
View from the Fringe of the Fringe
(Extended Summary)

Steven D. Johnson�

Indiana University Computer Science Department, sjohnson@cs.indiana.edu

Abstract. Formal analysis remains outside the mainstream of system
design practice. Interactive methods and tools are regarded by some to
be on the margin of useful research in this area. Although it may seem
relatively academic to some, it is vital that this the so-called “theorem
proving approach” continue to be as vigorously explored as approaches
favoring highly automated reasoning. Design derivation, a term for de-
sign formalisms based on transformations and equivalence, represents
just a small twig on the theorem-proving branch of formal system anal-
ysis. A perspective on current trends is presented from this remote out-
post, including a review of the author’s work since the early 1980s.

In memory of Dexter Jerry Johnson, August 12, 1918 – June 23, 2001

1 On Behalf of Interactive Reasoning

“Formal methods for systems,” the application of automated symbolic reasoning
to system design and analysis, remains well outside the mainstream of engineer-
ing practice, even though it is philosophically central to the science of computing
(for instance, eight (by my count) of the forty-one ACM Turing Award recipi-
ents are formal methods luminaries explicitly recognized for this aspect of their
work.)

One could say, on the one hand, that formal methods research in software has
significantly influenced practice. Type checking, structured and object-oriented
programming languages, and other advances have been deeply assimilated. So,
too, have equivalence checking and hardware description languages in hardware
design practice. On the other hand, it is hard to tell whether, or to what extent,
these tools have improved design methodology. Do more programmers use loop
invariants? Does object oriented syntax improve the way engineers organize their
thoughts, or does it merely impose structure, and if the latter, does that partic-
ular structure skew other aspects, such as communication and architecture?

Let us focus on verification. In the past twenty years, the question of whether
formal analysis is meaningful or practical has turned into a question of how and
where they can be most profitably deployed. The digital hardware industry is
� Work described in this paper was supported by the National Science Foundation
under grants MIP8707067, MIP8921842, MIP9208745, and MIP9610358.

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 1–12, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 S.D. Johnson

the vanguard of this movement, the economic benefit having been established.
These inroads are changing design processes, and consequently will change the
perspective on and management of system design.

In many cases, perspectives are changing much faster than the rhetoric. In
the early 1980s I was told by experts that equivalence checking is hopeless,
that hardware description languages are unbearably inefficent, that programs
are tantamount to proofs, that formal analysis (mine, in particular) bears no
relationship to actual design, etc. One cannot refute these assertions; they remain
true in certain contexts, both scientific and practical1.

It is a sign of progress that one seldom hears these particular assertions at
formal-methods meetings (as I did each of the examples above). The debate
about practicality has become much more sophisticated. The old taunt, “Does
it scale?” persists, but as often as not refers not to the capacity of the tools but
to the population of engineers will use them. Even then, it is now more widely
and credibly acknowledged that verification requires a fundamentally different
skill set than designing.

I hope that these developments signal an end to the “algorithmic versus
interactive” debate, or at least moves it to a higher level. It is certainly valid to
say that any avenue into formal design analysis adopts a balance between high-
level and incremental tools, and that more practical explorations will emphasize
greater automation. It is equally true that successful methodologies will differ
not in the degree of interaction, but in the nature of that interaction.

What constitutes a tolerable degree of interaction is principally a human fac-
tor, even if it is significantly influenced by the engineer’s education, tool set, and
design process. The nature of that interaction is another matter. This question is
the crux of formalized design research. It must not be investigated from a single
point of view. Speaking as an educator, it is crucial that feedback from industry
distinguish between near-term practicability and far-term practicality.

In his usual clarion fashion, Hoare pinpoints the analogous distinction be-
tween top-down and bottom-up theories of programming [4]. The former sup-
ports the systematic development of correct programs but is of scant help in
analyzing existing programs (i.e., debugging). The latter provides a basis for an-
alyzing implementation properties but is not of much help in relating a program
to its intended purpose. One perspective is specification oriented, and the other
is implementation oriented. Until theory can rectify this dichotomy, it is the de-
signer’s task to resolve it in each instance. The same dialectic Hoare describes
is present in applied research and exploratory practice.

Pnueli points out that, “. . . there exists no purely scientific solution [as yet]
to the system correctness problem. We should concentrate on an engineering
approach: assembling many tools and methods, . . . ” While acknowedging that
interaction is fundamental, “One of the worst places to use ingenuity and cre-
ativity is an interactive deductive proof of verification conditions” [11].

1 One of the statements was recently highlighted in a press release profiling the new
CTO of a major technology company, who was reminiscing about how he had de-
bunked the academic mythology of program verification.

View from the Fringe of the Fringe 3

I can think of places that can be at least as bad. Some examples: maneuvering
a synthesizer by tweaking its input and output, performing ad hoc reductions to
satisfy a model checker, reasoning abstractly about concrete data, and editing
a make file for last-minute turnaround. To the extent that every design tool
and environment dictates a style of expression or a mode of reasoning, it is a
potential drain on ingenuity and creativity. Pnueli is arguing that the essence of
engineering methodology lies in choosing the right tool for a given purpose. This
is also precisely the goal of theorem proving. Of course, it is counterproductive
to encumber this choice by an an overly restrictive tool set or abstruse notation,
but so, too, is having an overwhelming, disorganized tool box.

What is called “theorem proving” in applied research today has much more
to do with tool management than with proof editing. While it does require a
proficiency in logic, gaining this proficiency is a minor task compared to assim-
ilating the commands of an operating system or a CAD environment. Although
theorem-proving remains far too restrictive (as I will argue in Sect. 3), interactive
reasoning tools teach invaluable lessons about controling the interplay between
tools and maintaining overall direction. All engineers would benefit from explor-
ing this aspect, although not in the heat of a production schedule; that is a job
for verification engineers.

This research community needs to become more expansive in its discussions
of these questions, paying particular attention to avoid fading biases. With over
twenty years of work, including accomplishments that could hardly have been
conceived ten years ago, we can offer great deal of guidance to those who are
only beginning explore practical formal methods. We might begin by neutral-
izing “automatic versus interactive” distinction by adopting the umbrella auto-
mated interactive reasoning. Since all approaches employ both, this might make
it clearer that the real challenge is to effectively combine them.

2 Interlude: Are We Making Adequate Progress?

At a 1998 workshop on formal methods education [8], in the course of a discussion
about mathematics in the CS/CE, Douglas Troeger made the remark, “Calculus
is a formal method.” I have been in a great many discussions concerning The
Calculus in computer science, but I was struck for the first time by the literal
truth of Troeger’s statement. I thought that learning how The Calculus came into
being might give me a fresh perspective on computing methodology. A colleague
recommended Carl B. Boyer’s The History of the Calculus and its Conceptual
Development [2].

Warning: Beware the musings of someone who has read just one history
book.

I found it somewhat comforting that, according to Boyer’s scholarly account,
The Calculus was the product of no less than a millennium of active thought
(elapsed time: around 2,500 years), with due acknowledgment to the Greeks,
Babylonians, Egyptians, Hindus, Arabs, and Medieval scholars. However, it was
with increasing dismay that, the more I read, Greek Age seemed more familiar

4 S.D. Johnson

than the Renaissance. I am fond of saying that computing has not yet seen
its Newton (Liebnez if you prefer), but maybe I should be saying Archimedes
(Eudoxus if you prefer). The Greeks also had, in Zeno, one of history’s greatest
nay-sayers. I’m not sure whether computing has seen its Zeno, although some
candidates do come to mind.

The Greek Method of Exhaustion could solve integration problems, but was
cumbersome and indirect; it lacked the logical foundation to deal even with
primary ideas (e.g. measure and variable), much less key concepts (e.g. limit and
convergence). Instead, The Method is based on the concept of approximation to
to any desired degree of precision. If the Greeks had computers, that might have
been the end of it.

It is fairer to say that Newton and Leibnez acquiesced to The Calculus than
to say they discovered it; and they certainly didn’t invent it. Invention cannot be
attributed to any individual, but to a gradual evolution in thinking over several
centuries. Newton and Liebnez, and perhaps others, discovered the surprising
relationship between the integral and the derivative, and went on to use their
discoveries. Two more centuries passed before a mathematical foundation was
established to justify their methods. Throughout the history of The Calculus,
formalism played both encouraging and inhibiting roles. In his conclusion, Boyer
says,

Perhaps the most manifest deterring force was the rigid insistence on
the exclusion from mathematics of any idea not at the time allowing of
strict logical interpretation. . . . On the other hand, perhaps a more sub-
tle, and therefore serious, hindrance to the development of the calculus
was the failure, at various stages, to give to the concepts employed as
concise and formal definition as was possible at the time.

While it is foolhardy to draw too many parallels between the history of the
calculus of the physical world and the search for a calculus of system design (if,
indeed, there is one), Boyer’s comment surely applies to both. Formalism should
describe, not prescribe, but it must be involved, and this applies not just to the
mathematics, but also to its implementation in a computer.

I could not find in Boyer’s account a clear sense of what was driving the
persuit of The Calculus forward. Science and engineering, mathematics, meta-
physics, theology, and politics all played a role, almost always in combination
within each individual contributor. It is quite clear, of course, that The Calcu-
lus prevailed because its methods mad problems easier to solve. However, many
of these problems were purely mathematical, predating any direct practical ap-
plication. Once published, The Calculus became entrenched through scientific
and engineering applications, despite rather strong criticism by formalists and
mathematical theorists.

3 DDD – The Far Side of Theorem Proving

In Sect. 1, I spoke on behalf of interactive reasoning in automated formal verifi-
cation. In this section I will describe some weaknesses in mainstream “theorem

View from the Fringe of the Fringe 5

proving” research, from the standpoint of someone whose work investigates an
alternate formalism.

If automated formal verification has established a beachhead in commercial
integrated circuit design, interactive analysis has gained a foothold, at least.
In the past few years, the successful infusion of formalized analysis in the de-
sign of commercial microprocessors includes a significant component of theorem
proving. In research, automated and interactive verification are adapting to each
other, and, in some cases, overlapping. The systems used in interactive reasoning,
more properly called proof assistants than theorem provers, are quite advanced,
having been developed over decades of applied research. Nearly all of them are
based on predicate logic.

Just as most mathematical arguments involve both logic and algebra, interac-
tive design analysis is improved by provisions for reasoning based on equivalence
rather than implication. I use the term derivation to distinquish this mode of
reasoning from deductive reasoning based on logical inference.

Before contrasting these two approaches, I should discuss what they have
in common, for this is far more significant in the greater scheme of things. In
all forms of interactive formal reasoning the object is to construct a proof, or
sequence of commands invoking inference rules. A proof might be compared to
a Unix make file; it is a command script that can be and is repeatedly executed.
Specification and implementation expressions are byproducts of the proof build-
ing process. Derivational formalisms are sometimes described as “constructing”
correct implementations, whereas deductive formalisms relate pre-existing de-
sign expressions. This is an invalid distinction for the most part. Regardless of
the proof rules, proof construction is a creative process involving forward and
backward reasoning, decomposition into subgoals, backtracking, specification re-
vision, implementation adjustment, and so forth. The final form of the proof says
almost nothing about how it was obtained.

In practice, proof construction is often systematic. All proof assistants auto-
mate some proof building tactics, ranging from embedded decision procedures
to parameterized induction principles. Most proof assistants provide a metalan-
guage for composing basic patterns into proof-engineering strategies.

3.1 DDD and Its Origins

The acronym DDD refers either to “digital design derivation,” the application of
derivational reasoning to digital design, or the research tool that was developed
to explore it. This line of investigation began in the early 1980s and continues
to the present. Reference [6] contains a bibliography of DDD research for those
interested in more details.

I originally described DDD as “functional programming applied to hard-
ware,” but eventually had to abandon this slogan. Even though any reasonable
design formalism will encompass both hardware and software, equating hardware
descriptions to software programs is still quite a leap for most people. Further-
more, the automation of reasoning based on functional model theory remains (so
far as I can tell) out of step with the priority of language implementation over

6 S.D. Johnson

formal reasoning in the functional programming community. In any case, this
work found a more receptive audience in formal methods the emerging formal
verification area.

The work did begin with a language implementation, however. As a research
assistant I explored the use of functional programming techniques in imple-
menting operating systems (and later, distributed programming). I developed a
programming language called Daisy to explore abstractions of communciation
and concurrency, which were modeled as streams and represented by lazy lists.

Given the simplicity of digital devices at the time, and since I was more
concerned with how processes communicated than with what they did, it was
convenient to illustrate ideas about programming with with hardware models.
This rather innocuous tactic immediately changed the direction of the work (al-
though not its ultimate goal, which transcends hardware/software distinctions).
For one thing, it induced a sharp distinction between description and realiza-
tion, something I had trouble isolating in software studies. For another, designing
hardware requires a more balanced regard for design aspects (principally archi-
tecture, behavior, coordination, and data).

A thesis emerged that each aspect of design has a distinct conceptual struc-
ture, and perhaps a distinct notation. A design formalism must be able to move
among these structures, and cannot simply compose them without destroying
one or more. Figure 1 gives a sense of this thesis while illustrating some of
DDD’s formal representations. Behavioral specification is represented by a re-
cursive system of functions definitions. Architectureal specification is represented
by a recursive system of streams. Data (abstract types and implementation re-
lationships) and synchronization (e.g. as expressed in timing diagrams) aspects
are not shown, but rather their infusion in architectural expressions.

As this is applied research, it is important to demonstrate that the formalism
can be used to obtain real hardware of a reasonable complexity (given that the
work is done at academic institution without engineering programs). Well over
half of the research effort is spent doing case studies, the majority of that effort
being to integrate DDD with a never-ending sequence of CAD tools and VLSI
technologies. Two major demonstrations were the construction of a language-
specific computer and comparative study of microprocessor verification:

– In a series of studies, DDD was used to derive working versions of War-
ren Hunt’s FM8501 and FM9001 microprocessor, which Hunt verified us-
ing the Nqthm and ACL2 theorem provers. The derived devices worked
on first power-up, but were also extensively tested against Hunt’s chip
for instruction-level comformance. This study demonstrated that derivation
alone is insufficient support for design; it must be integrated with a other for-
malisms to to deal with data and process abstractions, and ingenious design
decisions.

– A language-specific computer for direct execution of compiled Scheme re-
flects the functional-programming roots of the research. DDD is implemented
in Scheme and operates on Scheme expressions, so applying it to Scheme
brings a kind of closure. DDD provides implementation verification of the

View from the Fringe of the Fringe 7

behavior:

gcdb(x, y)
df= if x = y then x

else if x < y then gcdb(x, y − x)
else gcdb(x− y, y)

architecture:

gcda(x̌, y̌)
df= x where

x = x̌ : sel(x ≥ y, x, y − x)
y = y̌ : sel(x > y, x− y, y)

coordination: (request-acknowledge synchronization)

gcdc(x, y, req)
df= (z, ack) where

u = sel(req , x, sel(u ≥ v, u− v, u))
v = sel(req , ysel(u > v, v, v − u))
z = u

ack = u = v

data: (〈Bit2,+, ·, . . .〉 implementing 〈Int ,−, >〉)
gcdd((x̌1, x̌0), (y̌1, y̌0))

df= (x1, x0) where
x0 = x̌0 : sel(ge?, x0, d0)
x1 = x̌1 : sel(ge?, x1, d1)
y0 = y̌0 : sel(gt?, d0, y0)
y1 = y̌1 : sel(gt?, d1, y1)
gt? = x1y0 + x0y0(x1 + y1)
ge? = (x0 � y0)(x1 � y1) + gt?

(d1, d0) = sub(sel(ge?, (x1, x0), (y1, y0))
sel(ge?, (y1, y0), (x1, x0)))

Fig. 1. Four facets of system design represented as recursive equations. All but gcdb are
stream networks. The expression v̌ : v denotes a stream whose head is the value v̌ and
whose tail is the stream v; sel is a two-way selector; the operations are boolean in gcdd

and arithmetic elsewhere. The tetrahedron symbolized the thesis that one expression
cannot simultaneously reflect all design aspects, but must suppress one or more.

system components, a CPU, memory allocator, and garbage collector; but
does not prove system-level noninterference properties; we will use a model
checker for that. And DDD does not prove specifcation correctness; we will
use a theorem prover for that. However, the CPU and garbage collector are
extremely similar to the those of VLISP a Scheme implementation, whose
compiler and run-time system were proved using rigorous but unmechanized
mathematics [3]. In conjunction, these two studies represent a complete for-
mal design whose scope of abstraction ranges from pure denotational seman-
tics to hardware realization.

In the mid 1990s, students from the DDD group started a company to com-
mercialize their research. They have produced two commercial products using

8 S.D. Johnson

formalized derivation, a synthesizable PCI bus interface and a configurable hard-
ware core for Java byte code generation. The Java processor was one of the first
to enter the marketplace. These accomplishments are evidence that formalized
design derivation can be practical.

3.2 Toward Integrated Automated Interactive Reasoning

All of the studies just described involved the coordinated use of several reasoning
and synthesis tools. I would now like to focus on some of the difficulties we
have encountered doing these studies. They point to a need for improving the
methodology, the tools, and also the attitudes, of interactive design analysis.

One of the more aggravating statements about DDD, appearing more that
than once in published papers, is that it is not “formalized.” This is an unwar-
rented detraction considered as a mathematical or logical statement. However,
means merely that the soundness proofs of DDD’s transformation rules have
note been checked in some theorem prover or other. In that extremelyh parochial
sense, the statement is correct but also somewhat hypocritcal. Not many the-
orem proving tools have proved their own inference rules; those that have are
unlikley to have proven the implementation of those rules; and those that have
done that, if any, have not greatly enhanced their utility by doing so.

The suggestion that all formalisms should be embedded in a single predicate
logic is quaintly formalist, but the corollary that all interactive reasoning tools
should be implemented in a particular theorem prover is simply wrong from both
engineering and methodological standpoints.

3.3 Foundational Issues in Logic

Paul Miner explored the problems of interaction between DDD and the PVS
theorem prover [9]. The problems are by no means unique to PVS; to the con-
trary, PVS was fairly adept for working around some of them. However, each
work-around involves a semantic embedding with strategies tailored to make the
embedding transparent. This may be possible on a case-by-case basis, but in
combination the embeddings are certain to interfere with each other and break
that transparency, leaving the user to untangle the consequences.

The most immediate problem is a lack of support for mutual recursions. This
alone makes embedding DDD in PVS untenable, but that wasn’t our goal any-
way. We wanted instead to export verification conditions from DDD to PVS in
order to verify ingenious design optimizations, especially those done on stream
networks. However, streams domains are not well founded, raising a significant
problem in the PVS logic. Miner was able to work around this problem, develop-
ing a co-algebraic theory of streams, based on their conventional representation
as functions on the natural numbers, and a collection of higher order predicates
and PVS strategies to mask that representation.

To illustrate the issue, consider the functions zip and map defined for streams:

zip(a : A, b : B) df= a : b : zip(A, B)
map(f, a : A) df= f(a) : map(f, A)

View from the Fringe of the Fringe 9

Proving that map distributes over zip is intuitively straightforward.

map(f, zip(a : A, b : B))
= map(f, a : b : zip(A, B)) (defn. zip)
= f(a) : f(b) : map(f, zip(A, B)) (defn. map)
H= f(a) : f(b) : zip(map(f, A),map(f, B)) (induction)
= zip(f(a) : map(f, A), f(b) : map(f, B)) (defn. zip)

Although true, the ‘H=’ step is not a logically valid induction in PVS because
streams are not well founded (There is no base case in zip’s defintion, for ex-
ample.) This inconvenience can be circumvented in a number of ways including
(See [5] for one entry point into the literature on these matters).

(a) It is simply an abbreviated mathematical induction based on a representation
of streams as functions over the natural numbers and extensionality.

(b) It is a recursion induction over the domain S[α] df= α × S[α], or (or a similar
directed-complete partial order).

(c) It is an stylized proof that the relation:

∼ = {(map(f, zip(s, s′)), zip(map(f, s),map(f, s′))) | s and s′ streams}

is a bisimulation. We should be using ‘∼’ rather than ‘H=’ in the third step.
(d) It is a co-induction.

Interpretation (a) is still fairly common, but it reminds me of the Greek
Method of Exhaustion: cumbersome and unnecessarily indirect. Streams and
other infinite objects are fundmental in computing theory, and should not be
bound to a particular model [1]. Furthermore, the argument is a “forward” in-
duction, not a standard one. Miner’s PVS formalization is essentially (c) as jus-
tified by (a) and extensionality, but without the implicit assumption of equality.
He codes strategies to perform bisimulation proofs to give the appearance of (d).

More direct mathematical foundations have recently appeared. Figure 2
shows a complete [10] logic for recursive equations with first-order substitution,
due to Hurkens, McArthur, Moschovakis, Moss, and Whitney [5]. First-order sub-
stitution means that the recursive equations define non-parameterized objects,
like streams. The generalization to first-order systems of recursive functions is
in progress.

Figure 3 shows five transformation rules forming a basis for DDD archi-
tectural (stream) transformations. Introduction and identification are derived
instances of the recursion rule in Fig. 2. The replacement rule extends equality
to the underlying data type. Grouping is a structural rule allowing for the ma-
nipulation of multivalued functions. The collation rule, originally published as a
multiplexing rule, is essentially a version of specialization.

Thus, the logic in Fig. 2 is much better suited to the DDD formalism than
the PVS sequent calculus, suggesting that an “deep embedding” of DDD in PVS
is not appropriate, even if it were practical to do so.

10 S.D. Johnson

tautology: φ � φ
equality: � A = A , A = B � B = A , and A = B , B = C � A = C .

replacement: A = B � E[A/x] = E[B/x] , provided the substitutions are free.

specialization: ∀x(φ(x)) � φ(E) , provided the substitution is free.

weakening: If Γ � φ then Γ ∪∆ � φ .
cut: If Γ, ψ � φ and Γ � ψ then Γ � φ .
generalization: If Γ � φ(x) then Γ � ∀x(φ(x)) provided x is not free in Γ .

head: � A(x1, . . . , xn) where {�x = �B}
= A(x1 where {�x = �B}, . . . , xn where {�x = �B})

Bekič-Scott: � A where {�y = �C, �x = �B}
= (A where {�y = �C} where {. . . , xi = Bi where {�y = �C}, . . .}

.

fixpoint: � A where {x = A} = x where {x = A} .
recursion: Given A ≡ A0 where {x1 = A1, . . . , An = An},

B ≡ B0 where {y1 = B1, . . . , yn = Bm},
and a set, Σ of equations of the form (xi = yj),

if Γ,Σ � A0 = B0, and Γ,Σ � Ai = Bjfor each (xi = yj) ∈ Σ
then Γ � A = B.

provided No xi/yj occurs in B/A and no xi or yj occurs free in Γ .

Fig. 2. A complete logic for recursive systems with first-order substitution [5]

Introduction:
A where {�x = �B} ⇔ A where {�x = �B, y = C}
Provided y is a new variable, and the r.h.s. is well formed.

identification:
A where {. . . , x = B, y = C, . . .} ⇔ A where {. . . , x = B[C/y], y = C, . . .}.

Replacement:
A where {. . . , x = B[C/y], . . .} ⇔ A where {. . . , x = B[D/y], . . .}
provided ∆ |= C = D.

Signal grouping:
A where {x = B, y = C, . . .} ⇔ A where {(x, y) = (B,C), . . .}.
with a suitable generalization of substitution.

collation:
E[�/x] ⇒ E[B/x]
a one-way rewriting version of specialization, � a generic “don’t-care” constant.

Fig. 3. Adequate rules for DDD transformations on stream networks [7]. The ∆ in the
replacement rule stands for the underlying type theory.

View from the Fringe of the Fringe 11

Interactions between Interactive Formalisms. From the discussion above,
the idea of a single logical framework serving as the umbrella environment for
formalized analysis raises foundational problems. However, this is applied re-
search. A derivation is the proof of a theorem about equivalence, and so can be
stated in a logic whether proven or not. Conversely, I have already acknowledged
that useful transformation system requires the support of a logic, for instance,
to validate conditional transformations.

We have done a lot of work trying to integrate DDD with PVS (and some
preliminary work to integrate with ACL2). We have found the software engi-
neering hurdles to be more vexing than the semantic problems. To some extent,
these problems mirror the conceit that all reasoning should be embedded in a
one particular logic. Theorem provers, and DDD is no exception, are simply not
designed to talk to other theorem provers as peers.

There are differences in look and feel between building a deductive proof and
building a derivation. Taking PVS as an example, the two main proof windows
contain the text of relevant theories (definitions and theorems), and the proof
in the form of a sequent. Commands to the prover are mainly actions performed
on the sequent, although the process typically induces revisions to the theories.
In DDD, there are also two main windows, one the text of the expression being
transformed, the other a history of the transformations that have been applied.
The user focuses on the expression, not the derviation, so that interaction has
the feel of a syntax directed expression editor.

Thus, DDD and PVS interactions are complementary. One can imagine a
single environment supporting both, but such an environment tool would have
two distinct modes of interaction. It being unlikely that a consolidated interface
will appear any time soon, progress depends on the two systems talking to each
other. Unfortunately, neither DDD nor PVS, nor any of the interactive tools
we have used, has provisions for back-channel communication. These systems
assume a single user and also impose strong restrictions on their file system.

Whether these problematic qualities are a consequence of a a formalist’s
pecking order, or lack of software engineering resources, they need to be repaired.

4 Conclusions

In formal methods research there is a moving boundary between what is prac-
tical and what is productive. Productivity is affected by both automation and
expertise. The successful industrial users of formal verification are beginning
to recognize “verification engineering” as a distinct skill set, to which design
processes need to adapt. While it is important to focus on the transition from
practical to productive, there is considerable danger in extrapolating from the
past. It is certain that the best methods will eventually prevail and be reflected in
automated interactive reasoning. Hastening that eventuality requires a healthy
competition between “top-down” and “bottom-up” approaches, not only in the-
ory, but in applied research and exploratory practice. What I have found, and

12 S.D. Johnson

have tried to illustrate in this paper, is that this dialectic does not arise in just
one place but pervades every level of abstraction.

References

1. Jon Barwise and Lawrence Moss. Vicious Circles. CLSI Publications, Stanford,
California, 1996.

2. Carl B. Boyer. The History of the Calculus and its Conceptual Development. Dover,
New York, 1959. Republished 1949 edition.

3. Joshua D. Guttman, John D. Ramsdell, and Mitchell Wand. VLISP: a verified
implementation of Scheme. Lisp and Symbolic Computation, 8:5–32, 1995.

4. C. A. R. Hoare. Theories of programming: Top-down and bottom-up meeting in
the middle. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, FM’99
- Formal Methods. LNCS 1708.

5. A. J. C. Hurkens, Monica McArthur, Yiannis M. Moschovakis, Lawrence S. Moss,
and Glen T. Whitney. The logic of recursive equations. The Journal of Symbolic
Logic, 63(2):451–478, June 1998.

6. Steven D. Johnson. The Indiana University System Design Methods Laboratory
home page. http://www.cs.indiana.edu/hmg/hmg.html.

7. Steven D. Johnson. Manipulating logical organization with system factorizations.
In M. Leeser and G. Brown, editors, Hardware Specification, Verification and Syn-
thesis: Mathematical Aspects, pages 260–281. LNCS 408, 1989.

8. Steven D. Johnson. A workshop on formal methods education: an aggregation
of opinions. International Journal on Software Tools for Technology Transfer,
2(3):203–207, November 1999.

9. Steven D. Johnson and Paul S. Miner. Integrated reasoning support in system
design: design derivation and theorem proving. In Hon F. Li and David K. Probst,
editors, Advances in Hardware Design and Verification (CHARME’97), pages 255–
272. Chapman-Hall, 1997.

10. Lawrence S. Moss. Recursion and corecursion have the same equational logic.
Theoretical Computer Science, to appear in 2002.
http://math.indiana.edu/home/moss/home.html.

11. Amir Pnueli. These quotations are extracted from transparencies for invited talks
at PODC’90, FM’99, and CAV’00. They can be found at
http://www.wisdom.weizmann.ac.il/˜amir/invited-talks.html.

http://www.cs.indiana.edu/hmg/hmg.html
http://math.indiana.edu/home/moss/home.html
http://www.wisdom.weizmann.ac.il/~amir/invited-talks.html

	On Behalf of Interactive Reasoning
	Interlude: Are We Making Adequate Progress?
	DDD -- The Far Side of Theorem Proving
	DDD and Its Origins
	Toward Integrated Automated Interactive Reasoning
	Foundational Issues in Logic

	Conclusions

