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Abstract. This paper reports on a long-term inter-disciplinary research
project that aims at analysing the complex phenomenon of expressive
music performance with machine learning and data mining methods. The
goals and general research framework of the project are briefly explained,
and then a number of challenges to machine learning (and also to com-
putational music analysis) are discussed that arise from the complexity
and multi-dimensionality of the musical phenomenon being studied. We
also briefly report on first experiments that address some of these issues.

1 Introduction

This paper presents a long-term inter-disciplinary research project situated at
the intersection of musicology and Artificial Intelligence. The goal is to develop
and use machine learning and data mining methods to study the complex phe-
nomenon of expressive music performance (or musical expression, for short). For-
mulating formal, quantitative models of expressive performance is one of the big
open research problems in contemporary (empirical and cognitive) musicology.
Our project develops a new direction in this field: we use inductive learning tech-
niques to discover general and valid expression principles from (large amounts
of) real performance data. The project, financed by a generous research grant
by the Austrian Federal Government, started in early 1999 and is intended to
last at least six years. The research is truly inter-disciplinary, involving both
musicologists and AI researchers. We also expect to contribute new results to
both disciplines involved, and our first experimental results show that this is
realistic — for instance, in [26] both a new, general rule learning algorithm and
some interesting, novel musical discoveries are presented.

In recent years, there has been an increasing number of attempts, in the field
of empirical musicology, to formulate quantitative, mathematical or computa-
tional models of (aspects of) expressive performance (e.g., [1,12,13,16,17,18,19,
20,21]). This work has produced a wealth of detailed hypotheses and insights,
but has often been based on rather limited sets of performance data (which were
sometimes also produced under ‘laboratory conditions’). What distinguishes our
project is the use of large amounts of ‘real-world’ data, and the application of in-
ductive learning methods to discover interesting and possibly novel patterns and
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regularities in the data. In short, we aim at performing the most data-intensive
investigations ever done in musical expression research.

The purpose of the present paper is to give an overview of the project and
its current state, and to discuss the challenges that this application problem
presents to machine learning and knowledge discovery. In section 2, we explain
the basic notions of expressive music performance. Section 3 sketches the general
research framework of the project and briefly touches upon the enormous diffi-
culties involved in data acquisition and preparation (an aspect often neglected in
machine learning publications). Section 4 looks at the problem from a machine
learning point of view and discusses some of the particular challenges posed by
the complex nature of the target phenomenon. Section 5 briefly summarizes some
interesting results obtained so far and talks about some of our ongoing research.

2 Expressive Music Performance

When played exactly as notated in the musical score, a piece of music would
sound utterly mechanical and lifeless; it is both unmusical and physically im-
possible for a musician to perform a piece with perfectly constant tempo, even
loudness, etc. What makes a piece of music come alive (and what makes some
performers famous) is the art of music interpretation, that is, the artist’s un-
derstanding of the structure and ‘meaning’ of a piece of music, and his/her
(conscious or unconscious) expression of this understanding via expressive per-
formance: a performer shapes a piece by continuously varying important param-
eters like tempo, dynamics (loudness), articulation, etc., speeding up at some
places, slowing down at others, stressing certain notes or passages by various
means, and so on. It is this shaping that can turn a lifeless piece of music into a
moving experience, and that also makes both the composer’s and the performer’s
ideas clear to the listener. What types of parameters are at a performer’s disposal
partly depends on the instrument being played, but the most important dimen-
sions are tempo and timing, dynamics (variations in loudness), and articulation
(basically, the way successive notes are connected).

Expressive music performance plays a central role in our current musical cul-
ture, and musicologists are showing increased interest in understanding exactly
what it is that artists do when they play music. Are there explainable and quan-
tifiable principles that govern expressive performance? To what extent and how
are ‘acceptable’ performances determined by the (structure of the) music? What
are the cognitive principles that govern the production (in the performer) and
the perception (in the listener) of expressive performances? And what does this
have to do with how we experience music?

Our project hopes to contribute to answering the first two of these questions.
We collect precise measurements of performances by skilled musicians, and try
to detect patterns and regularities (and intelligible characterizations of these)
via inductive learning. As we also enable the computer to recognize structural
aspects of the music, potential relationships between expressive patterns and
musical structure should emerge naturally from these investigations.
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This approach is based on earlier work by the author [23,24], where it was
shown that given some knowledge about musical structure, a computer can in-
deed learn general performance rules that produce rather sensible ‘interpreta-
tions’ of musical pieces. The central problem with these early studies was a lack
of real performance data (the investigations were based largely on performances
by the author himself). In our current work, we go beyond this by working with
large collections of performances by skilled musicians, recorded on special instru-
ments (pianos) that precisely measure and record each action of the performer.
Ideally, we would also like to study the performance style of famous artists, on
the basis of, e.g., audio CDs, but that will depend on the availability of compu-
tational methods for precise musical information extraction from audio, which
is still an open problem in signal processing.

3 The Project: A High-Level View

To give the reader an impression of the complexity of such a ‘real-world’ knowl-
edge discovery project, Fig. 1 sketches the overall structure of our approach.
As explained above, the basic goal is to take recordings of pieces as played by
musicians, measure the ‘expressive’ aspects (e.g., tempo fluctuations) in these,
and apply some machine learning algorithms to these measurements in order to
induce general, predictive models of various aspects of expressive performance
(e.g., a set of classification or regression rules that predict the tempo deviations
a pianist is likely to apply to a given piece). These models must then be val-
idated, e.g., by comparing them to theories in the musicological literature, by
applying them to new pieces and analysing the musical quality of the resulting
computer-generated performances, and, of course, by measuring their general-
ization accuracy on unseen data. All this is sketched in the lower half of Fig.1.

However, the story is much more complex. The problems involved in acquiring
and pre-processing the data turned out to be formidable and forced us to develop
a whole range of novel music analysis algorithms. And since we spent so much
effort on these issues, I take the liberty of at least briefly mentioning them here.

3.1 Data Acquisition

The first problem was obtaining high-quality performances by human musicians
(e.g., pianists) in machine-readable form. There are currently no signal process-
ing algorithms that can extract the precise details of a performance from audio
signals, so we cannot use sound recordings (e.g., audio CDs) as a data source.
Our current source of information is the Boesendorfer SE290, a high-class concert
grand piano that precisely measures every key, hammer, and pedal movement
and records these measurements in a symbolic form similar to MIDI (though with
higher precision). We did eventually manage to get large sets of performances
that had been recorded on this instrument by a number of excellent pianists.
For instance, we currently have performances of 17 complete piano sonatas by
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Fig. 1. The research framework: a sketch of data processing/analysis steps.

W.A. Mozart as played by a highly skilled concert pianist. This data set corre-
sponds to some 5 1/2 hours of music and contains around 150.000 notes. We also
have performances, by a famous Russian pianist, of essentially the entire piano
works by Frédéric Chopin (more than 9 hours of music, 300.000 notes, 2 million
pedal measurements). This is a huge amount of data indeed; in fact, it is by far
the largest collection of detailed performance measurements that has ever been
compiled and studied in expression research.

Another line of current research, which cannot be discussed here, concerns
the extraction of performance information directly from digital audio data, e.g.,
audio CDs [9] (see top left corner in Fig. 1). This will eventually allow us to also
study at least certain limited aspects of expression in arbitrary recordings by
famous artists.
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3.2 Data Preprocessing

Preprocessing these data to make them usable for analysis and machine learning
is a formidable task. What we need is not only the performances (i.e., informa-
tion about how the notes were played), but also the notated music score (i.e.,
information about how the notes ‘should be’ played) and the exact note-to-note
correspondence between the two. Manually coding musical scores consisting of
tens of thousands of notes is not feasible; in order to get at the scores, we had
to develop computational methods for extracting (re-constructing) the score in-
formation from the expressive performances themselves. The result is a whole
range of new algorithms for music analysis problems like beat induction and
tempo tracking i.e., inferring the metrical structure of the piece in the face of
(sometimes rather extreme) tempo changes [10,11], quantization, i.e., inferring
the ‘intended’ onset times and durations of notes in the underlying score [2], and
inducing the correct enharmonic spelling of notes (e.g., G] vs. A[) [3], which is
not merely an aesthetic issue, but absolutely vital for the correct interpretation
of a musical passage.

The ‘raw’ score files extracted by these algorithms from the performance data
(up to now, some 150.000 lines of text) still needed to be manually corrected
and further annotated. And finally, the resulting score files were matched, in a
semi-automatic process, with the performance files to establish the exact note-
to-note correspondence; thousands of notes were manually identified and labelled
as missing or extraneous (most of these are related to ornaments like trills etc.).
From this information we could then finally compute all the detailed aspects of
a performer’s expressive playing (e.g., tempo changes, articulation details etc.)
that serve as training data in the inductive learning process.

3.3 Enhancing the Data: Musical Structure Analysis

The next problem concerns the representation of the music. What we are search-
ing for are systematic connections between the structure of the music (e.g., har-
monic, metrical, and phrase structure) and patterns in the performances (e.g.,
a gradual rise in loudness (crescendo) over a given phrase). The representation
of the musical pieces must therefore be extended with an explicit description of
certain structural aspects. Again, a complete manual analysis of a large number
of complex pieces is infeasible or at least highly impractical, so there is a need
for computational methods. In the context of our project, we have developed a
number of new music analysis algorithms that make explicit different structural
aspects of a piece such as its segment structure [5], categories of melodic motifs
and their recurrence [6], and various types of common melodic, harmonic, and
rhythmic patterns, as postulated by music theorists [15]. These algorithms are of
general interest to musicology, as they constitute formal computational models
of aspects of musical structure understanding that had not hitherto been suffi-
ciently formalized in music theory. The analyses computed by these tools can be
used as additional descriptors in the representation of musical pieces.
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Fig. 2. Frédéric Chopin, Etude Op.10 No.3, mm.1–9, as played by three different pi-
anists: dynamics (relative to average dynamics of entire piece) and tempo (relative to
average tempo) of the melody.
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4 Challenges to Machine Learning

The result of all these efforts are training data as exemplified in Fig. 2, which
shows the dynamics and tempo deviations extracted from performances, by three
different pianists, of a well-known piece by Frédéric Chopin. For the moment, we
restrict our attention to how the melodies of the pieces are played (and neglect
more complex aspects like interactions between different voices of a piece). All
the three expression dimensions that we are currently studying — tempo/timing,
dynamics, and articulation — can then be represented as curves that associate
a particular tempo, loudness, or relative duration value with each melody note.
Fig. 2 also contains a number of annotations added by the author to highlight
different structural aspects of both the piece itself, and the performances. These
will be of help in the following discussion.

The first question one might ask is: is there something to be learned at all?
Isn’t expressive performance something intangible, something that reflects the
artistic uniqueness of a performer and thus necessarily escapes any attempt at
formalisation or explanation? A look at Fig. 2 reassures us: there are, of course,
individual differences in the interpretations by the three pianists, but there are
also very clear commonalities in the three curves. In other words, there seem to
be some strong common principles at work that lead performers to do things
in a similar way. And these common performance patterns must somehow be
determined by the structure of the music being played.

In fact, this situation affords opportunities for at least two different types of
learning. The one that better fits the ‘traditional’ inductive learning setting is
learning to characterise and predict the commonalities between performances.
In the simplest case, a learner that is given different performances of the same
piece can be expected to find descriptions of those patterns that are common
to most of the performances, and treat those situations where the individual
performers differ as noise.1 Characterising common performance patterns that
point to some fundamental underlying principles is indeed the primary goal of
our project. But it would also be interesting to try to learn about characteristic
differences between individual artists. Here, the problem is not to find out where
two performers differ — that is directly obvious from the data — but to find
classes of situations in which there is a systematic and explicitly characteriseable
difference in behaviour. This might be a novel problem for machine learning.

A related question is how much we can expect to learn and formalise. Clearly,
we cannot expect artists to be entirely predictable. We will have to make do with
models that explain only a (possibly small) fraction of the observed phenomena.
This requirement favours learners that, rather than trying to cover all of the
instance space, can focus on those subspaces where something can be learned
and produce models that clearly indicate when something is outside their area
of expertise. Some interesting results along these lines are reported in [26].
1 ‘Real’ noise (in the sense of mistakes or inaccuracies by the performer) is not much

of a problem — high-class pianists are extremely precise, both in terms of motor
control and in terms of their memory and capacity to reproduce particular expressive
patterns over repeated performances.
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Another fundamental question is: what are the target concepts? And that re-
lates to a number of deep problems concerning representation, abstraction level,
and context. At first sight, the curves in Fig. 2 are reminiscent of time series,
which suggests the use of methods from time series analysis and forecasting.
However, this is an inappropriate view. It is not so much the past states that de-
termine how a curve is going to continue into the future; it is the structure of the
underlying musical piece that partly determines what ‘shapes’ or ‘envelopes’ (in
tempo, dynamics, etc.) a performer will apply to the music. The question then
arises as to what exactly the scope of these ‘shapes’ is, and what the structural
units in the music are to which these ‘shapes’ are applied — in other words,
what is the appropriate abstraction level?

Actually, musical expression is a multi-level phenomenon. Good performances
exhibit structure at several levels. Local deviations expressing detailed nuances
(e.g., the stressing of a particular note) will be embedded in more extended,
higher-level expressive shapes, such as a general accelerando–ritardando (speed-
ing up – slowing down) over an entire phrase. For instance, the expression curves
in Fig. 2 exhibit both local, note-level (see notes marked by asterisks) and
more global structural patterns (e.g., a clear crescendo–decrescendo applied the
medium-level phrase A.1 (dynamics curve), and an ever so slight accelerando–
ritardando over phrase A in the tempo dimension). Thus, it will be necessary
to learn models at different structural abstraction levels, which introduces the
additional problems of discerning and separating multiple pattern levels in given
training observations, and of combining learned models of different granularity at
prediction time. Moreover, apart from the note and the phrase levels, there may
be other, intermediate structural units relevant to explaining certain aspects of
the curves. Discovering these is an intriguing musicological problem. One of our
plans here is to study the utility of new substructure discovery algorithms [8].

Generally, the representation problem is a non-trivial one. There are many
conceptual frameworks in which music can be described. Finding the most ap-
propriate music-structural descriptors is a question of musicological interest.
Systematic experimentation with different music-theoretic vocabularies will be
necessary to identify these. In addition, the representation should capture the
relevant context of notes and musical structures, which is a tricky issue not
only because we do not know exactly how large this context should be, but
also because there are also some highly non-local effects at work (e.g., when
the recurrence of a melodic motif prompts the performer to ‘fall back’ into a
previous pattern). As for the essentially relational nature of music, which would
suggest the use of first-order logic for knowledge representation and Inductive
Logic Programming for learning, it will be a matter of experimentation to study
the trade-off between the increase in expressive power and the increase in search
complexity implied by the use of ILP algorithms (see [14]).

Another interesting observation, which may be a source of new learning prob-
lems, is that the different target dimensions are very likely to interact or be
inter-dependent. The performances in Fig.2 exhibit some clear parallels between
dynamics and tempo, particularly in the case of some local deviations. For in-
stance, there seems to be a strong correlation between dynamic emphasis and
individual note lengthening (see the events marked by asterisks in Fig. 2). At
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a higher level, one could construe a certain parallelism between the dynamics
and tempo shapes of the second of the high-level phrases (B) (see the arcs in
the dynamics and tempo plots), which would confirm a general hypothesis by
musicologists.2 In general, performers have different means of stressing musical
passages, by combining timing, dynamics, and articulation in certain ways. This
suggests that expressive performance might be an ideal candidate domain for
multi-task learning [7], where multiple learning tasks are pursued in parallel us-
ing a shared representation, which presumably enables the learner to transfer
information between different related problems. Moreover, we would be inter-
ested in an explicit characterisation of the connection between, say, timing and
dynamics, if there is one. This seems to be a new type of learning problem.

And finally, there is the evaluation problem. How is one to evaluate and quan-
tify the validity of a given theory in a domain where there is no unique ‘correct’
solution (there are usually many ‘acceptable’ ways of performing a piece)? The
empirical evaluation methods used in machine learning (measuring classification
accuracy and prediction error on unseen data, estimating true error via cross-
validation etc.) do have their place here, but they need to be complemented with
more music-specific methods that, while avoiding to make judgments concerning
the musical or aesthetic quality of a performance, do account for musical aspects
of a model’s predictions. This is a challenging research question for musicology
and is beyond the scope of the present paper.

5 First Results and Ongoing Research

It is only rather recently that we have begun to perform systematic learning
experiments with the huge data collections mentioned in section 3.1, so most
of the above questions and challenges are still open. Our investigations so far
have mostly concentrated on the note level, i.e., on describing and predicting
how individual notes will be played, given various features of the notes and their
immediate context. Here is a brief list of the most interesting results so far:

Basic learnability: In a first suite of experiments [25], we succeeded in show-
ing that even at the level of individual notes, there is structure that can
be learned. Standard inductive learners managed to predict the performer’s
choices with better than chance probability. Extented feature selection exper-
iments showed that different sets of music-theoretic descriptors are relevant
for different expressive dimensions (timing, dynamics, articulation).

New rule learning algorithm: Based on experiences gathered in these initial
investigations, we developed a new rule learning algorithm named PLCG
that can find simple partial theories in complex data where neither high
coverage nor high precision can be expected. The PLCG algorithm and some
experiments with it are described in more detail elsewhere in this volume [26].

2 In fact, this parallelism becomes clearer once certain local distortions and artifacts in
the expression curves (caused, e.g., by the grace notes in bars 7 and 8) are removed.
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Partial note-level rule model: PLCG has discovered a number of surpris-
ingly simple and surprisingly general and robust3 note-level expression prin-
ciples [27,28]. These rules are currently investigated more closely from a
musicological perspective; some of them will probably form the nucleus of a
quantitative rule-based model of note-level timing and articulation.

Learning at higher structural levels: In some limited earlier studies [23,
24], we had already found indications that learning at multiple structural
levels does indeed improve the results (and the musical quality of the result-
ing computer-generated performances) considerably. However, the definitions
of these higher musical levels and particularly the methods for combining
learned theories of different granularity were very ad hoc, and the training
material was extremely limited. We are currently developing a more princi-
pled approach.

Discovering stylistic differences: Regarding the possibility of discovering
stylistic differences between different performers, we had obtained first in-
direct positive evidence in an early experiment that involved performances
of the same piece by both the famous Vladimir Horowitz and a number of
advanced piano students [22]. There it turned out that rules learned from
Horowitz yielded a significantly higher predictive accuracy on other Horowitz
data than on the student data, and vice versa. Recently, we have started new
focussed investigations on this issue, with the aim of finding characterisations
of these differences. This can be done with standard inductive rule learning
algorithms, but requires the design of a different type of learning scenario.
In a small initial experiment, several interesting rules were discovered that
might describe characteristic differences in behaviour between the two great
pianists Alfred Cortot and V. Horowitz. But the data were much too limited
to permit general conclusions. We are now planning to repeat this type of
experiments with a much more extended data set.

Machine learning for structural music analysis: And finally, computa-
tional music research offers many other opportunities for machine learning
that are not necessarily related to the performance issue itself. There are
many problems in automated structural music analysis for which there are
as yet no reliable algorithms (e.g., harmonic analysis, phrase structure anal-
ysis, etc.) and which could benefit from inductive learning. For instance,
we have developed an algorithm for finding classes of musical motifs and
for elucidating the motivic structure of a piece, based on a new clustering
method. This algorithm has been shown to be capable of reproducing mo-
tivic analyses by human musicologists of such complex pieces as Schumann’s
Träumerei and Debussy’s Syrinx [6], and of predicting the categorizations
made by human listeners [4].

Obviously, these are just first steps in a long research journey that should
take us closer to our final goal — a quantitative, composite computational theory
3 For instance, 4 simple timing rules turn out to be sufficient for correctly predicting

more than 20% of a pianist’s local ritardandi, and these rules seem to generalize well
to music of different styles.
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that explains as much as possible of the various dimensions of expressive music
performance, and the interactions between them — and that will force us to
address a number of novel machine learning problems on the way. This is a long-
term undertaking, and we would like to extend an invitation to motivated young
researchers to join our project team and work with us towards this goal.
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