, we use the following declaration of the type Proc:

typedef Proc 0..2;

This check is done to give us confidence that the property is actually true before
attempting to prove it for the general case. In fact, several errors in the model
were found in this way, resulting from incorrect translation from the PVS de-
scription. As a “sanity check”, the N = 3 case was also checked for absence of
deadlock using the model checker. Having some confidence in the correctness of
the model, we now attempt to verify the property L1 for arbitrary N . To do
this, we change the declaration of type Proc to the following:

scalarset Proc undefined;

This tells SMV that type Proc is used in a symmetric way (which governs the
abstraction used for data of type Proc) and that the range of the type is unknown.

Our general approach to the proof is to attempt to check the property using
an abstraction of the data types. When a counterexample is produced, the likely
source is a message produced by some processor that has been “abstracted out”
of the model. There are two tactics we can apply at this point. Either we “split
cases” on the producer of this message (which will, in effect, add this processor
to the abstraction), or we add a lemma that rules out the interfering message.
The first approach is simpler for the user, but adds to the complexity of the
model checking.

When we first attempt to verify property L1, SMV uses an abstraction of
type Proc that contains one fixed value i, the index of the cache we are verifying.
1 The complete file can be obtained at
http://www-cad.eecs.berkeley.edu/˜kenmcmil

http://www-cad.eecs.berkeley.edu/~kenmcmil


186 K.L. McMillan

scalarset Proc undefined;

/* ... Other type declarations go here ... */

module main(){

/* The reference model */
abstract m : Data;
if(store) next(m) := store data;

/* ... The implementation model goes here ...*/

/* coherence specification */
abstract obs : array Proc of boolean;
abstract last writer : Proc;
if(store) next(last writer) := dst;

layer L1: forall(i in Proc)
if(readable[i]) cache[i].data := m whenlast (obs[i] ∨ last writer = i);

/* witness functions */
obs[i] := ¬(dir.pending ∧ collecting) ∨ cache[i].state = exclusive;
init(m) := mem; /* make sure reference model has correct initial value */

/* ... The proof goes here ... */
}

Fig. 1. Structure of SMV input file

An abstract symbol is used to represent all of the other processor indices. This
abstraction is far too coarse to verify the property, as we can see from the coun-
terexample we obtain. This shows a case in which i is the home node, and obtains
a readable copy of the data. However, one of the processors that is abstracted
away executes a store operation at this point. This is not a possible behavior of
the system since only caches in the exclusive state can execute a store. However,
the abstraction cannot rule it out, since the state of the abstracted processors
is unknown in the abstraction. Here, there are two possible approaches. We can
split cases on the most recent processor to execute a store. Or, we might write a
lemma saying that only the owner of the cache line (the most recent to receive
an exclusive copy) can write. Either will rule out our counterexample.

Since it is a bit simpler, we try the case splitting approach first. We add the
following declaration:

forall(j in Proc)
subcase L1[j] of cache[i].data//L1 for last writer = j;

where last writer is the auxiliary variable pointing to the most recent node to
execute a Store. Since the parameter j becomes a distinguished value in the



Parameterized Verification of the FLASH Cache Coherence Protocol 187

abstraction, this node is no longer abstracted out. Thus, we rule out the false
counterexample in which an abstracted node corrupts the reference model data
by executing a Store.

Because Proc is a scalarset, we now have two cases to consider: i = j and i 	=
j. In the latter case, we get a counterexample in which an abstracted processor
sends a write-back, thus corrupting the state of main memory. This incorrect
value is then loaded into the cache of processor i, violating our property. To
fix this problem, we could split cases on the most recent processor to execute
a write-back. However, we do not wish to include too many processors in the
abstraction. Instead, let us split the problem into two parts by adding a lemma,
stating that data in main memory are always correct when there is no exclusive
copy in the system. This will rule out the false counterexample, although it
increases our proof effort, since we have to prove this property separately. The
lemma is as follows:

layer L2: if(¬dir.dirty)mem := m;

That is, when the directory is not in the dirty state, main memory must have
the value of the most recent write. Because it is a layer, SMV will use this
specification of mem by default when proving L1 (and vice versa), using mutual
temporal induction. With this added lemma, we get a counterexample in which
the home node has the line in its cache. Node i requests a copy of the cache line,
which is then forwarded directly from the home’s cache (note the cache in the
home node is not the same as the main memory mem). Unfortunately, the home
node is abstracted in this counterexample. We can tell this because the value of
home in the counterexample is the abstract symbol representing “other than i or
j”. At this point, we could add a lemma stating that the home node always sends
correct data. This strategy seems unlikely to succeed in the long run, however,
since a large part of the control of the protocol depends on whether a given node
is the home node or not. Thus, we can expect many other false counterexamples
to arise if the home node index is not present in the abstraction. Therefore, let
us split cases on the value of home:

forall(k in Proc)
subcase L1[j][k] of cache[i].data//L1[j] for home = k;

We now have an abstract model with three processors represented: the node i,
whose cache we are verifying, the most recent writer j, and the home k. With this
model, we get a counterexample in which data is forwarded from an abstracted
processor to processor i. Thus, processor i receives incorrect data. Note that in
principle, the forwarded value should be correct, since we are allowed to assume
that L1 holds for all nodes up to time t − 1. However, by default L1 is only
instantiated for the process indices that are in the abstract model, that is, i, j
and k. We need this property to hold for “the processor currently forwarding
data”, which in the model is indicated by the implementation variable dst. This
is the index of the processor that is current receiving a request to forward data.
Since SMV does not know enough to instantiate property L1 for i = dst, we do
it manually, adding the following lemma:



188 K.L. McMillan

L1a : assert G (cache[dst].state = exclusive ⇒ cache[dst].data = m);

Note, we have weakened L1a a bit, omitting the case when the state is shared,
since we don’t need it. This lemma can be trivially proved as a special case of
L1, so we omit the proof here. We now use this instantiation of L1 up to time
t− 1, with the following declaration:

using (L1a) prove cache[i].data//L1[j][k];

This ensures that good data are always forwarded from other processors. How-
ever, it is still possible that a Store will occur while the data are in transit. This
happens in the next counterexample. Processor j gets an exclusive copy of the
data. However, an abstracted processor sends a write-back message to the home,
causing it to think that the line is no longer owned by j. As a result, it sends
a shared copy to i. Now processor j, which still thinks it has an exclusive copy,
writes the line, causing k’s data to be incorrect. The problem here is that it is
not possible for another processor to have an exclusive copy while j is holding
one (hence the write-back is impossible). However, this information is lost by the
abstraction. To solve this problem, we might try case splitting on the sender of
the write-back, but at this point the abstract model is already nearly too large
to handle. Instead, we write a lemma stating when it is possible for a processor
to be in the exclusive state. That is, it is possible when the directory thinks that
the line is “dirty”, and when no other processor holds an exclusive copy. Note
that an exclusive copy can be held in a cache, or it can exist in a PutX message
en route to a node. Thus, we write the following lemma:

L3[i]: assert G (dst dirty ⇒ dir.dirty ∧
((cache[i].state = exclusive ∨ unet[i].mtype = PutX) ⇒ dst = i));

That is, if the current “destination” node is in the exclusive state (dst dirty),
then the directory must be in the dirty state, and no other processor i may be
in the exclusive state, or have a PutX message in transit to it. Note, that rather
than writing this property for all pairs of nodes, we have written it only relative
to the current dst, since we only need to rule out bad write-back messages. If we
wrote the lemma for all pairs (i, j) we would then have to instantiate it manually
for dst = j, as above. To prove this lemma, we clearly must split cases on dst,
so that the state of node dst will be present in the abstraction. In addition, we
will split cases on home, for the reasons mentioned above. As usual with such
“non-interference” lemmas, we will assume that the general lemma holds up to
time t−1 to prove a specific case at time t. Here is the SMV declaration we use:

forall(j in Proc) forall(k in Proc){
subcase L3[i][j][k] of L3[i]for home = j ∧ dst = k;
using (L3) prove L3[i][j][k];

}
From the ensuing counterexamples we discover that in fact there are three other
types of messages that represent an “exclusive” copy: a write-back, returning



Parameterized Verification of the FLASH Cache Coherence Protocol 189

ownership to the directory, a “sharing write-back” message, that is performing
the same function but leaving shared copies in the system, and a Put message
from the owner to home, which has the same effect as a write-back, but is elicited
when the home cache needs a copy of the cache line. Thus, we add the following
requirements to L3, in case dst is in the exclusive state:

wbnet.mtype=Empty ∧ shwbnet.mtype	=ShWB ∧ unet[home].mtype 	= Put

At this point, in trying to verify L3, we run into a problem: the verification does
not complete within our limit of 2GB of memory. We now have two choices. We
could further decompose the proof into cases or lemmas, or we could help the
model checker by adjusting the abstraction manually. Since the verification seems
close to finishing, we choose the latter course. Adjustments to the abstraction
can be made by “freeing” some variables that we think are irrelevant (i.e., we
ignore their definitions and leave them unconstrained). The topic of choosing an
appropriate abstraction for model checking is beyond the scope of this article.
Suffice it to say for our purposes that making a few educated guesses allows us to
reduce the memory consumption of the model checker to about 270 MB, which
is well within the capacity of our server, and that L3 is verified.

Now, having proved our “non-interference lemma”, let us return to the proof
of L1 (data correctness in the cache), adding L3 to the list of properties used to
prove L1. Now we get a counterexample showing another kind of “interference”.
That is, node i gets a shared copy, after which node j requests and obtains an
exclusive copy. This causes an invalidation message to be sent to node i, and the
directory state to be set to “pending”, i.e., awaiting invalidation acknowledg-
ments. A new transaction cannot be started until all invalidations are complete.
Oddly, then, node j (the owner) now receives a forwarded Get request for some
abstracted node. How does this happen? It is an artifact of the way the network
is coded in the model. Even though the forwarded Get message for a node n
can only be sent from the home, it is stored in the message buffer unet[n]. This
encoding, chosen by Park for his PVS proof [PD96], helps us in some ways, but
hurts us here, since unet[n] in this case is abstracted. Thus, the abstract model
allows this incorrect message to arrive at the owner node while invalidations are
pending. The owner sends a FAck message back to the home, acknowledging this
bogus request. The home, receiving the bogus FAck, clears its pending bit. Now
node i is holding stale data, but the pending bit is not set, violating L1.

At this point, we might choose to recode the model of the network in such
way that a special buffer is reserved for forwarded Get messages. One such buffer
would suffice, since only one such message can be in the system at a time. This
buffer would always be present in the abstraction, so Get messages forwarded
from abstracted nodes would not trouble us. However, for comparison purposes,
we wish to use the same model that was used in the PVS proof. In any event,
we can get the same effect by introducing the proposed message buffer as an
auxiliary variable. We then prove that forwarded Get messages can only occur
when they are found in this imaginary message buffer. This technique of replacing
an inconvenient encoding of state information by a more convenient encoding is
useful in many contexts. Here is the property we write:



190 K.L. McMillan

L4[i]: assert G (unet[i].mtype in {Get,GetX} ∧ unet[i].proc 	= home
⇒ (unet[i].mtype = fwd get));

Here, fwd get is our imaginary message buffer for forward Get messages. We say
that if there is such a message in any message buffer i, and if the destination is
not home (i.e., it is being forwarded to some other node), then it must match
our imaginary buffer.

Now we attempt to prove this. Initially, we try splitting cases on just the
home node. This produces a counterexample in which a GetX is forwarded for
node i and entered in fwd get. However, this imaginary message doesn’t specify
that i was the original sender of the GetX. Some abstracted node’s message
buffer issues the GetX, clearing fwd get. Now node i’s message buffer violates
the property, since it has a forwarded GetX, but fwd get is empty. We decide to
split cases on the message buffer that issued the bogus GetX, so that it will not
be abstract in the model. This seems reasonable, since presently there are only
two parameters in the property:

subcase L4[i][j][k] of L4[i] for fwd src = j ∧ home = k;

Here, fwd src is an auxiliary variable that remembers which message buffer most
recently issued a forwarded Get. This should solve the problem, since both mes-
sage buffers i and j cannot hold a forwarded Get at the same time. Unfortunately,
we now get a counterexample in which two such forwarded messages do exist
at the same time. In this counterexample, one node requests an exclusive copy,
and its GetX is forwarded to the owner (some abstracted node). In principle, a
new transaction cannot be started until the directory knows that this one has
terminated. However, at this point the directory receives in invalidation acknowl-
edgement message (InvAck) from some abstracted node. Such messages should
never arrive during an ownership transfer (they only occur when changing from
shared to exclusive). The directory doesn’t know this, however, and responds to
the bogus InvAck by terminating the transaction. This allows a new transaction
to begin, which results in two forwarded GetX messages being in the system
at the same time. At his point, to avoid another case split, we introduce an-
other non-interference lemma. This one says that InvAck messages cannot arrive
during an ownership transfer:

L5: assert G (src invack ⇒ dir.pending ∧ collecting);

Here src invack says that an InvAck is arriving (recall that collecting means
that invalidations are currently being collected). We assume this lemma up to
time t − 1, to prove L4 at time t. With this assumption, we obtain one more
counterexample, in which an abstracted message buffer violates lemma L4. This
leads to a later violation of L4 by message buffer i. This should be ruled out,
because we can assume the general lemma up to t − 1 when proving case i.
However, to do this, we are forced to instantiate L4 manually for src = i, just
as we did above for L1. With this addition lemma L4 is verified.

This leaves lemma L5 to prove, that is, that no unexpected InvAck messages
arrive. To check this, as usual, we split cases on the sender of the bogus messages,
and also on the home location, as follows:



Parameterized Verification of the FLASH Cache Coherence Protocol 191

subcase L5[i][k] of L5 for src = i ∧ home = k;

This is sufficient to prove the lemma. Note that when proving the non-interference
lemmas, we always use all the lemmas up to time t − 1. If nothing else, this
practice cuts down on the size of the reachable state space (since the lemmas
constrain the possible transitions) and may prevent us from looking at bogus
counterexamples. Also, we use the same abstraction adjustments for all of the
lemmas, except that for L5, we cannot abstract out the part of the network
model that handles invalidations.

Now we return to property L1, data correctness in the caches. Recall that
a counterexample to this property caused us to add L4, and in turn L5. Now
we assume these lemmas to prove L1. This time the verification succeeds. All
that remains is property L2, which specifies correctness of the contents of main
memory. We use exactly the same strategy as for L1, that is, we split cases on
the most recent node to execute a Store, and on the index of the home node:

subcase L2[j][k] of mem//L2 for last writer=j ∧ home = k;

Using our non-interference lemmas, this property is also verified (layer L1 is
automatically assumed as the definition of the cache contents).

At this point, we have verified that contents in the caches satisfy our speci-
fication. This proof was completed in two days. In fact, an earlier proof of the
same model required less time, about 12 hours. However in the present proof,
a greater burden was placed on the model checker in order to make the proof
simpler for presentation. Thus, most of the two days was spent waiting for the
model checker to terminate. The proof of liveness is omitted here for space rea-
sons. It is actually substantially simpler than the coherence proof and required
four hours to accomplish.

5 Related Work

As stated earlier, the model of the FLASH protocol that is verified here is
adapted from the work of Park [PD96], who verified using the PVS theorem
prover that it implements an abstract model. In this model, the cache states are
updated globally in a single atomic action. This proof was done using an ab-
straction function that computes the result on the system state of executing all
the “committed” transactions that are currently in the system. This has the ef-
fect of emptying the network of messages, producing an abstract state. It is then
proved that each action of the implementation model implements some (possibly
null) atomic action of the abstract model, modulo the abstraction function. This
proof also requires an inductive invariant of the system to be stated and proved,
since the abstraction function does not hold for unreachable states.

In fact, such invariants can be quite complex and time-consuming to produce.
The lemmas in Park’s refinement proof in PVS requires 776 lines (21KB) to state,
perhaps half of which is taken up by invariants. This does not include the proof
script required to prove the lemmas, which can be quite large. Nor does this



192 K.L. McMillan

include a proof that the atomic model implements some memory model.2 Park
does not report the time required to complete the proof, though we can infer
from the 111 lemmas and theorems that it must have been substantial. The
safety proof presented here takes 30 lines (1.7KB) in SMV (including the four
auxiliary lemmas, case splits, instantiations and abstraction adjustments) plus
two auxiliary variable definitions scattered in the model code, and required two
days to complete. We should note there is one simplification in the model – a
counter is replaced by a set. Since liveness was not proved in Park’s work, a
comparison of liveness proofs is not possible.

The relative conciseness of the SMV proof appears to stem from two factors.
First, when using model checking of abstract models, it is not necessary to
have an inductive invariant. Rather, the model checker generates the strongest
invariant of the abstract model. Strengthening is required when the abstract
model is too coarse (hence, the non-interference lemmas L3, L4 and L5). Note,
however, that these lemmas are proved by course-of-values induction over time,
rather than by simple induction. The net effect is that the non-interference
lemmas are considerably simpler than a global inductive invariant. The second
possible factor in the simplicity of the proof is that no intermediate model is
used, and hence no abstraction function is required.

Another approach to generating an inductive invariant is to use a technique
called predicate abstraction [SG97]. In this method, the user provides a collec-
tion of predicates on the system state, and a program generates the strongest
invariant of the system that can be expressed as a boolean combination of these
predicates. This method has been used by Das, Dill and Park [DDP99] to gen-
erate some invariants of the FLASH protocol (for example, that there are never
two exclusive copies in the system). Invariants generated in this way were sub-
sequently transferred to Park’s proof of refinement in PVS.

It appears possible that invariants generated by predicate abstraction could
be used to aid the proof presented here. For example, lemma L3, stating that
an exclusive copy cannot coexist with another exclusive copy, write-back, etc.,
appears to be the kind of invariant that was generated in [DDP99] (although
few details are given). On the other hand, it appears that the manual effort
required to arrive at the necessary predicates (a reported five days) was greater
than the manual effort of the entire proof presented here, so it is not clear that
using predicate abstraction to obtain the non-interference conditions would be
worth the effort. On the other hand, the method of [DDP99] can in some cases
guess necessary instantiations of universal quantifiers. There were two cases in
the above proof in which such instantiations were introduced manually. Possibly
by applying the methods of [DDP99], these instantiations could have been found
automatically. That is an interesting possibility, since the abstractions generated
by SMV can in fact be cast in terms of predicate abstraction. This points to a
possible integration of the two methods.

2 For the eager model, a lemma is proved for each low level action, stating that it
commutes with some high level action, but two models are not defined per se, and
coherence is not specified.



Parameterized Verification of the FLASH Cache Coherence Protocol 193

Note that the predicate abstraction method by itself cannot prove liveness
of the protocol. In fact, no single finite abstraction can do this, because a finite
system, if it terminates, must terminate in a bounded number of steps. However,
there is no fixed bound on the number of steps required for a transaction to
terminate in the FLASH protocol. Rather, this number increases with N .

Verification of cache coherence protocols with an arbitrary number of pro-
cessors has also been done using so-called symbolic state abstractions [PD93].
This is a finite-state approach to systems of many identical processes, in which
information about the exact number of processes in each state is abstracted,
so that only the cases 0, 1 and “more than one” are distinguished. Pong used
this method to verify cache coherence protocols. However, the method required
that the protocol be described in a specialized abstract form. This left open the
problem of verifying that this model in fact is refined by the more operational
description that one actually implements. This problem was solved by Ip [ID96],
who showed how such a model could be extracted from a description in the
Murφ language [ID96], under certain restrictions. Not all protocols can be han-
dled in this way. In particular, protocols that pass pointers to nodes can only
be handled if pointer chains are bounded. However, in the cases when it does
apply, the method is certainly more automated than the one presented here (it is
unclear whether it could be applied effectively to FLASH). Note, however, that
the abstraction it uses is too coarse to prove liveness, so other methods would
have to be used for this purpose.

Finally, an advantage of using a system such as SMV for the verification of
cache protocols is that SMV is also capable of verifying that the actual hardware
implementation of the protocol conforms to the verified model. This kind of
refinement verification was done, for example, in [Eir98], although in that case
the protocol was only verified for a fixed number of nodes. A general purpose
prover such as PVS is not well suited to this task. On the other hand, the Murφ
system provides no means to verify that a hardware system refines a Murφ model
(this, of course, suggests a possible link between the tools).

6 Conclusion

We have seen an example of formal verification of a cache coherence protocol
model, forN processors, using a compositional model checking tool. The protocol
was specified with respect to a very simple reference model. The proof that the
protocol model implements this reference model was accomplished with four
auxiliary lemmas. The first is a “refinement relation”, specifying the contents
of main memory in terms of the reference model. The other three are “non-
interference” lemmas. These were required to rule out false counterexamples
that occurred because some nodes in the system were abstracted away.

Our general approach was driven by counterexamples. That is, we attempt
näıvely to prove a property, and when a counterexample arises, we diagnose
the cause of the error. We then attempt to rule out this cause by one of two
strategies. If the cause is reception of an impossible message from an abstracted



194 K.L. McMillan

node, we can “split cases” on the sender of this message, causing the sender to
be included in the abstraction. This case splitting can only be done a few times,
however, since it leads to state space explosion. The other possibility is to write
a “non-interference” lemma, ruling out the bad message. This lemma must be
proved separately. It is often useful to pose these lemmas as refinement relations,
by which we recode the model state in a more convenient way. The lemmas are
then proved by course-of-values induction over time. That is, we can assume all
the lemmas up to t− 1 when proving a case of any given lemma at time t.

This approach appears to be the most effective one to date for verifying both
safety and liveness of cache coherence protocols with an arbitrary number of
processes. For example, the proof effort for the FLASH protocol using model
checking was clearly much less than the effort for the same model using PVS.
The method of predicate abstraction requires considerable user assistance to
guess the necessary predicates and cannot prove liveness of the FLASH protocol.
Symbolic state methods give a fully automated verification of safety. However,
they do not apply to all protocols, and cannot prove liveness. Finally, having
proved properties of a protocol model in SMV, it is then possible to refine that
model to a formally verified implementation in hardware.

References

[CD93] C.N. Ip and D.L. Dill. Better verification through symmetry. In D. Agnew,
L. Claesen, and R. Camposano, editors, Computer Hardware Description
Languages and their Applications, pages 87–100. Elsevier, 1993.

[DDP99] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In
Computer Aided Verification (CAV’99), pages 160–171, 1999.

[Eir98] A. Eiriksson. Formal design of 1M-gate ASICs. In FMCAD ’98, number
1522 in LNCS, pages 49–63. Springer, 1998.

[ID96] C.N. Ip and D.L. Dill. Verifying systems with replicated components in
murphi. In R. Alur and T. A. Henzinger, editors, Computer Aided Verifi-
cation (CAV’96), volume 1102, pages 147–158. Springer Verlag, 1996.

[KOH+94] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. L. Hennessy. The stanford FLASH multiprocessor. In Proc. of the
21th Annual Int’l Symp. on Comp. Arch. (ISCA’94), pages 302–313, 1994.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers, C-
28(9):690–691, 1979.

[McM99] K. L. McMillan. Verification of an infinite state systems by compositional
model checking. In L. Pierre and T. Kropf, editors, Correct Hardware
Design and Verification Methods (CHARME’99), volume 1703 of LNCS,
pages 219–233, 1999.

[MS91] K.L. McMillan and J. Schwalbe. Formal verification of the gigamax cache
consistency protocol. In N. Suzuki, editor, Proceedings of the International
Symposium on Shared Memory Multiprocessors. MIT Press, 1991.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system.
In E. Kapur, editor, Conf. on Automated Deduction (CADE’92), number
607 in LNCS. Springer-Verlag, 1992.



Parameterized Verification of the FLASH Cache Coherence Protocol 195

[PD93] F. Pong and M. Dubois. The verification of cache coherence protocols. In
Proc. of the 5th ACM Annual Symp. on Parallel Algorithms and Architec-
tures (SPAA’93), pages 11–20, 1993.

[PD96] S. Park and D.L. Dill. Verification of the FLASH Cache Coherence Proto-
col by Aggregation of Distributed Transactions. In 8th ACM Symposium
on Parallel Algorithms and Architectures, pages 288–296, Padua, Italy,
1996.

[SG97] Hassen Säıdi and Susanne Graf. Construction of abstract state graphs
with PVS. In Orna Grumberg, editor, Computer-Aided Verification, CAV
’97, volume 1254, pages 72–83, Haifa, Israel, 1997. Springer-Verlag.


	Introduction
	Background
	The Protocol Model
	Proof of Coherence
	Related Work
	Conclusion

