
A Language-Based Similarity Measure

Lionel Martin and Frédéric Moal

LIFO - Université d’Orléans,
rue Léonard de Vinci, BP 6759,

45067 Orleans cedex 2, FRANCE
{martin,moal}@lifo.univ-orleans.fr

Abstract. This paper presents an unified framework for the definition
of similarity measures for various formalisms (attribute-value, first order
logic...). The underlying idea is that the similarity between two objects
does not depend only on the attribute values of the objects, but more
especially on the set of the potentially relevant definitions of concepts
for the problem considered.
In our framework, the user defines a language with a grammar to specify
the similarity measure. Each term of the language represents a property
of the objects. The similarity between two objects is the probability that
these two objects both satisfy or both reject simultaneously the proper-
ties of the given language. When this probability is not computable, we
use a stochastic generation procedure to approximate it.
This measure can be applied for both clustering and classification tasks.
The empirical evaluation on common classification problems shows a very
good accuracy.

1 Introduction

Distance or similarity measures play a central role in many machine learning
problems. Usually, the definition of similarity between objects depends on the
formalism used for the object description. Two main approaches have been pro-
posed: weight-based similarity measure, relying on a weighted sum of similarity
of different parts of objects (used in attribute-value languages) and description-
based similarity measure based on the construction of object descriptions, used
in both attribute-value languages and first order logic.

In the case of attribute-value languages, objects are vectors and the similarity
between objects depends on the similarity of vectors components; two types of
attributes are separately considered: nominal attributes (having value in an un-
ordered finite -and generally small- set of symbolic values) and numerical ones.
In most cases, two different values of a nominal attribute are not similar (simi-
larity=0), otherwise they are similar (similarity=1): in this case, the similarity
between two objects is the number of common attributes. In some cases, the
frequency of values is used to define the similarity of nominal attributes [CS93,
SW86]. Numerical attributes can be considered in various ways: the similar-
ity can be defined from their Euclidean distance or their normalized distance
[Aha89,GCM95] or values are discretized and then considered as nominal at-
tributes. The final similarity between tuples is the sum of the similarity induced

L. De Raedt and P. Flach (Eds.): ECML 2001, LNAI 2167, pp. 336–347, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Language-Based Similarity Measure 337

by the nominal attributes and the similarity induced by the numerical attributes.
This sum can be weighted with different techniques: weights are computed by
statistical techniques [MT94], based on conditional probabilities [SW86], or are
obtained by an optimization technique such as a genetic algorithm.

Another way to build a similarity function consists of producing a description
of objects. When such descriptions are sets (of atoms), the similarity is based
on description intersections [Bis92,EW96]; when descriptions are rules, the sim-
ilarity between two objects is given by the number of rules satisfied by the
two objects [Seb97,SS94]. RISE [Dom95] builds rules for attribute-value objects
and proposes an extension of weight-based similarity in the case of generalized
attribute-value vectors.

In any case, two objects are considered to be similar when they share some
properties. However, it is important to notice that the main expectation from a
similarity measure is the ordering induced, i.e. such measure is used to state that
object e1 is more similar to e2 than e3 is. Then e1 can be considered to be more
similar to e2 than e3 is, if e1 shares more properties with e2 than with e3. This
is achieved by several rule-based similarity measures [Dom95,SS94,Seb97,EW96]
which consider a finite set of properties, made of rules learned to characterize
some objects. The common point of these approaches is that the considered rules
have a discriminating power: a rule is built to discriminate a set of examples from
a set of counter-examples, and then the similarity is induced in a supervised
manner. So this set of rules is strongly biased by the original set of objects and
the induction technique used.

In this paper, we propose to base the similarity measure on a language, rep-
resenting a possibly infinite set of properties or rules. This language is composed
of terms that represent concept descriptions. Each term of the language is as-
sociated with an evaluation function, able to test whether an object satisfies
the property or not. In the case of a finite language, the similarity between two
objects is given by the number of properties both objects satisfy or reject si-
multaneously. In the case of infinite languages, we propose to approximate the
similarity by randomly generating a finite subset of the language.

The next section formalizes our similarity definition for finite languages. We
focus on the properties of this similarity and its limitations for infinite languages.
The Section 3 presents a constraint tree grammar formalism used to specify
a language and to generate a finite subset of this language. In Section 4, we
present experimental results of this similarity: it has been implemented for a
classification task based on a nearest neighbor algorithm and tested on some
well-known attribute-value problems.

2 A Similarity Measure

We consider a set of objects E = {e1, . . . , em} and a language L, i.e. a (possibly
infinite) set of terms {t1, . . . , tn, . . . }. In this paper, a term t ∈ L represents
a property (for example color=blue); for each object e ∈ E , either e satisfies t
(noted t(e) = 1) or e does not satisfy t (noted t(e) = 0). We will consider further
(Section 2.5) the case where, due to incomplete or imprecise data, we cannot
state that t(e) = 1 or t(e) = 0.

338 L. Martin and F. Moal

Now, given two objects ei and ej in E and a property t ∈ L, we say that ei

and ej are equivalent w.r.t. t if t(ei) = t(ej) (ei and ej can not be distinguished
by t). When ei and ej are equivalent w.r.t. most terms (resp. a few terms) of L,
we propose to consider that the similarity between ei and ej be high (resp. low).
We propose to formalize this similarity by using a probability measure.

2.1 Finite Languages

Let L be a language. A probability measure [DeG86] is defined over a space
(Ω,B) where B is an α-algebra over the basic space Ω. We define the basic space
Ω = L, i.e. terms t ∈ L are elementary events.

In the case of finite languages L, the space (L,P(L)), where P(L) is the
powerset of L, is probabilisable. The similarity between ei and ej can then be
defined as the probability that ei and ej are equivalent w.r.t. a term t randomly
chosen in L. Let Lei,ej = {t ∈ L|t(ei) = t(ej)} be the set of terms of L for which
ei and ej are equivalent; Lei,ej

∈ P(L) and we define the previous similarity as
the probability of the event Lei,ej

Definition 1. Let L be a finite language and P a probability measure over
(L,P(L)). Let ei and ej be two objects of E and Lei,ej

= {t ∈ L|t(ei) = t(ej)} ∈
P(L). The similarity with respect to L between ei and ej, noted simL(ei, ej), is
defined by simL(ei, ej) = P (Lei,ej).

In the following, we will write sim(ei, ej) for simL(ei, ej) when L is not
ambiguous.

In the case of a uniform probability over L, i.e. each term t ∈ L has the same
probability: P (t) = 1

|L| , this definition is equivalent to

sim(ei, ej) =
1
|L| .

∑

t∈L
δt(ei, ej)

where δt(ei, ej) = 1 if t(ei) = t(ej) and δt(ei, ej) = 0 if t(ei) 6= t(ej).
In this definition, the similarity between ei and ej is the rate of terms t ∈ L

such that t(e1) = t(ej). Previous works propose a similarity measure based on a
sum of weights associated with learned rules [SS94], attributes [CS93,SW86] or
occurrences [Bis92]. In the previous definition, the sum is not weighted and is
computed for any term of the language.

2.2 Example

In this example, objects are glasses of colored water. Each object is described
by a couple < col, temp > where col (resp. temp) is the color (resp. temperature
expressed in fahrenheit degrees) of the object.

e1 =< green, 14 > e3 =< orange, 221 >
e2 =< red, 203 > e4 =< pink, 266 >

A Language-Based Similarity Measure 339

Language L1. The first language considered here focuses on the temperature of
the water; it contains 30 terms: L1 = {temp > 0, temp > 10, . . . , temp > 290}
and we consider a uniform probability over L1. For each ei and ej , we can
compute sim(ei, ej): for example, sim(e1, e2) = 11/30, sim(e1, e3) = 9/30, . . .
and we can see that the most similar objects w.r.t L1 are e2 and e3 which is
intuitive if we focus on the temperature.

Language L2. The second language considered here focuses on the chemical state
of the water (gaseous, liquid, solid): the language L2 is defined by two terms:
{temp ≤ 32, temp ≤ 212} and we consider a uniform probability over L2. With
respect to this language, the most similar objects are e3 and e4 (sim(e3, e4) = 1).
Moreover, sim(e2, e4) = 1/2 and sim(e1, e4) = 0, i.e the object e4 (gaseous) is
less far from the object e2 (liquid) than the object e1 (solid).

Let us notice that if we had added an attribute state to the object description,
the language L′

2 = {state = solid, state = liquid, state = gazeous} would lead
to a different result since then, sim(e3, e4) = 1 but sim(e2, e4) = 1/3.

Language L3. Let us consider now a language focusing on the color of objects.
With respect to the language {col = green, col = pink, col = red, col = orange},
for any ei, ej with ei 6= ej , we have sim(ei, ej) = 1/2. In such cases, we would
like to use a distance over the domain of color, indicating that red and pink
are more similar than red and orange, In this case, we propose to ex-
tend the previous language by adding {(color=red or color=pink), (color=red
or color=orange), . . . }. With this language, e2 and e4 share the property
(color=red or color=pink) and then sim(e2, e4) > sim(e1, e4). Finally we can
consider a non-uniform probability over L3, given a greater weight to (color=red
or color=pink) than to (color=red or color=orange). Finally, we can consider
the following language (the probability of each term is written in boxes) :
L3 = {col=green 20% , col=pink 20% , col=red 20% , col=orange 20% ,

(color=red or color=pink) 12% , (color=red or color=orange) 6% , (color=pink

or color=orange) 2% }. With such a language, the most similar objects are now
e2 and e4 (sim(e2, e4) = 20 + 0 + 0 + 20 + 12 + 0 + 0 = 52%).

Preliminary conclusion. In this example, the similarity between objects depends
on the language considered. It shows that the similarity is not intrinsic to the
objects, but depends on the point of view by which objects are considered, i.e.
on properties (or concept definitions) that are relevant to the user. The language
can then be viewed as a central bias on the similarity definition. We propose in
Section 3 to use a grammar to express such a bias.

2.3 A Pseudo-Distance

For any ei, ej ∈ E , sim(ei, ej) ∈ [0, 1]; a dissimilarity measure can be naturally
defined as dissim(ei, ej) = 1 − sim(ei, ej) = P (Lei,ej

). It is easy to see that
dissim is symmetric. To show that dissim satisfies the triangle inequality, i.e.
for any e1, e2, e3, dissim(e1, e3) ≤ dissim(e1, e2) + dissim(e2, e3), we have to

340 L. Martin and F. Moal

prove that P (Le1,e3) ≤ P (Le1,e2) + P (Le2,e3). For any t ∈ L, if t(e1) 6= t(e3)
then either t(e1) 6= t(e2) or t(e2) 6= t(e3) which prove the triangle inequality.

Since dissim(e, e) = 0 for any e, dissim is a pseudo distance. However dissim
is not a distance since it may exist ei, ej ∈ E with dissim(ei, ej) = 0 but ei 6=
ej . This case happens when the language does not allow to distinguish two
objects (∀t ∈ L, t(ei) = t(ej)): in Example 2.2, objects e5 =< blue, 18 > and
e1 =< green, 14 > are equivalent w.r.t. L1 (dissimL1(e1, e5) = 0); for practical
purpose, e1 and e2 are equivalent but they are not equal.

2.4 Usual Languages

For objects described by a set of attributes A = {Atti}, with a domain Di for
Atti with nominal values, a (finite) language can be defined by LA=v = {Atti =
vij |vij ∈ Di}.

The dissimilarity associated with this language is a distance equivalent to
the Hamming distance if each attribute is binary.

If we consider objects described by a set of numerical attributes A = {Atti},
various languages can be considered:

LA=n = {Atti = vij
}

LA≤x = {Atti ≤ vij}
LA≥x = {Atti ≥ vij

}
Lx≤A≤y = {vik

≤ Atti ≤ vij
}

. . .
where vij

is chosen among the possible values of Atti or is taken from a given
range.
We can also consider languages such as {Exp ≤ v} where Exp is a numeric
expression (linear or not) involving attributes, such as

LLin = {ai
0 + ai

1Att1 + . . . + ai
nAttn ≥ 0|ai

k ∈ IR}
Finally, any combination of these languages can be considered, also extended
with conjunctions and disjunctions.

For object described by atoms built with a predicate p, the language can be
defined as the set of clauses (constrained or not) having the predicate p for head:

LFOL(p) = {h← l1, . . . ln|h = p(X1, . . . , Xk)}.
For example, consider objects called a, b, c, . . . , where some objects are con-

tained into others. This can be represented in a first order theory with predicates
contains, shape and nb elements: an example is shown in Fig. 1.

With this representation, we can define a similarity measure between atoms
object(a), object(b), . . . with respect to the set of clauses:

object(X)← shape(X, circle).
object(X)← shape(X, square).
object(X)← shape(X, triangle).
object(X)← contains(X, Y), shape(Y, circle).
object(X)← contains(X, Y), shape(Y, square).
object(X)← contains(X, Y), shape(Y, triangle).

Two objects are similar if they are both covered or rejected by the same
clauses. In the previous example, the similarity between object(b) and object(f)
is maximum (sim(object(b), object(f)) = 1).

A Language-Based Similarity Measure 341

contains(a, b).

shape(a, circle).

nb_elements(a, 2).
...

objects theory

contains(a, c).
a

c

f

g

i

j k

b

e

d

h

Fig. 1. Example in first order logic

We can also consider a language involving the number of objects (predicate
nb elements) by considering clauses such as

object(X)← nb elements(X, N), N ≥ 2.
In this framework, the similarity measure is different from [HWB01] and

[Pla95] which is based on the structure of terms.

In the case of infinite languages, it can be more complicated or impossible
to build a probability measure. Moreover, even for finite languages, it can be
hard to compute exactly the similarity between two objects. For these reasons,
we propose to define the similarity using a finite subset of the language, stochas-
tically generated. In the next section, we propose a grammatical formalism to
generate such sub-language.

2.5 Handling Missing and Constrained Values

The previous similarity definition can be extended to treat missing values: when
a value is missing in ei, it may be impossible to evaluate t(ei) for some t ∈ L.
Let L(ei) be the set of t ∈ L such that t(ei) can be evaluated. To express the
similarity between ei and ej , the language is restricted to terms t such that both
t(ei) and t(ej) can be evaluated:

simL(ei, ej) = simLei
∩Lej

(ei, ej)
Moreover, attribute-value languages do not allow to handle approximate val-

ues. Consider an object for which an attribute is not precisely known, but is
known to be ≤ 10. Such an attribute is then either considered unknown (value
?) or is specified by a symbolic attribute, which require that each value for this
attribute is symbolic.
The similarity proposed here may support an attribute-value specification, with
constraints: an object is then a constrained vector c2 < x1, . . . , xn > where c
express constraints on variables xi. For example,

e6 : (temp ≤ 10) 2 < col, temp >
is a constrained vector for which the color is unknown and temperature is not
precisely known, but known to be ≤ 10◦F .

With this formalism, a term t ∈ L can be expressed using constraints (like
all languages of example 2.2) and we note ¬t the negation of t; in most cases
(languages made with equalities, inequalities, disequalities, conjunction, disjunc-
tion), ¬t is also a constraint. Let e = c2 < x1, . . . , xn > and t a term, to

342 L. Martin and F. Moal

determine if e satisfies t (t(e) = 1) or not (t(e) = 0),we have to compute the
inconsistency of a constraint:

– t(e) = 0 iff t, c is inconsistent,
– t(e) = 1 iff ¬t, c is inconsistent,
– otherwise t(e) is undetermined.

For example, let t1 = (temp ≥ 15), t2 = (temp ≤ 20) and t3 = (temp ≥ 5):
t1(e6) = 0, t2(e6) = 1 and t3(e6) is undetermined,

Finally, as for missed values, sim(ei, ej) can be defined by restricting the
language to the set of terms t such that both t(ei) and t(ej) are defined. In
example 2.2, object e6 is highly similar to e1 with respect to both L1 and L2.

3 Constraint Tree Grammars

We propose in this section a new formalism able to express a language speci-
fication: constraint tree grammars. Regular tree grammars are commonly used
to specify language composed of structured terms. Such grammars [GS84] are
defined by

– a set of constructors F (function symbols and their arity) such as =, ≥,
or, red, color, ... We denote T (F) the set of terms over F (for example
or(= (color, red),≥ (temp, 10))),

– a set of non-terminal symbols containing an axiom noted A,
– and a set of production rules.

The set of production rules specify how terms can be built. In order to handle
context dependent informations, we propose to extend this formalism by adding
constraints to the production rules. In most constraint languages [MS98], con-
straints are defined over a structure D composed of a set of function symbols,
an interpretation domain D, a set of constraint predicate symbols and a set of
evaluation functions: these functions define the evaluation of terms on D and
the boolean values of constrained atoms.

The idea is to use constraints to declaratively define biases on the language.
This formalism has been deeply studied in [Moa00]. The main advantage here
is the compositionality: from different languages (specified by their grammar),
we can build a new grammar representing the union or intersection of initial
languages.

Moreover production rules can be used to stochastically generate terms of the
language for building a finite subset of the (possibly infinite) language specified
by the grammar. Finally, weights can be associated with each rules in order to
specify different probabilities.

3.1 Formal Definition

Formally, a constraint tree grammar is defined as follows:

A Language-Based Similarity Measure 343

Definition 2. A Constraint Tree Grammar is a tuple G = (A, N,F ,D, R)
where:
• A is the axiom,
• N is a set of non-terminal symbols X(x1, x2, . . . , xn), where (x1, x2, . . . , xn)
represents the set of attributes linked to the symbol X. Ñ represents the set of
symbols of N , without their attributes specifications (A ∈ Ñ).
• F is a set of terminal symbols, with their arities,
• D is constraint domain,
• R is a finite set of production rules X → α2c, where X ∈ Ñ , α ∈ T (F ∪ Ñ),
and c is a set of constraints on the attributes of the non-terminals occurring in
the rule. This set is interpreted as a conjunction of constraints.

For instance, the language composed of disjunctions of terms in L2∪L3 (§2.2)
with at most two disjunctions is specified by the grammar in Table 1.

We use the classical notation of attribute grammars: the value of the attribute
a in the non-terminal N is denoted by N.a, and if there are more than one
occurrence of the same non-terminal in a rule, these occurrences are numbered
from left to right, starting from 0.

Table 1. A Constraint Tree Grammar.

Gc = { A,
{A(d), B(d), T, Temp, Col},
{or/2, = /2, ≤ /2, temp, col, red, pink, orange, blue, 32, 212},
(IN, {+, 0, 1}, {=}),
{
A → B 2{A.d ≤ 2, A.d = B.d}
B0 → or(B1, B2) 2{B0.d = 1 + B1.d + B2.d}
B → T 2{B.d = 0}
T → ≤ (temp, Temp)
T → = (col, Col)
Col → red | pink | blue | orange
Temp → 32 | 212 } }

In this grammar, Temp → 32 | 212 is an abbreviation for the two rules
Temp → 32 and Temp → 212 (we omit the constraint when it is true). The
non-terminal symbol A has an attribute d indicating the number of disjunctions
in a term. This number must be less or equal than 2 (A.d ≤ 2).

3.2 Generated Language

We describe now the process of generating a term from a constraint tree gram-
mar. The starting point for this process is made of the atom and an empty set
of constraints ∅: < A2∅ >.

Then, a derivation step for a constrained term < t2c > consists of choosing a
non-terminal symbol X in t, choosing a derivation rule X → α2c′, substituting
X with α in t to get t′ and adding the constraint c′ to c (the symbols A.n

344 L. Martin and F. Moal

occurring in the constraints are considered as variable in constraints; for this
reason, these variables must be renamed in c′).

In the previous example, the term < A2∅ > can be derived in < B2{A.d <
2, A.d = B.d} > using the first production rule. Then, this term can be derived
either in < or(B1, B2)2{A.d ≥ 2, A.d = B.d, B.d = B1.d + B2.d} > using the
second production rule, or in < T2{A.d ≥ 2, A.d = B.d, B.d = 0} > using the
third one.

Definition 3. Given a Constraint Tree Grammar G = (A, N,F ,D, R), the lan-
guage generated from G (noted L(G)) is the set of ground terms (without non-
terminal symbol) t such that there exists a constrained term < t2c > obtained
by derivations from < A2∅ > and where the set of constraints c is satisfiable.

Let us notice that when a term is generated, if the derivation leads to a
terms < t2c > such that c is not satisfiable, the derivation can be stopped
(or backtrack) since no term of the language can be built by derivation from
< t2c >.

For example, if we use the second rule from the term < or(B1, B2)2{A.d ≥
2, A.d = B.d, B.d = 1+B1.d+B2.d} >, we can derive the term < or(or(B3, B4),
B2) 2{A.d ≥ 2, A.d = B.d, B.d = 1+B1.d+B2.d, B1.d = 1+B3.d+B4.d} >. If
the second rule is use again, we can obtain the term < or(or(or(B5, B6), B4), B2)
2{A.d ≥ 2, A.d = B.d, B.d = 1 + B1.d + B2.d, B1.d = 1 + B3.d + B4.d, B3.d =
1 + B5.d + B6.d} > for which the set of constraints is unsatisfiable (the number
of disjunctions was limited to 2 and this terms has 3 disjunctions).

3.3 Generating Random Values

The formalism of constraint tree grammars can only be used when the number
of terminal symbol is finite. Most numeric domains are infinite and then the
language LA≤x = {Atti ≤ vij

, vij
∈ [ai, bi} can not be specified with such

grammar. In this case, we propose to add one (or more) non-terminal symbol(s)
Rnd: this non-terminal symbol will be derived in a randomly generated value. In
our experimentations (in attribute-value case), we have considered mainly two
ways for generating a values for an attribute Atti, depending on two domains:

Ddiscrete: the values are selected from the set of possible values (appearing in
the object descriptions)

Dcontinuous: the values are chosen in a range [Mini, Maxi] where Mini (resp.
Maxi) may be, for example, the minimum (resp. maximum) value for at-
tribute Atti in the set of objects.

4 Application to Classification

To test our approach, we apply our measure to classification: we compute the
similarity between objects to classify and objects for which the class is known.
Then the class of the most similar object is assigned (in case of equi-similar
objects, the most frequent class is affected).

A Language-Based Similarity Measure 345

This evaluation has to answer some questions: do we need a great subset of
the language, does this method is efficient? The Figure 2 shows the accuracy of
the method on the mushrooms dataset with various languages: L1 is LA=v with
values generated by a random selection in the domain, L2 is LA=v with values
generated by randomly selecting an object and returning the corresponding at-
tributes. L2, which gives a great weight to frequent values, has better accuracy.
LAND is L2 with conjunction and LOR is L2 with disjunction. LAND contains
more specific terms than LOR and its accuracy is better, but the best is L2.

60

70

80

90

100

10 20 30 40

number of terms

L1
L2

Land
Lor

Fig. 2. Evolution of the accuracy with different languages

These tests consist of predicting the class of 5% (406 mushrooms) of the
base using the 95% remaining (7719). Our classifier Lclass, written in C and
running on an Ultra Sparc 5, takes 270 sec for this classification, generating 100
terms. Notice that the accuracy is 100% with 100 terms, even if |LA=v| = 123.
Moreover, the 100% accuracy is obtained with an average of 32.5 terms using
L2.

The following table shows the accuracy of Lclass on the Glass problem with
different languages: Lc

A≤x (resp. Ld
A≤x) for continuous (resp. discrete) domains,

in the same way Lc
x≤A≤y and Ld

x≤A≤y and we test LA=n with discrete domains
that can be considered because most values occur several times.

Lc
A≤x Ld

A≤x Lc
x≤A≤y Ld

x≤A≤y LA=n

75.04% 80.26% 75.5% 76.13% 49.39%

These results are obtained from 50 runs, with 10% of objects to classify, and
with 1000 terms (one run = 1 second). Notice that 80% accuracy is one of the
best results on the Glass problem. Moreover, we test with Lc

A≤x ∪ Lc
x≤A≤y and

get 77.39% accuracy. This example shows that results with an union of languages
can be better than results with languages taken separately.

The Table 2 compares average accuracies on some domains of the UCI repos-
itory [BM98], for different well-known classifiers. These results are extract from
[LM98].

The accuracy is measured by a 10-fold cross-validation. For Lclass, the accu-
racy is the average measure over 50 runs, with a random cross-validation (10%

346 L. Martin and F. Moal

Table 2. Comparison of accuracy on different domains.

Domains Lclass SCOPE RISE PEBLS C4.5 CN2 SE-Learn
Echocardiogram 82.2 69.3 62.7 63.7 68.0 70.1 67.8
Glass 80.2 74.3 72.0 69.7 63.3 62.1 71.4
Hepatitis 78.0 78.7 76.9 82.4 81.6 81.2 -
Iris 94.6 94.7 95.3 95.5 95.8 94.0 96.0
Wine 96.1 95.5 98.9 97.7 94.9 92.7 98.8
Zoology 96.0 94.0 96.0 95.5 88.6 90.0 95.0

testing set), 1000 terms, and equivalent languages (LA≤x for numeric attributes,
and LA=v for symbolic ones).

Our system has good results over several domains, like Echocardiogram, even
with a basic language and a ”naive” nearest-neighbor algorithm. We are currently
studying some improvements: using a K-NN algorithm, weighting terms in the
language, ...

Complexity: The algorithm requires a generation function and an evaluation
function associated with the language. We have chosen to represent the language
with a grammar where each rule is associated with a probability to be selected:
the time needed for the generation of terms is insignificant. Let N be the number
of known objects and let M be the number of objects to classify.

We propose to compute a matrix storing the distance between each object
to classify and each known object: the size of this matrix is M × N . Let T be
the number of terms generated. For each term, we have to compute M + N
evaluations and N.M comparisons to compute the similarity. Then the time
complexity depends on T.(a(M+N)+b(N.M)) which is polynomial (a represents
time for an evaluation, b represents time for a comparison). However, when M.N
is high this method requires a large amount of memory to store the distance
matrix.

5 Conclusion and Further Works

We proposed in this paper a generic similarity measure based on a language
specification, that allows to cope with various formalisms in a uniform way:
attribute-values, first order logic, constraint FOL. The language allows to express
relevant (or supposed relevant) properties of objects, and to easily introduce
biases. The language is specified by a grammar that allows to generate terms.

For the moment, it has been implemented in the system Lclass for attribute-
value objects and for classification tasks.

The experiments show that the quality of classification task depend on the
language used. For many practical domains, Lclass gets comparable or better
results than usual approaches with simple languages.

We now plan to test this similarity measure in a constraint first order logic
framework and with unstrutured datas like texts.

A Language-Based Similarity Measure 347

References

[Aha89] D. Aha. Incremental, instance based-learning of independent and graded
concept descriptions. In Sixth International Machine Learning Workshop
(ML89), pages 387–391, 1989.

[Bis92] G. Bisson. Learning in FOL with a similarity measure. In 11th National
Conf. on Artificial Intelligence (AAAI), San Jose, CA., pages 82–87. AAAI
Press, 1992.

[BM98] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998.

[CS93] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning
with symbolic features. Machine Learning ,10(1), 57–78, 1993.

[DeG86] Morris H. DeGroot. Probability and Statistics. Addison-Wesley Series in
Statistics. Addison-Wesley, Reading, MA, USA, 2nd edition, 1986.

[Dom95] P. Domingos. Rule induction and instance-based learning: A unified ap-
proach. In Fourteenth International Joint Conference on Artificial Intel-
ligence (IJCAI’95), Montreal, Canada, pages 1226–1232. Morgan & Kauf-
mann, 1995.

[EW96] W. Emde and D. Wettschereck. Relational instance-based learning. In
Saitta L., editor, 13th Int. Conf. on Machine Learning (ICML’96), Bari,
Italy, pages 122–130. Morgan & Kaufmann, 1996.

[GCM95] C. Giraud-Carrier and T. Martinez. An efficient metric for heterogeneous
inductive learning applications in the attribute-value language. In Pro-
ceedings of GWIC’94, pages Vol. 1, 341–350. Kluwer Academic Publishers,
1995.

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kidoó, Budapest,
1984.

[HWB01] Tamás Horváth, Stefan Wrobel, and Uta Bohnebeck. Relational instance-
based learning with lists and terms. Machine Learning, 43(1/2):53–80, 2001.

[LM98] N. Lachiche and P. Marquis. Scope classification: An instance-based learn-
ing algorithm with a rule-based characterization. Lecture Notes in Computer
Science, 1398:268–??, 1998.

[Moa00] F. Moal. Langages de biais en Apprentissage Symbolique. PhD thesis, LIFO,
Université d’Orléans, France, December 2000.

[MS98] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An
Introduction. The MIT Press, 1998.

[MT94] T. Mohri and H. Tanaka. An optimal weighting criterion of case indexing for
both numeric and symbolic attributes. In Case-Based Reasoning Workshop,
pages 123–127. AAAI Press, 1994.

[Pla95] Enric Plaza. Cases as terms: A feature term approach to the structured
representation of cases. In ICCBR, pages 265–276, 1995.

[Seb97] M. Sebag. Distance induction in first order logic. In Proceedings of ILP’97,
pages 264–272. Springer-Verlag, 1997.

[SS94] M. Sebag and M. Schoenauer. Topics in Case-Based Reasonning, volume
837 of LNAI, chapter A Rule-based Similarity Measure, pages 119–130.
Springer-Verlag, 1994.

[SW86] C. Stanfill and D. Waltz. Toward memory-based reasoning. Communication
of the ACM, 29(12):1213-1228, 1986.

	Introduction
	A Similarity Measure
	Finite Languages
	Example
	A Pseudo-Distance
	Usual Languages
	Handling Missing and Constrained Values

	Constraint Tree Grammars
	Formal Definition
	Generated Language
	Generating Random Values

	Application to Classification
	Conclusion and Further Works

