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Abstract. New laboratory technologies have made it possible to mea-
sure the expression levels of thousands of genes simultaneously in a par-
ticular cell or tissue. The challenge for computational biologists will be to
develop methods that are able to identify subsets of gene expression vari-
ables that classify cells and tissues into meaningful clinical groups. Linear
discriminant analysis is a popular multivariate statistical approach for
classification of observations into groups. This is because the theory is
well described and the method is easy to implement and interpret. How-
ever, an important limitation is that linear discriminant functions need to
be pre-specified. To address this limitation and the limitation of linearity,
we developed symbolic discriminant analysis (SDA) for the automatic se-
lection of gene expression variables and discriminant functions that can
take any form. We have implemented the genetic programming machine
learning methodology for optimizing SDA in parallel on a Beowulf-style
computer cluster.

1 Introduction

New laboratory technologies such as DNA microarrays [1], the serial analysis
of gene expression (SAGE) [2], and protein mass spectrometry [3] have made it
cost-effective and efficient to measure the relative expression levels of thousands
of different genes in cells and tissues. The availability of massive amounts of
gene expression information afforded by such technologies presents certain sta-
tistical and computational challenges to those hoping to use this information to
improve our understanding of the initiation, progression, and severity of human
diseases. Current statistical and computational methods such as linear discrimi-
nant analysis are simplistic and inadequate. Linear discriminant analysis [4] is a
multivariate statistical classification procedure that linearly combines measure-
ments on multiple explanatory variables into a single value or discriminant score
that can be used to classify observations. This method is popular because there
is a solid theoretical foundation [5] and it is easy to implement and interpret
[6]. However, an important limitation is that the linear discriminant functions
need to be pre-specified and only the coefficients for each linear predictor are
estimated from the data. This limitation is not unique to linear discriminant
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analysis. Linear, polynomial, and logistic regression also require a pre-specified
model [7].

Symbolic regression was developed by Koza [8] as a means of identifying re-
gression equations that do not need to be pre-specified. Identification of optimal
symbolic regression models is accomplished using the genetic programming ma-
chine learning methodology, an approach that is capable of generating creative
solutions to a particular problem because it is not limited by human precon-
ceptions about what the solution should look like [9]. Symbolic regression appli-
cations have included the discovery of trigonometric identities [8], econometric
modeling [8], forecasting power demand [10], and modeling chemical process
systems [11,12].

The goal of the present study was to develop a symbolic discriminant analysis
approach by extending symbolic regression and parallel genetic programming to
identify optimal linear or nonlinear discriminant functions and coefficients. We
applied this new supervised classification method to identifying combinations of
gene expression variables that differentiate acute myeloid leukemia (AML) from
acute lymphoblastic leukemia (ALL) using the data collected and analyzed by
Golub et al. [13].

2 A Review of Linear Discriminant Analysis

Sir Ronald Fisher developed linear discriminant analysis (LDA) as tool for clas-
sifying observations using information about multiple variables [4]. Consider the
case in which there are two groups with n1 and n2 observations and k variables
measured per observation. Fisher suggested forming linear combinations of mea-
surements from multiple variables to generate a linear discriminant score (l) that
takes the form

lij = α1xij1 + α2xij2 + . . . + αkxijk (1)

for the ith group and the jth observation in that group where each α is a
coefficient and each x is an explanatory variable (e.g. gene expression variable).
The goal of LDA is to find a linear combination of explanatory variables and
coefficient estimates such that the difference between the distributions of linear
discriminant scores for each group is maximized.

Classification of observations into one of the two groups requires a decision
rule that is based on the linear discriminant score. For example, if lij ¿ lo then
assign the observation to one group and if lij ≤ lo then assign the observation to
the other group. When the prior probability that an observation belongs to one
group is equal to the probability that it belongs to the other group, lo can be
defined as the median of the linear discriminant scores for both groups. When
the prior probabilities are not equal, lo is adjusted appropriately. Using this
decision rule, the classification error for a particular discriminant function can
be estimated from the observed data. When combined with cross-validation or
independent data, the prediction error can be estimated as well.
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3 Symbolic Discriminant Analysis

An obvious limitation of LDA is the need to pre-specify the linear discriminant
function. Additionally, optimal classification of observations into groups may
not be possible with a linear combination of explanatory variables. To address
these limitations, we developed a method called symbolic discriminant analysis
(SDA) that is able to identify the optimal functional form and coefficients of
the discriminant function that may be linear or nonlinear. The SDA approach
is inspired by the symbolic regression approach of Koza [8].

The goal of Koza’s symbolic regression [8] is to identify a mathematical func-
tion or equation, in symbolic form, that fits a set of numerical data. Functionally,
symbolic regression equations take the form of a computer program that accepts
input values from one or more independent or explanatory variables and pro-
duces predictions for the dependent variable as output. These symbolic regression
equations are represented as binary expression trees. Each binary expression tree
is rooted with a mathematical function called a node. Each node or tree branch is
connected to another node or ends with a connection to a terminal representing
one of the independent variables. The number of vertical levels in the tree that
contain at least one node is referred to as the tree depth. In general, increasing
the number of levels in the tree increases the size and complexity of the symbolic
regression equations.

The first step in implementing symbolic regression is to decide which math-
ematical functions (e.g. +, -, /, *, log, etc.) will comprise the function set. Ad-
ditionally, the list of predictor or explanatory variables (e.g. X1, X2, X3, etc.)
that will comprise the terminal set must also be established. Random constants
can be added to the terminal set to allow coefficients to be estimated. Once the
function and terminal sets are defined, the next step is to identify the combina-
tion of functions and explanatory variables that minimize the sum of the squared
differences between the output or predicted values and the observed values of the
dependent variable. When the number of potential symbolic regression models
is effectively infinite, machine learning methods must be employed (see Section
4).

With SDA, the binary expression tree or symbolic equation is used to gen-
erate symbolic discriminant scores for each observation in each group. Once the
symbolic discriminant scores are generated, the classification error can be es-
timated as described in Section 2. In this study, the function set consisted of
addition, subtraction, division (protected from division by zero), and multiplica-
tion. The terminal set consisted of approximately 7100 gene expression variables
from the human leukemia dataset [13]. This number of explanatory variables
presents an extraordinarily large search space.

4 Parallel Genetic Programming

Genetic or evolutionary algorithms, neural networks, case-based learning, rule
induction, and analytic learning are some of the more popular paradigms in
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machine learning [14]. Genetic algorithms perform a beam or parallel search of
the solution space that is analogous to the problem solving abilities of biological
populations undergoing evolution by natural selection [15,16]. With this proce-
dure, a randomly generated ’population’ of solutions to a particular problem are
generated and then evaluated for their ’fitness’ or ability to solve the problem.
The highest fit individuals or models in the population are selected and then
undergo ’recombination’ or exchanges of model pieces. Recombination generates
variability among the solutions and is the key to the success of the beam search
just as it is a key mechanism of evolution by natural selection. Following recom-
bination, the models are reevaluated and the cycle of selection, recombination,
and evaluation continues until an optimal solution is identified. A limitation of
genetic algorithms is that the solutions or models must be represented by one-
dimensional binary arrays or ’chromosomes’. Thus, these algorithms lack some
flexibility. Koza [8] has addressed this by developing genetic programming which
operates on computer programs rather than binary arrays. This advance opened
the door for the optimization of problems ranging from robotics to electronic
circuit discovery [9].

As with any machine learning methodology [14], genetic programming is not
immune to stalling on local optima [17]. To address this issue, distributed or
parallel approaches to genetic programming have been implemented [8,17,18].
Here, multiple genetic programming populations are generated each evolving
semi-independently. At regular iterative intervals, the best solution obtained
by each population is migrated to all other populations. Thus, if one population
stalls on a local optimum, its search can be rekindled by the immigration of good
solutions from other regions of the search space. Parallel genetic programs are
conveniently implemented on parallel computer clusters where each population
evolves on a single node or processor with migration occurring to other nodes
via message-passing [19].

We used parallel genetic programming in the present study to optimize the
selection of symbolic discriminant functions and gene expression variables. We
implemented the parallel genetic programming by integrating the lil-gp software
package [20] with the parallel virtual machine (PVM) message-passing library
[19]. The parallel genetic program was run on two nodes of the VAnderbilt
Multi-Processor Integrated Research Engine or VAMPIRE, a 55 node Beowulf-
style parallel computer system running the Linux operating system. Each node
has two Pentium III 600Mhz processors, 256 Mb RAM, a network card, and a
10 Gb hard drive. A total of two populations were used each consisting of 200
individuals. We allowed the genetic programs to run a total of 100 iterations
with migration between each population every 25 iterations. A recombination
frequency of 0.6 was used along with a mutation frequency of 0.02. We limited all
binary expression trees to a node depth of six to prevent symbolic discriminant
functions from becoming too large to interpret.
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5 Data Analysis

Two independent human leukemia datasets were available for analysis [13]. We
selected this dataset because previous class prediction methods have been ap-
plied with marginal success [13]. The first dataset consists of 38 acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL) samples and was used
to develop symbolic discriminant functions of the gene expression variables. We
used a leave-one-out cross validation strategy with the parallel genetic program-
ming to select symbolic discriminant functions with low classification and pre-
diction errors. For each 37/38 of the data, we ran the parallel genetic program
and selected the resulting model that minimized the misclassification rate and
correctly predicted the class membership of the single observation left out of
the training step. Optimal symbolic discriminant functions were then evaluated
for their predictive ability using the independent dataset consisting of 34 AML
and ALL samples. All of the approximately 7100 gene expression variables were
available for possible inclusion in a model.

6 Results

We identified two ’near-perfect’ symbolic discriminant functions that correctly
classified 38 out of 38 (100%) leukemia samples in the training dataset and
correctly predicted 33 out of 34 (97.1%) leukemia samples in the independent
second dataset. Additionally, we identified 16 ’very good’ models that correctly
classified 38 out of 38 (100%) in the training dataset and correctly predicted 32
out of 34 (94.1%) in the independent dataset. The first near-perfect symbolic
discriminant function had four different gene expression variables while the sec-
ond had just two. Each had different combinations of gene expression variables
and different mathematical functions suggesting that there may be many sub-
sets of gene expression variables that define leukemia type. For example, the first
discriminant function had the form

X2555 ∗ (X1153 + X2289 + X3193) (2)

while the second had the form

X1835 + X2546 (3)

The binary expression trees for these two symbolic discriminant functions are
illustrated in Figure 1 while boxplots of the discriminant scores are illustrated in
Figure 2. For the first model (2), the genes identified were a testis-specific cDNA
on chromosome 17q (X2555), erythroid beta-spectrin (X1153), adipsin (X2289),
and nucleoporin 98 (X3193). For the second model (3), the genes identified were
CD33 (X1835) and Rho-E (X2546). Most of these genes are biologically related to
leukemia or leukemia progenitor cells. For example, the erythroid beta-spectrin
protein is a major component of red blood cell membranes and is expressed
during normal erythropoiesis. The adipsin gene is part of a chromosomal cluster
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of genes that is expressed during myeloid cell differentiation and the nucleoporin
98 gene is located at a chromosomal breakpoint that is associated with AML.
The CD33 gene encodes a differentiation antigen of AML progenitor cells and
is a very well-know pathological marker of AML. Thus, from approximately
7100 different gene expression variables, SDA identified several genes with direct
biological relevance to human leukemia. Further, the level of prediction accuracy
obtained with these two symbolic discriminant functions was nearly perfect and
significantly better than the class prediction methods of Golub et al. [13].

Fig. 1. Binary expression trees for model (1) on the left and model (2) on the right.
Note that the nodes are arithmetic functions and the terminals are gene expression
variables.

7 Discussion

This paper has presented symbolic discriminant analysis (SDA) for the identifi-
cation and modeling of gene expression variables that can classify observations
and predict clinical outcomes. This new approach to linear and nonlinear dis-
criminant analysis is based on the building block idea of symbolic regression [8].
That is, we formed discriminant functions by selecting gene expression variables
and mathematical functions of the gene expression variables. We implemented
the genetic programming machine learning methodology [8,9,17] in parallel [18]
to optimize selection of symbolic discriminant functions. Application of SDA
to the problem of identifying symbolic discriminant functions of gene expres-
sion variables that classify and predict human leukemia types demonstrates the
utility of this approach for both variable or feature selection and statistical mod-
eling. This is particularly important for gene expression monitoring because as
many as 10,000 or 15,000 gene expression variables are routinely being measured.
Further, the relationship between different combinations of gene expression vari-
ables and clinical endpoints such as cancer type may be part of a very rugged
fitness landscape.
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Fig. 2. Boxplots representing the distributions of symbolic discriminant scores gener-
ated using model (1) on the left and model (2) on the right. Boxplots are presented
for the training or classification dataset (n=38) and the testing or prediction dataset
(n=34). The shaded box of each plot represents the interquartile range of the distri-
bution, the white line represents the median, and the whiskers or brackets above and
below each box represent the maximum and minimum values, respectively. Note that
for the training datasets, the whiskers of the ALL and AML scores do not overlap.
This reflects the correct classification of every observation.

7.1 What Are the Advantages of SDA?

There are two important advantages of SDA over traditional multivariate meth-
ods such as linear discriminant analysis [4,5,6] and multiple logistic regression
[21]. First, SDA does not pre-specify the functional form of the model. For ex-
ample, with linear discriminant analysis, the discriminant function must take
the form of equation (1). This limits the models to linear additive functions of
the explanatory variables. With SDA, the basic mathematical building blocks
are defined and then flexibly combined with explanatory variables to derive
the best discriminant function. In this study, we used the four basic arithmetic
functions as building blocks. However, other functions such as square root, log-
arithm, exponential, and absolute value could have been used. In fact, virtually
any function can be added to the list with little modification of the code. We se-
lected the basic arithmetic function in this study to help facilitate interpretation
of discriminant functions. Additionally, combining multiple arithmetic functions
can approximate many other mathematical functions such as square root and
logarithm.

The second advantage of SDA is the automatic selection of variables from
a list of thousands. Traditional model fitting involves stepwise procedures that
enter a variable into the model and then keep it in the model if it has statistically
significant marginal or independent main effect [7,21]. Interaction terms are only
evaluated for those variables that are already in the model. This deals with the
combinatorial problem of selecting variables, however, variables whose effects
are mostly through interactions with other variables will be missed. This may
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be an unreasonable assumption for most complex biological systems. The SDA
approach employs a parallel machine learning approach to selecting variables
that permits interactions to be modeled in the absence of marginal effects. For
example, the first ’near-perfect’ model (2) identified from the leukemia dataset
is a linear combination of interaction terms. No one variable contributes to the
discriminant function independently of the others.

7.2 What Are the Disadvantages of SDA?

Although SDA has several important advantages over traditional multivariate
statistical methods, there are several disadvantages. First, there is no guarantee
that the genetic programming machine learning methodology will find the opti-
mal solution. Heuristic searches tend to sacrifice finding an optimal solution in
favor of tractability [14]. Implementing evolutionary-type machine learning algo-
rithms in parallel certainly improves the chances of finding an optimal solution
[8,17,18], but it is not a certainty. This is due to the stochastic nature of how
genetic programming operates. The initial populations of solutions are randomly
generated and the recombination and mutation occurs at random positions in
the binary expression trees. Further, there may be a stochastic component to
how the highest fit individuals are selected. For these reasons, evolutionary-type
algorithms should be run multiple times with multiple parallel populations.

A second disadvantage of this approach is the computational requirement.
Linear discriminant analysis can be performed on a standard desktop worksta-
tion while SDA requires a parallel computer cluster for optimal performance.
When the number of genes to be evaluated is large (e.g. n=5,000 or n=10,000),
the power of a parallel computer is required. Although such systems are fairly
inexpensive to build, the time investment to establish and manage a parallel
computing farm may be prohibitive to some.

A third disadvantage is the complexity of the symbolic discriminant functions
obtained. An attractive feature of linear discriminant analysis is the simplicity
of the models, which facilitates interpretation. Although the two near-perfect
models obtained using SDA in the present study were fairly simple, SDA has
the potential to generate rather large complex models. If so desired, this can be
handled in several ways. One solution is to limit the size of the binary expression
trees that the genetic program can build and manipulate. In this study, we
limited the size of the symbolic discriminant functions by limiting the depth
of the binary expression trees to a maximum of six. An alternative solution
is to simplify the mathematical functions used. For example, by limiting the
functions to addition and subtraction, SDA becomes linear discriminant analysis
with heuristic variable selection.

7.3 Other Machine Learning Approaches to SDA

We selected parallel genetic programming as a machine learning methodology
for optimizing SDA for several reasons. Most importantly, genetic programming
provided the necessary flexibility to use binary expression tree representation
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of symbolic discriminant functions. Additionally, given the size and complexity
of the solution space, performing multiple hill-climbing-type searches in parallel
(i.e. a beam search) has a higher likelihood of success than a single hill-climbing
search [14]. However, with this in mind, genetic programming is not the only
option for optimizing SDA. For example, it might be advisable to carry out a
limited exhaustive search as an initial step. The second near-perfect symbolic
discriminant function (3) obtained during the analysis of the leukemia data was
a simple additive linear function of two variables with no corresponding coeffi-
cients. This function could have been identified by carrying out an exhaustive
search of the 25,201,450 possible pairwise combinations of gene expression vari-
ables. However, the first symbolic discriminant function (2), which contained
a completely different set of genes with multiplicative effects, would have been
missed.

Perhaps a more promising approach would be to combine the general search
features of parallel genetic programming with the local search features of simu-
lated annealing [22] or a stochastic search. For example, Krasnogor and Smith
[23] employed a stochastic search once the genetic algorithm had reached a con-
vergence state. Application of this new hybrid genetic algorithm seemed to im-
prove optimization of the traveling salesman problem and a protein folding prob-
lem. We will explore the use of a combined local search for optimizing SDA in
future studies.

8 Conclusions

We conclude from this study that the SDA approach provides a powerful alterna-
tive to traditional multivariate statistical methods for identifying gene expression
patterns that are predictive of a clinical endpoint. The advantages of SDA in-
clude the ability to automatically identify important subsets of gene expression
variables from among thousands of candidates and the ability to automatically
identify the most appropriate mathematical functions relating the gene expres-
sion variables to a clinical endpoint. We anticipate this will be an important
methodology to add to the repertoire of supervised pattern recognition and ma-
chine learning approaches for mining gene expression patterns.
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