
An Evolutionary Algorithm for Cost-Sensitive
Decision Rule Learning

Wojciech Kwedlo and Marek Krȩtowski

Institute of Computer Science, Technical University of Bia lystok
Wiejska 45a, 15-351 Bia lystok, Poland

e-mail: {wkwedlo, mkret}@ii.pb.bialystok.pl
http://aragorn.pb.bialystok.pl/˜{wkwedlo, mkret}

Abstract. Most of classification learning methods aim at the reduc-
tion of the number of errors. However, in many real-life applications it
is misclassification cost, which should be minimized. In the paper we
propose a new method for cost-sensitive learning of decision rules from
datasets. Our approach consists in modifying the existing system EDRL-
MD (Evolutionary Decision Rule Learner with Multivariate Discretiza-
tion). EDRL-MD learns decision rules using an evolutionary algorithm
(EA). We propose a new fitness function, which allows the algorithm to
minimize misclassification cost rather than the number of classification
errors. The remaining components of EA i.e., the representation of solu-
tions and the genetic search operators are not changed. The performance
of our method is compared to that of C5.0 learning system. The results
show, that the modified EDRL-MD is able to effectively process datasets
with non-equal error costs.

1 Introduction

Classification is one of the most important tasks in machine learning and data
mining. There exist many effective methods for building classifiers [16], but in
most cases the goal is to minimize the number of prediction errors. However, in
many practical applications the assumption that all errors are equally important
is invalid. For example, in medical domain misclassifying an ill patient as a
healthy one is usually much more harmful than treating a healthy patient as an
ill one and sending him for additional examinations. In database marketing the
cost of mailing to a non-respondent is very small, but the cost of not mailing to
someone who would respond is the entire profit lost [6].

In the paper a new approach based on the existing system EDRL-MD [12]
(EDRL-MD, for Evolutionary Decision Rule Learner with Multivariate Dis-
cretization) is proposed. The system learns decision rules using an evolutionary
algorithm [15] (EA). EAs are stochastic techniques, which have been inspired by
the process of biological evolution. Their advantage over greedy search methods
is the ability to avoid local optima.

The main novelty of EDRL-MD lies in dealing with continuous-valued at-
tributes. Most of decision rule systems employ univariate discretization meth-
ods, which search for threshold values for only one attribute at the same time. In

L. De Raedt and P. Flach (Eds.): ECML 2001, LNAI 2167, pp. 288–299, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

An Evolutionary Algorithm for Cost-Sensitive Decision Rule Learning 289

contrast to them, EDRL-MD learns rules simultaneously searching for threshold
values for all continuous-valued attributes. This approach is called [12] multi-
variate discretization.

The goal of the original EDRL-MD is to minimize the number of classifi-
cation errors. In order to enable our system to minimize misclassification cost
we modified the fitness function, which is optimized by the evolutionary search
process.

Several EA-based systems, which learn decision rules in either propositional
(e.g., GABIL [5], GIL [10], EDRL [13]) or first order form (e.g., REGAL [9]) were
proposed. According to our knowledge, they are unable to process continuous-
valued features directly and they cannot minimize misclassification costs.

The remainder of the paper is organized as follows. The next section briefly
discusses the related research on cost-sensitive learning. Section 3 contains a
short presentation of EDRL-MD. Section 4 describes the modifications of the
fitness function, which enable the learning system to minimize misclassification
cost. In Section 5 an experimental evaluation on several real-life datasets and
a short discussion of the results are presented. The last section contains our
conclusions and the directions of the future work.

2 Related Work on Cost-Sensitive Learning

The process of inductive learning may involve different costs [21] e.g., costs of
tests (features), costs of cases, costs of errors. In the literature the latter kind of
costs is the most commonly discussed one.

Several attempts to incorporate misclassification costs into decision tree or
decision rule learning were made so far. The first approach was introduced by
Breiman et al. [3] in CART decision tree learning system. Their method consists
in modification of the class prior probabilities used in the splitting criterion. The
cost-based measure is also used for tree pruning.

In a simpler approach (e.g., [2], [11]) error costs are taken into consider-
ation during the pruning phase, but not during the induction phase. In such
case the pruning procedure has a limited capability to change the structure of
the classifier obtained by the error-based learning. Consequently, ignoring the
misclassification cost at the first phase is the main drawback of this approach.

Pazzani et al. [17] introduced three cost-sensitive algorithms for decision list
induction. Their method was applied to a real telephone network troubleshooting
problem.

Ting [19] proposed a modified version of C4.5 using instance-weighting for
induction of cost-sensitive decision trees. This approach requires the conversion
of the cost matrix into the cost vector, which may result in poor performance in
multi-class problems.

In [6] Domingos presented a method for making an arbitrary classifier cost-
sensitive by wrapping a cost-minimizing procedure around it. However his ap-
proach may be computationally inefficient because it requires many runs of the
basic learning algorithm.

290 W. Kwedlo and M. Krȩtowski

As for applications of EAs to cost-sensitive learning, Turney [20] described a
system called ICET, which learns decision trees taking into account both feature
costs and misclassification costs. In his approach a genetic algorithm is used to
evolve a population of biases for the induction algorithm (a modified C4.5).

3 Learning Decision Rules with EDRL-MD

In this section we briefly present the main topics (i.e., representation of solutions
and genetic search operators) of the learning system EDRL-MD. More detailed
description can be found in [12].

We assume that a learning set E = {e1, e2, . . . , eM} consists of M examples.
Each example e ∈ E is described by N attributes (features) A1, A2, . . . , AN

and labeled by a class c(e) ∈ C. The domain of a nominal (discrete-valued)
attribute Ai is a finite set V (Ai), while the domain of a continuous-valued at-
tribute Aj is an interval V (Aj) = [lj , uj]. For each class ck ∈ C by E+(ck) =
{e ∈ E : c(e) = ck} we denote the set of positive examples and by E−(ck) =
E − E+(ck) the set of negative examples. A decision rule R takes the form
IF t1 ∧ t2 ∧ . . . ∧ tr THEN ck, where ck ∈ C and the left-hand side (LHS) is
a conjunction of r(r ≤ N) conditions t1, t2, . . . , tr; each of them concerns one
attribute. The right-hand side (RHS) of the rule determines class membership
of an example. A ruleset RS is a disjunctive set of decision rules with the same
RHS. By cRS ∈ C we denote the class on the right-hand side of the ruleset RS.

In our approach the EA is called once for each class ck ∈ C to find the ruleset
separating the set of positive examples E+(ck) from the set of negative examples
E−(ck). The search criterion, in terminology of EAs called the fitness function
prefers rulesets consisting of few conditions, which cover many positive examples
and very few negative ones. Detailed description of the fitness functions used for
error reduction and misclassification cost reduction is presented in Section 4.

Fig. 1. The string encoding the LHS of a decision rule (kj = |V (Aj)|). The chromosome
representing the ruleset is the concatenation of strings. The number of strings in a
chromosome can be adjusted by some search operators.

3.1 Representation

The EA processes a population of candidate solutions to a search problem called
chromosomes. In our case a single chromosome encodes a ruleset RS. Since

An Evolutionary Algorithm for Cost-Sensitive Decision Rule Learning 291

the number of rules in the optimal ruleset for a given class is not known, we use
variable-length chromosomes and provide the search operators, which change the
number of rules. The chromosome representing the ruleset is a concatenation of
strings. Each fixed-length string represents the LHS of one decision rule. Because
the EA is called to find a ruleset for the given class cRS there is no need for
encoding the RHS.

The string is composed (Fig. 1) of N substrings. Each substring encodes a
condition related to one attribute. The LHS is the conjunction of these condi-
tions. In case of a continuous-valued attribute Ai the substring encodes the lower
li and the upper ui threshold of the condition li < Ai ≤ ui. It is possible that
li = −∞ or ui = +∞.

Both li and ui are selected from the finite set of all boundary thresholds. A
boundary threshold for the attribute Ai is defined (Fig. 2) as a midpoint between
such a successive pair of examples in the sequence sorted by the increasing value
of Ai, that one of the examples is positive and the other is negative. Evaluating
only the boundary thresholds is sufficient [7] for finding the maximum of two
fitness functions (1) and (4) discussed in the paper.

thi

k-1

Ai

thi

k+1

thi

k

… …

Fig. 2. An example illustrating the notion of boundary threshold. The boundary
thresholds th1

i , . . . , th
k
i , . . . , thNTi

i for the continuous-valued attribute Ai are placed
between groups of negative (•) and positive (2) examples.

For a nominal attribute Aj the substring consists of binary flags. Each of the
flags corresponds to one value of the attribute.

Note that it is possible that a condition related to an attribute is not present
on the LHS. For a continuous-valued attribute Ai it can be achieved by setting
both li = −∞ and ui = +∞. For a nominal Aj it is necessary to set all the flags
f1

j , f2
j , . . . , f

|V (Aj)|
j .

Figure 3 shows an example chromosome for a dataset with two numerical
attributes: Salary and Amount , and one nominal attribute Purpose. It is assumed
that the EA is searching for the optimal ruleset for the class Accept .

3.2 Genetic Operators

Our system employs six search operators. Four of them: changing condition,
positive example insertion, negative example removal , rule drop are applied to a
single ruleset RS (represented by a chromosome). The other two: crossover and
rule copy require two arguments RS1 and RS2.

292 W. Kwedlo and M. Krȩtowski

Salary Amount Purpose

-¥

Car House School

-¥

-¥

-¥ +¥

500

250

250

750

100

+¥

+¥

1 1 1

1 1 1

1 1 0

IF (<250)
THEN

Amount
Accept

IF (100< <250) & (<500)
THEN

Salary Amount
Accept

IF (750) & ()
THEN

Salary> Purpose=car or house
Accept

(a) (b)

Fig. 3. Representation of rulesets: (a) an example chromosome consisting of three
strings, (b) the corresponding ruleset.

A similar approach was proposed by Janikow. His GIL system [10] conducts
the search for rulesets using 14 operators. However, GIL is not able to handle
continuous-valued attributes directly, since it represents a condition as a se-
quence of binary flags corresponding to the values of an attribute (we use the
same representation for nominal attributes).

The changing condition is a mutation-like operator, which alters a single
condition related to an attribute Ai. If Ai is nominal, a flag randomly chosen
from f1

i , f2
i , . . . , f

|V (Ai)|
i is flipped. For a continuous-valued attribute a threshold

(li or ui) is replaced by a random boundary threshold.
The positive example insertion operator modifies a single decision rule R in

the ruleset RS to allow it to cover a new random positive example e+ ∈ E+(cRS),
currently uncovered by R. All conditions in the rule, which conflict with e+ have
to be altered. In case of a condition related to a nominal attribute Ai the flag,
which corresponds to Ai(e+), is set. If Ai is a continuous-valued attribute and
the condition li < Ai ≤ ui is not satisfied because ui < Ai(e+) the threshold
ui is replaced by ûi, where ûi is the smallest boundary threshold such that
ûi ≥ Ai(e+). The case when Ai(e+) ≤ li is handled in a similar way.

The negative example removal operator alters a single rule R from the ruleset
RS. It selects at random a negative example e− from the set of all the negative
examples covered by R. Then it alters a random condition in R in such a way,
that the modified rule does not cover e−. If the chosen condition concerns a
nominal attribute Ai the flag which corresponds to Ai(e−) is cleared. If Ai is a
continuous-valued attribute then the condition li < Ai ≤ ui is narrowed down
either to l̂i < Ai ≤ ui or to li < Ai ≤ ûi, where l̂i is the smallest boundary
threshold such that Ai(e−) ≤ l̂i and ûi is the largest boundary threshold such
that ûi < Ai(e−).

Rule drop and rule copy operators were used previously by Janikow. They
are the only ones capable of changing the number of rules in a ruleset. The single

An Evolutionary Algorithm for Cost-Sensitive Decision Rule Learning 293

argument rule drop removes a random rule from a ruleset RS. The two argument
rule copy adds to one of its arguments RS1, a copy of a rule selected at random
from RS2, provided that the number of rules in RS1 is lower than maxR. maxR

is an user-supplied parameter, which limits the maximal number of rules in the
ruleset.

The crossover operator selects at random two rules R1 and R2 from the
respective arguments RS1 and RS2. Then it applies an uniform crossover [15] to
the strings representing R1 and R2.

4 Adaptation to Cost-Sensitive Learning

To convert EDRL-MD for cost-sensitive learning we modified the fitness function
used to guide the search process. We start this section with the presentation of
the fitness function used when the goal of learning is the reduction of the number
of errors [12]. Then we describe the changes which allow the EA to minimize the
expected misclassification cost rather than the error rate. We also present the
cost-sensitive methods for resolving conflicts between rules and for choosing a
default class.

We define ERS as the set of examples covered by ruleset RS. The class on
the right-hand side of RS is denoted by cRS . Then E+

RS = ERS ∩E+(cRS) is the
set of positive examples correctly classified by RS and E−

RS = ERS ∩ E−(cRS)
denotes the set of negative examples covered by the ruleset. The total number of
positive and negative cases in the learning set are denoted by POS = |E+(cRS)|
and NEG = |E−(cRS)| = M − POS respectively. The ruleset RS correctly
classifies pos = |E+

RS | positive examples and NEG − neg negative ones, where
neg = |E−

RS |.

4.1 The Fitness for Error Reduction

In the case of the error-based classification (i.e., with equal misclassification
costs) EDRL-MD employs the fitness function ferror given by:

ferror(RS) =
Pr(RS)

Compl(RS)
, (1)

where Pr(RS) is the probability of classifying correctly an example from the
learning set by the ruleset RS and Compl(RS) is the complexity of the ruleset.
We are interested in maximizing the probability and minimizing the complexity
(to obtain the compact ruleset and to avoid overfitting). Pr(RS) and Compl(RS)
are given respectively by:

Pr(RS) =
pos + NEG − neg

POS + NEG
. (2)

and
Compl(RS) = (L/N + 1)α, (3)

where L is the total number of conditions in the ruleset, N is the number of
attributes and α is an user supplied parameter (typically α ∈ [0.1 . . . 0.001]).

294 W. Kwedlo and M. Krȩtowski

4.2 The Fitness for Misclassification Cost Reduction

Let Cost(ci, cj) be the cost of misclassifying an object from the class cj as
belonging to class ci. We assume the costs for correct decisions are equal zero
i.e., Cost(ci, ci) = 0 for all ci.

To adapt the fitness function (1) to the cost-sensitive classification we have
to change only Pr(RS), because the complexity term is independent of costs.
We replace Pr(RS) by the cost-sensitive Prcost(RS). The new fitness fcost is
defined as follows:

fcost(RS) =
Prcost(RS)
Compl(RS)

. (4)

Classification errors made by the ruleset RS can be divided into two groups:
the errors caused by covering a negative example and the errors caused by leaving
a positive example not covered. The cost of the former group of errors is denoted
by NC(RS) (Negative examples misclassification Cost) defined as:

NC(RS) =
∑

e∈E−
RS

Cost(cRS , c(e)). (5)

The latter case, when positive examples are not covered by the ruleset is more
complicated. Because the EA is called to find the ruleset for one class cRS we
cannot figure out to which class a positive example not covered by RS will
be classified. This information is available after |C| runs of the EA, when the
complete classifier i.e., disjunction of |C| rulesets is learned. Since we do not
know the exact cost of a single misclassified (not covered) positive example,
we use an approximate measure called AvgPC(cRS) (Average Positive example
misclassification Cost):

AvgPC(cRS) =
∑

ci 6=cRS

|E+(ci)|
|E−(cRS)| ∗ Cost(ci, cRS). (6)

The cost of all misclassified (not covered) positive examples PC(RS) (Positive
examples misclassification Cost) is given by:

PC(RS) = (POS − pos) ∗ AvgPC(cRS). (7)

Finally, we define the cost-sensitive replacement for Pr(RS) as:

Prcost(RS) =
MaxNC(cRS) + MaxPC(cRS) − NC(RS) − PC(RS)

MaxNC(cRS) + MaxPC(cRS)
, (8)

where MaxNC(cRS) and MaxPC(cRS) are maximal possible values for
NC(RS) and PC(RS) respectively. We can observe MaxNC(cRS) when the
ruleset covers all the negative examples:

MaxNC(cRS) =
∑

ci 6=cRS

|E+(ci)| ∗ Cost(cRS , ci), (9)

and MaxPC(cRS) when none of the positive examples is covered by the ruleset:

An Evolutionary Algorithm for Cost-Sensitive Decision Rule Learning 295

MaxPC(cRS) = POS ∗ AvgPC(cRS). (10)

Because MaxNC(cRS) and MaxPC(cRS) do not depend on the left-hand side
of the ruleset RS, through the maximization of Prcost(RS) we minimize the
total misclassification cost (NC(RS) + PC(RS)).

Prcost(RS) has the following properties: 0 ≤ Prcost(RS) ≤ 1, Prcost(RS) =
1 iff the ruleset covers all positive examples (pos = POS) and no negative
ones (neg = 0), Prcost(RS) = 0 iff the ruleset covers all the negative examples
(neg = NEG) and no positive ones (pos = 0). The above properties hold also for
Pr(RS). Furthermore one can show, that if the costs of classification errors are
equal then Prcost(RS) = Pr(RS). It means that Pr is a special case of Prcost

when the goal is to minimize the number of errors rather than the cost.

4.3 Conflict Resolution and Default Class

Contrary to decision trees, the prediction obtained by a set of decision rules can
be ambiguous. Such a situation arises when either at least two rules predicting
different classes cover an example or none of rules covers an example.

In the former case the classifier has to resolve a conflict between rules. The
most common approach to conflict resolution is based on assessment of rule
quality [4]. The rule with the highest quality among the conflicting rules is
chosen as the ’winner’ and the class on the RHS of this rule becomes the final
decision of the classifier.

A similar approach was adopted in EDRL-MD. The conflicting rules are
ranked according to average conflict cost(ACC), which is given by:

ACC(R) =
1

|ECL
R | ∗

∑

e∈ECL
R

Cost(cR, c(e)), (11)

where cR denotes the class on the RHS of the rule R. It is assumed that each
example from the set ECL

R ⊂ E causes a conflict involving the rule R. The rule,
which offers the lowest ACC is chosen as the winner.

If an example is not covered by any rule it is classified into a default class.
To select the default we consider the training examples not covered by any rule.
The class, which minimizes the total misclassification cost of these examples is
chosen as the default.

5 Experimental Evaluation

In this section experimental results are presented. We have tested our method on
ten datasets from UCI repository [1]. The description of the datasets is shown in
Table 1. We compared EDRL-MD to C4.5 [18] and its newer, unpublished version
C5.01. Contrary to its predecessor C5.0 is capable of taking misclassification
costs into consideration. In all the experiments EDRL-MD was using the fitness
function (4).
1 Both C4.5 and C5.0 generate rules by converting a decision tree.

296 W. Kwedlo and M. Krȩtowski

Table 1. The datasets used in the experiments

Dataset Size
No. of attributes
(Numeric/Nominal)

No. of
classes

german credit 1000 7/13 2
heart disease 270 7/6 2
cmc 1473 2/7 3
housing 506 12/1 3
breast wisconsin 683 9/0 2
page blocks 5473 10/0 5
pima 532 7/0 2
bupa 345 6/0 2
vehicle 846 18/0 4
crx 690 6/9 2

5.1 Experimental Methodology

Unfortunately, publicly available datasets with known misclassification costs are
rare. In the UCI repository only two such datasets (german credit and heart
disease) are provided. These datasets were previously the subject of the cost-
sensitive classification experiments in the EU StatLog project [16]. In our ex-
periments the expected misclassification cost and the error rate were estimated
by running ten times complete ten-fold crossvalidation. The results are shown
in the Table 2.

Table 2. Misclassification cost and error rate for datasets with known cost matrices.
Averages and standard deviations are given. The best results for each dataset are shown
in bold.

Misclassification cost Error rate
Dataset C4.5 C5.0 EDRL-MD C4.5 C5.0 EDRL-MD
german credit .960 ± .05 .656 ± .02 .558 ± .01 .272 ± .01 .333 ± .01 .453 ± .01
heart disease .662 ± .05 .476 ± .04 .499 ± .04 .207 ± .02 .243 ± .02 .375 ± .02

For the remaining datasets, for which cost matrices are not available, we used
a different experimental setup. The results presented in Table 3 are averaged over
ten runs of ten-fold crossvalidation. In each run a cost matrix was generated
randomly. The off-diagonal elements of the cost matrix were drawn from the
uniform distribution over the range [0, 10]. The diagonal elements were always
zero. For each single crossvalidation run the same random cost matrix was used
for all three tested algorithms. For this experiment the standard deviations are
not reported because they would incorporate the difference between cost matrices
used in different crossvalidation runs.

Similar procedures for generating cost matrices were used in [19] and [14].

An Evolutionary Algorithm for Cost-Sensitive Decision Rule Learning 297

Table 3. Average misclassification cost and error rate for datasets with cost matrices
generated randomly. The best results for each dataset are shown in bold.

Misclassification cost Error rate
Dataset C4.5 C5.0 EDRL-MD C4.5 C5.0 EDRL-MD
cmc 1.98 1.67 1.39 .460 .523 .566
housing 1.08 1.00 0.85 .246 .322 .334
breast wisconsin .202 .235 .187 .040 .085 .063
page blocks .140 .135 .134 .031 .058 .052
pima 1.22 1.00 .982 .240 .268 .287
bupa 1.65 1.44 1.37 .321 .411 .418
vehicle 1.20 1.13 1.09 .270 .392 .411
crx .758 .623 .624 .152 .186 .207

5.2 Discussion of the Results

The results confirm that an algorithm (in our case C4.5), which optimizes the
error rate cannot be applied to datasets with non-equal misclassification costs.
For all datasets, except breast wisconsin C4.5 obtained the highest misclassifi-
cation cost. As for two cost-sensitive algorithms, EDRL-MD outperformed C5.0
for eight datasets although for four datasets the difference was marginal (less
than 10%). C5.0 achieved slightly better results only for two datasets.

C4.5 achieved lower error rates than its cost-sensitive competitors. One could
expect such results since error rate and misclassification cost cannot be optimized
at the same time.

It should be noted that EDRL-MD requires significantly more processing
time than the other algorithms. Nevertheless the learning time required by our
system is acceptable. For instance EDRL-MD needs 51 seconds of CPU time
on a PC workstation (PIII 700 MHz) to learn decision rules for the largest of
datasets (page blocks) whereas C5.0 needs about 1 s.

6 Conclusions and Future Work

In this paper we presented the method of incorporation of misclassification costs
into the decision rule learning system EDRL-MD. Contrary to some approaches
based on the cost-sensitive pruning our method takes the error costs into account
during the inductive search. The results are promising, especially when compared
with the results obtained by the cost-sensitive learning system C5.0.

Several directions of the future research exist. One of them is an extension
of our cost model. For instance, it would be relatively easy to add costs of
features (tests) to the fitness function. Moreover in some applications e.g., fraud
detection [8] cost of an error depends on the amount of money involved in the
given example. Our approach could be extended to cover such situations as
well. In this case instead of using a single cost matrix for the whole dataset the
algorithm should associate a cost vector with each single observation and employ
a modified fitness function.

298 W. Kwedlo and M. Krȩtowski

Since in many practical applications of classification one has to deal with
increasingly large databases, the computational complexity of learning methods
becomes important. As for evolutionary algorithms, it is the well known fact [9],
that their efficiency can be significantly improved by implementation in a dis-
tributed environment (e.g., cluster of workstations). Currently we are developing
such a solution for EDRL-MD.

Acknowledgments. The authors are grateful to Prof. Leon Bobrowski for his
support and useful comments. This work was supported by the grant W/II/1/00
from Technical University of Bia lystok.

References

1. Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learn-
ing databases,[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA:
University of California, Dept. of Computer Science (1998).

2. Bradford, J.P., Kunz, C., Kohavi, R., Brunk, C., Brodley, C.E.: Pruning decision
trees with misclassification costs. In Proc. of the Tenth European Conf. on Machine
Learning. Springer Verlag (1998) 131-136.

3. Breiman, L., Friedman, R.A., Olshen, R., Stone, C.J.: Classification and Regression
Trees. Wadsworth (1984).

4. Bruha, I., Quality of decision rules: Definitions and classification schemes for multi-
ple rules. In: Nakhaeizadeh, G., Taylor, C.C., (eds.) Machine Learning and Statis-
tics. The Interface. Wiley-Interscience (1997) 107-131.

5. De Jong, K., Spears, W.M., Gordon, D.F.: Using genetic algorithm for concept
learning. Machine Learning 13 (1993) 168-182.

6. Domingos, P.: MetaCost: A general method for making classifiers cost-sensitive.
In Proc. of Int. Conf. on Knowledge Discovery and Data Mining, KDD’99. ACM
Press (1999) 155-164.

7. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In Proc. of IJCAI’93. Morgan Kaufmann (1993)
1022-1027.

8. Fawcett, T., Provost, F.J., Adaptive fraud detection, Data Mining and Knowledge
Discovery 1 (1997)

9. Giordana, A., Neri, F.: Search-intensive concept induction. Evolutionary Compu-
tation 3(4) (1995) 375-416.

10. Janikow, C.: A knowledge intensive genetic algorithm for supervised learning. Ma-
chine Learning 13 (1993) 192-228.

11. Knoll, U., Nakhaeizadeh, G., Tausend, B.: Cost-sensitive pruning of decision trees.
In Proc. of the 8th European Conf. on Machine Learning. Springer LNCS 784
(1994) 383-386.

12. Kwedlo, W., Krȩtowski, M.: An evolutionary algorithm using multivariate dis-
cretization for decision rule induction. In Principles of Data Mining and Knowl-
edge Discovery. 3rd European Conference PKDD’99. Springer LNCS 1704 (1999)
392-397.

13. Kwedlo, W., Krȩtowski, M.: Discovery of decision rules from databases: an evo-
lutionary approach. In Principles of Data Mining and Knowledge Discovery. 2nd

European Symposium PKDD’98. Springer LNCS 1510 (1998) 370-378.

An Evolutionary Algorithm for Cost-Sensitive Decision Rule Learning 299

14. Margineantu, D.D., Dietterich, T.G.: Bootstrap methods for the cost-sensitive eval-
uation of classifiers, In Proc. 17th Int. Conf. on Machine Learning ICML’2000 ,
Morgan Kaufmann (2000) 583-590.

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd

edn. Springer (1996).
16. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural

and Statistical Classification. Ellis Horwood Ltd. (1994) [also available at
http://www.amsta.leeds.ac.uk/∼charles/statlog/index.html].

17. Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., Brunk, C.: Reducing mis-
classification costs. In Proc. of Int. Conf. on Machine Learning, ICML’94. Morgan
Kaufmann (1994) 217-225.

18. Quinlan, J.R.: C4.5: Programs for Machine Learning . Morgan Kaufmann (1993).
19. Ting, K.M.: Inducing cost-sensitive trees via instance weighting. In Principles

of Data Mining and Knowledge Discovery. 2nd European Symposium PKDD’98.
Springer LNCS 1510 (1998) 139-147.

20. Turney, P.: Cost-sensitive classification: Empirical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of Artificial Intelligence Research 2
(1995) 369-409.

21. Turney, P.: Types of cost in inductive concept learning. In Proc. of ICML’2000
Workshop on Cost-Sensitive Learning. Stanford, CA (2000).

	Introduction
	Related Work on Cost-Sensitive Learning
	Learning Decision Rules with EDRL-MD
	Representation
	Genetic Operators

	Adaptation to Cost-Sensitive Learning
	The Fitness for Error Reduction
	The Fitness for Misclassification Cost Reduction
	Conflict Resolution and Default Class

	Experimental Evaluation
	Experimental Methodology
	Discussion of the Results

	Conclusions and Future Work

