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Abstract. This paper presents a novel decision-tree induction for a
multi-objective data set, i.e. a data set with a multi-dimensional class.
Inductive decision-tree learning is one of the frequently-used methods
for a single-objective data set, i.e. a data set with a single-dimensional
class. However, in a real data analysis, we usually have multiple ob-
jectives, and a classifier which explains them simultaneously would be
useful and would exhibit higher readability. A conventional decision-tree
inducer requires transformation of a multi-dimensional class into a single-
dimensional class, but such a transformation can considerably worsen
both accuracy and readability. In order to circumvent this problem we
propose a bloomy decision tree which deals with a multi-dimensional
class without such transformations. A bloomy decision tree has a set of
split nodes each of which splits examples according to their attribute
values, and a set of flower nodes each of which predicts a class dimen-
sion of examples. A flower node appears not only at the fringe of a tree
but also inside a tree. Our pruning is executed during tree construction,
and evaluates each class dimension based on Cramér’s V . The proposed
method has been implemented as D3-B (Decision tree in Bloom), and
tested with eleven data sets. The experiments showed that D3-B has
higher accuracies in nine data sets than C4.5 and tied with it in the
other two data sets. In terms of readability, D3-B has a smaller number
of split nodes in all data sets, and thus outperforms C4.5.

1 Introduction

Given a set of training examples, learning from examples aims at constructing
a classifier which predicts the class of an unseen example. Here, learning from
examples assumes that each example has a single-dimensional class, and can thus
be called as single-objective. Inductive decision-tree learning [2,10,11] has been
successfully used in various fields as one of the most useful methods in learning
from examples.
In dealing with real data, however, we often have multiple objectives, and may

wish to predict a multi-dimensional class [3,4]. Building a separate decision tree
for each objective would be problematic in terms of readability because decision
trees differ in their structures and in their split attributes, and are thus difficult
to be compared. A single classifier which predicts this multi-dimensional class
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would be more useful. For example, suppose an analyst constructing a classifier
from an agricultural data set about various crops. Rather than having a decision
tree which predicts only corn, the analyst would prefer a decision tree which
predicts corn and wheat simultaneously since it would be comprehensible.
In such a case, a conventional decision-tree learning algorithm can construct

a classifier if the multi-dimensional class is transformed into a single-dimensional
class. This idea is described in [3,4] briefly without experimental justification1.
However, a transformation without loss of information, such as assigning a new
class value to each combination of class values, considerably increases the num-
ber of class values. This tendency causes a fragmentation problem [11]: each
class value has only a few training examples in a split node at the bottom of
a decision tree, and appropriate selection of an attribute would be difficult. A
transformation with loss of information such as principle component analysis [6,
7] could overlook useful knowledge.
In order to circumvent this problem we propose a bloomy decision tree in

which each class dimension is independently predicted by a flower node. Since
a flower node can be constructed inside a tree, the number of class dimensions
gradually decreases as an example descend the tree. This corresponds to coping
with the fragmentation problem by simplifying the classification task in order
to construct a small decision tree with high accuracy. We have implemented an
induction algorithm of bloomy decision trees as D3-B (Decision tree in Bloom),
and demonstrate its effectiveness as a multi-objective classifier with eleven data
sets.

2 Decision Tree

In this section, we give a simple explanation of inductive decision-tree learning
[2,10,11]. For various problems in this field, please refer to a recent survey [9].

2.1 Construction of a Decision Tree

A decision tree represents a tree-structured classifier which consists of a set of
nodes and a set of edges. A node is either a split node which tests an attribute
or a leaf node which predicts a class of an example. Given an unseen example,
a split node assigns the example to one of its subtrees according to the value of
its attribute, and a leaf node predicts the class value of the example.
The input to a decision-tree inducer is a set E of examples. An example ei

has n attribute values a1i, a2i, · · · , ani for attributes a1, a2, · · · , an and a class
value ci to a class c, and is represented as ei = (a1i, a2i, · · · , ani, ci).

1 Caruana formalized a learning problem with multiple objectives as multitask learning
[3,4], which includes our multi-objective classification. He almost exclusively worked
with neural networks, and only dropped a few remarks about decision trees. His
remarks mainly concern proposal of novel split criteria, and no proposals are given
for knowledge representation.
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A decision tree is typically constructed by a recursive split of example space
with a divide and conquer method. The split typically employs greedy search,
and, for each split node, the best attribute is selected as the attribute of the
node based on an evaluation function. We will explain a typical function in
Sect. 2.2. The class value of a leaf node is determined if all training examples
in the node have the same class value. If a leaf node has no training examples,
the most frequent class value of examples in its parent is assigned as the class
value of the leaf. If the training examples in a split node can no longer be split,
the node becomes a leaf node and the most frequent class value of examples in
the node is assigned as the class value of the leaf. Here, a decision tree which
perfectly predicts the class of a training example tends to perform poorly for
test examples. A procedure called pruning replaces a subtree which is judged
irrelevant in the prediction with a leaf node. We will explain a pruning method
in Sect. 2.3.

2.2 Attribute Selection

Here, we explain gain ratio [10,11] as one of the evaluation criteria. Gain ratio
G(a, c, E) is a criterion based on mutual entropy of an attribute a and the class
c for a set E of examples. Let |E|, Ea=i, and Ec=i be the number of examples in
E, the set of examples each of which satisfies a = i in E, and the set of examples
each of which satisfies c = i in E respectively, then

G(a, c, E) ≡ H(c, E)− J(a, c, E)
H(a, E)

(1)

where

H(c, E) ≡ −
∑

i

|Ec=i|
|E| log2

( |Ec=i|
|E|

)
(2)

J(a, c, E) ≡
∑

i

|Ea=i|
|E| H(c, Ea=i) (3)

2.3 Pruning

Pruning can be classified as either pre-pruning, which is executed during tree
construction, or post-pruning, which is executed after tree construction [8,10,
11]. Compared with post-pruning, pre-pruning is time-efficient since it does not
require construction of a complete tree. However, experimental evidence shows
that pre-pruning leads to low accuracy [8], and most decision-tree inducers em-
ploy post-pruning.
Pruning based on χ2 is employed in decision-tree inducers such as ID3 [10].

This method first calculates a χ2 value χ2(a, c, E) of an attribute a and the class
c for a set E of examples in a node. Let Ea=i,c=j be the set of examples each of
which satisfies both a = i and c = j in E, then

χ2(a, c, E) ≡
∑

i

∑
j

(|Ea=i,c=j | − εa=i,c=j(E))2

εa=i,c=j(E)
(4)
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where

εa=i,c=j(E) ≡ |Ea=i||Ec=j |
|E| (5)

Let χ2
r(α) be a χ2 value with a degree of freedom r and a significance level α,

then when χ2(a, c, E) is smaller than a threshold χ2
r(α), the attribute a and the

class c are considered to have no relevance, and the split node is replaced by a
leaf node. A shortcoming of this approach is that χ2(a, c, E) tends to be overly
large when the number of examples in the training set is large, and a decision
tree is often under-pruned [8].

3 Bloomy Decision Tree for Multi-objective Classification

3.1 Bloomy Decision Tree

In a data set E for multi-objective classification, i.e. with a multi-dimensional
class, each example ei has n attribute values a1i, a2i, · · · , ani for attributes a1, a2,
· · · , an, andm class values (c1i, c2i, · · · , cmi) for am-dimensional class (c1, c2, · · · ,
cm).
The problems in Sect. 1 have led us to invent a bloomy decision tree for

multi-objective classification. In a decision tree for multi-objective classification,
several class dimensions can be predicted accurately even at an internal node.
A bloomy decision tree predicts such dimensions in an internal node which is
called a flower node, and typically reduces the number of class dimensions to be
predicted as an example descends the tree from its root to one of its leaves. This
corresponds to simplifying a multi-objective classification downward a decision
tree, and can be considered as an efficient solution to the fragmentation problem
described in Sect. 1. A bloomy decision tree is expected to show high accuracy
with a simpler structure compared with a conventional decision tree. A flower
node corresponds to a leaf node which predicts a set of class dimensions, and
appears not only at the fringe of a tree but also inside a tree.
Similar to a conventional decision tree, a bloomy decision tree T has a recur-

sive tree structure. A node N of a bloomy decision tree T is classified as either a
flower node Nbloom which predicts values of a set of class dimensions, or a split
node Nsplit which splits examples according to their attribute values. Figure 1
shows an example of a bloomy decision tree for a 2-dimensional class (c1, c2),
where an oval and a rectangle represent a flower node and a split node respec-
tively. Note that a flower node appears inside the tree since a class dimension is
predicted as c1 = p for examples each of which satisfies Attribute1 =Y.
A root node of a bloomy decision tree is a split node. A split node Nsplit has

an attribute a which is selected according to a procedure in the next section. Let
the number of values for an attribute a be va, then there are va child nodes for
Nsplit, and each child node is assigned a subset Ea=ai where ai is the i-th value
of a. A child node of Nsplit is either a split node or a flower node.
A flower node Nbloom consists of l (≤ m) petals p1, p2, · · · , pl each of which

predicts a class dimension. Alternatively, a petal pi represents that a predicted
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Fig. 1. Example of a bloomy decision tree

value is assigned to a class dimension cj . The predicted value of cj is fixed in
the petal and remain unchanged in the child nodes of Nbloom. If some of the
class dimensions remain unpredicted in Nbloom, Nbloom has a child node which
is a split node. Note that a flower node can be an internal node as well as a leaf
node.

3.2 Attribute Selection

Similar to the construction of a decision tree, we employ a divide and conquer
method based on an attribute selection function F (a, E). Gain ratio presented in
Sect. 2.2 is an evaluation function for a single-dimensional class, and cannot be
employed without modification. In this paper, we employ the add-sum F (a, E)
of gain ratio G(a, cj , E) for each class dimension cj .

F (a, E) ≡
∑
cj

G(a, cj , E) (6)

Given a set E of training examples, the attribute a which maximizes F (a, E) is
selected in a split node. We call this approach as the add-sum criterion.
Instead of using the add-sum of gain ratios, we can also consider their prod-

uct or the add-sum of their squares, which we call the product criterion and
the squares-sum criterion respectively. However, the product criterion would be
overly pessimistic, avoiding an attribute which has at least a nearly-zero gain
ratio. The squares-sum criterion, on the other hand, would be overly optimistic,
preferring an attribute which relies on a few large gain ratios. The former ne-
glects an attribute which works well for a subset of dimensions, and the latter
criterion is typically dominated by outliers. Therefore, we use the add-sum cri-
terion in our approach. Note that this analysis could be justified experimentally
under various settings, but we leave this for future work due to space constraint.

3.3 Pruning

In order to obtain an accurate classifier for all class dimensions, each dimension
should be evaluated independently. Our method employs pre-pruning for each
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dimension immediately after constructing a split node, and assigns a predicted
value for a dimension which is pruned.
As explained in Sect. 2.3, χ2 pruning tends to produce an overly large decision

tree when the number of examples in the training set is large. Therefore, we use
Cramér’s V [7] to cope with this problem. Cramér’s V V (a, cj , E) is an index of
relevance of an attribute a and a class dimension cj for a set E of examples.

V (a, cj , E) ≡
√

χ2(a, cj , E)
|E|(min(va, q(cj))− 1) (7)

where q(cj) is the number of values of cj . This index satisfies 0 ≤ V (a, cj , E) ≤ 1.
Since this index is, unlike χ2, simply employed to compare its value and

has no theoretical interpretation, we use the following value Vr(a, cj , EZ, α) as a
threshold for pruning.

Vr(a, cj , EZ, α) ≡
√

χ2
r(α)

|EZ|(min(va, q(cj))− 1) (8)

where |EZ| is the expected number of examples assigned to the split node. Let
|EP| and |NPC| be the number of examples in the parent split node and the
number of child nodes of the parent split node respectively, then

|EZ| ≡ |EP|
|NPC| (9)

For a root node, we define that |EP| is equivalent to the number of training
examples in the data set. In our method, a split node is pruned with respect to
a dimension cj if V (a, cj , E) < Vr(a, cj , EZ, α), and decision-tree construction is
continued with the remaining dimensions of the class.
As explained in Sect. 2.3, post-pruning produces an accurate tree but is

time-consuming [8]. Our method, unlike a conventional decision-tree inducer,
continues construction of a decision tree with the remaining dimensions even af-
ter pruning. Therefore, we do not employ post-pruning since it requires iterations
of construction and pruning, and is thus time-consuming.

4 D3-B

4.1 Construction of a Bloomy Decision Tree

We have implemented our method as D3-B. Its algorithm is shown below, where
each attribute and each class dimension is assumed to have a discrete value.
Given a set E of examples, D3-B outputs a bloomy decision tree T using D3-
B(training set).
Given a set E of examples, algorithm D3-B recursively constructs a bloomy

decision tree T with a divide and conquer method. If the training set E in a
node can no longer be divided, we add, to T , a flower node which predicts all



442 E. Suzuki, M. Gotoh. and Y. Choki

dimensions in E. We define that a node can no longer be divided if and only if at
least one of the following conditions hold: 1) no class dimension in E, 2) values
of each class dimension are identical, or 3) E is empty. A predicted value is the
majority of E if E is non-empty, otherwise the majority of the training set.

If E can be divided, an attribute a is first selected according to the proce-
dure described in Sect. 3.2. Next, based on the pruning procedure which will
be described in the next section, a set P of class dimensions to be pruned are
obtained. If P is non-empty, we add, to T , a flower node which predicts the class
dimensions in P , and those class dimensions are deleted from E. From Sect. 3.1,
in this case, there is only one child node, which will be constructed by D3-B(E).
For instance, in Fig. 1 c1 was pruned at the left child of the root node. If P is
empty, child nodes are constructed by D3-B(Ea=v) for each value v of a.

Algorithm: D3-B(E)
Input: data set E
Return value: bloomy decision tree T
begin
If ((E can no longer be split) and (E has a class dimension))
Add a flower node which predicts all class dimensions in E to T

Else
begin
a← argmax

a′
F (a′, E)

P ← Prune(E,a)
If(P is non-empty)
begin
Add a flower node which predicts class dimensions in P to T
Delete class dimensions in P from E
Construct a child node of T by D3-B(E)
end

Else
Foreach(value v of attribute a)
Construct child nodes of T by D3-B(Ea=v)

end
Return T
end

4.2 Pruning of a Bloomy Decision Tree

Given a set E of examples and a selected attribute a, our algorithm returns a
set P of class dimensions each of which should be predicted in the node. For
each dimension ci in E, the following procedure checks the pruning condition
explained in Sect. 3.3, and adds the class dimension if it satisfies the condition
to P . This procedure is done in lexical order of class dimensions for simplicity,
and a class dimension ci which satisfies the condition is not employed in the
calculation of V (a, cj , E) and Vr(a, cj , EZ, α) for a subsequent class dimension
cj .
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Procedure: Prune(E,a)
Input: data set E, selected attribute a
Return value: a set of class dimensions P
begin
P ← φ
Foreach(class dimension ci in E)
If(V (a, ci, E) < Vr(a, ci, EZ, α))
begin
P ← P ∪ {ci}
ci is not employed in the calculation of V (a, cj , E) and Vr(a, cj , EZ, α) for a

subsequent class dimension cj

end
Return P
end

5 Experimental Evaluation

5.1 Conditions of Experiments

We demonstrate the effectiveness of D3-B as a multi-objective classifier by ex-
periments with eleven data sets. In the rest of this paper, thresholds for pruning
were settled with r = 1 and α = 5%.

“Agriculture” is a series of data sets which describe agricultural statistics for
3,246 municipalities in Japan. In this experiment, we employed the 1991 version.
Each example is represented by 37 attributes such as areas, populations, finan-
cial statistics, and industrial statistics; and has a 25-dimensional class about
gross products of crops. A continuous attribute was first discretized with equal-
frequency method [5] of five bins. We employed a simple class-blind discretization
method, rather than a class-driven discretization method, for the sake of sim-
plicity and speed-up. Before discretization, we visualized distributions of values
for several attributes, and chose the number five arbitrarily. A continuous class
dimension was first discretized with equal-frequency method of two bins. The
number two was chosen after we observed poor performance of induction algo-
rithms with five bins. We consider that information contained in this data set
is insufficient in order to learn a classifier which correctly predicts a fine-defined
multi-dimensional class.
“Kiosk” is a data set which describes inventories about 52 kinds of merchan-

dise in 232 shops of a Japanese company in 1994. In this data set, each kind
of merchandise has at least 83 zeros. In discretizing a continuous attribute, we
treated 0 as a value, and applied equal-frequency method of three bins to the
other values. The number three was chosen because only a small number of
examples were used in the discretizing procedure.
The other nine data sets comes from the UCI Repository [1]. We discretized a

continuous attribute with equal-frequency method of four bins, where a missing
value was left unchanged. The number four was chosen due to the wide variety
of attributes concerning distributions of values: the distribution was relatively
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balanced for some attributes such as those in “Agriculture”, and was skewed for
other attributes such as those in “Kiosk”.
For each data set, 100 multi-objective classification tasks were settled. For

each classification task except for those with the agriculture data, we chose six
attributes randomly, and regarded them as a 6-dimensional class. In choosing
these attributes for UCI data sets, we considered their appropriateness as a class
dimension. For each attribute, a single-objective classification task was settled,
and an attribute with which C4.5[11]’s accuracy is less than 63.5% with 5-fold
cross-validation was ignored in selecting a class dimension. As the result, the
Australian data and the mushroom data have only 28 (= 8C6) possible sets of 6-
class tasks, so we checked all these 28 tasks instead of randomly-chosen 100 tasks
for these data sets. For the agriculture data, we employed the 25-dimensional
class. Initial experiments revealed that 3.0 % difference for average accuracy and
1.5 difference for average number of nodes can be each considered as significant.
Note that, in practice, a class dimension should be settled in terms of its

importance in the domain. An interesting research avenue would be to measure
effectiveness of learning algorithms by constructing a class attribute with at-
tributes that can be more naturally used as a class dimension, in the sense that
their prediction is useful for the user.
In order to evaluate the effectiveness of our approach, we compared D3-B

with six learning algorithms including C4.5 and variants of D3-B. In the experi-
ments, average accuracies for class dimensions and average number of split nodes
were measured by 5-fold cross-validation as evaluation indices. First, C4.5 was
chosen as the representative of conventional decision-tree inducers. In applying
C4.5, a multi-dimensional class was transformed to a single-dimensional class by
assigning a new class value to each combination of class values. Second, D3-B
was also applied to data sets each of which was produced with this transfor-
mation in order to evaluate the effectiveness of flower nodes. Third, in order to
evaluate the effectiveness of Cramér’s V pruning, we also employed D3-B with
χ2 pruning. Fourth and fifth, the add-sum criterion in Sect. 3.2 was evaluated
by using D3-Bs with the product criterion and the squares-sum criterion. Sixth,
we compared D3-B with a method which constructs a decision tree for each class
dimension.

5.2 Experimental Results

Figure 2a shows the accuracies and the numbers of split nodes of D3-B and
C4.5. Concerning accuracy, our method outperforms C4.5 in nine data sets by
3.4 % - 19.3 %, and approximately ties with it in the other two data sets (our
advantage is less than 2.4 %). Concerning the number of split nodes, D3-B
constructs smaller trees in all data sets by 9.1 - 452.9. This shows that our D3-B
outperforms C4.5 in accuracy and readability due to its appropriateness to a
multi-objective classification task.
Figure 2b shows the effect of flower nodes on the accuracy and the number

of split nodes. Concerning the accuracy, D3-B outperforms D3-B without flower
nodes in “hepatitis”, “Australian”, and “German” by 7.9 % - 11.8 %; and ap-
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Fig. 2. Experimental results. (a) Accuracies and numbers of split nodes of D3-B and
C4.5. For C4.5, the numbers of nodes for “vehicle”, “German”, and “agriculture” are
109, 152, and 468 respectively. (b) Effect of flower nodes on the accuracies and the num-
bers of split nodes. (c) Accuracies and numbers of split nodes of D3-Bs with Cramér’s V
pruning and χ2 pruning. The numbers of nodes of the latter method for “Australian”,
“credit”, “German”, and “mushroom” are 132, 125, 179, and 103 respectively. (d) Ac-
curacies and numbers of split nodes of D3-Bs with the add-sum criterion, the product
criterion, and the squares-sum criterion. (e) Comparison of D3-B and a method which
constructs a decision tree for each class dimension. The numbers of nodes of the latter
method for “housing”, “Australian”, “credit”, and “vehicle” are 101, 144, 143, and 119
respectively. Note that this comparison should be treated differently since the latter
method constructs multiple trees.
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proximately ties with it in the rest (the difference is less than 1.6 %). Concerning
the number of split nodes, our method has a smaller number in eight data sets
by 3.5 - 45.5, and approximately ties with the other in the rest (the difference is
less than 1.7). We can conclude that the use of flower nodes almost always im-
proves readability and occasionally improves accuracy. This result is due to the
fact that a bloomy decision tree, unlike a conventional decision tree, gradually
simplifies a multi-objective classification task with flower nodes inside the tree.
Figure 2c shows the influence of pruning methods on the accuracy and the

number of split nodes. Since χ2 pruning is known to produce an overly large
decision tree for a large data set, data sets on the horizontal axis are sorted
in ascending order with respect to their numbers of examples. Concerning the
accuracy, our method outperforms χ2 pruning in five data sets by 3.7 % - 12.4
%, and approximately ties with it in the rest six (the difference is less than 1.1
%). Concerning the readability, our method outperforms χ2 pruning in eight
data sets (7.2 - 152.8 smaller), and approximately ties with it in the rest three
(0.6 - 2.9 larger). These three data sets correspond to the second, the third, and
the fourth smallest data sets. These facts show that our Cramér’s V pruning
tolerates the ineffectiveness of χ2 pruning in readability when the training set is
large.
Figure 2d shows the effect of criteria on the accuracy and the number of split

nodes. Concerning the readability, the product criterion produces trees with the
smallest number of nodes in seven data sets by 7.5 - 24.4, which seems significant,
and also trees with the smallest number of nodes in three data sets although the
difference is smaller (less than 1.6). “Agriculture” is the only exception since the
squares-sum criterion produces trees with a smaller number of nodes by 4.4. We
attribute these results to the fact that the product criterion selects an attribute
which splits all class dimensions well. We could not judge superiority between
the other two criteria from these experiments. Concerning the accuracy, the add-
sum criterion outperforms other criteria in all data sets. Especially, the difference
seems significant in seven data sets (4.9% - 13.7%). We attribute these results to
the fact that our criterion is, as we discussed in Sect. 3.2, robust concerning the
distribution of gain ratios of class dimensions, and is thus adequate for prediction
of multi-objective classification.
Figure 2e shows comparison of D3-B and a method which constructs a deci-

sion tree for each class dimension. We see that the differences of accuracies seem
not significant since they are less than 2.7% in all data sets. For readability,
however, D3-B always constructs a smaller tree (the difference is at least 6.6,
which seems significant). We consider that these results are due to the fact that
D3-B constructs a single tree while the other method constructs multiple trees.
Moreover, as we mentioned in Sect 1, readability is much worse than it appears
in the latter method since analysis based on multiple trees is difficult.
We also investigated these methods by varying the number m of class di-

mensions from two to five. Our method typically has no clear advantage for
m = 2, but gradually outperforms other methods as m increases. It should be
noted that no clear difference was observed for relatively “easy” data sets such
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as “housing”. We didn’t tried for m ≥ 7 to avoid the effect that the number of
attributes becomes smaller as m increases.
From these results, the superiority of our method in accuracy and/or read-

ability has been empirically proved against other methods. We consider that this
superiority demonstrate that our proposals of the flower node, the add-sum cri-
terion, and the Cramér’s V pruning are effective in multi-objective classification.

6 Conclusion

In this paper, we proposed a learning algorithm for a novel decision tree from
a multi-objective data set. Conventional learning algorithms are ineffective in
constructing an accurate and readable decision tree in multi-objective classifica-
tion. Our D3-B constructs a single classifier: a bloomy decision tree for such a
data set. In a bloomy decision tree, the number of class dimensions gradually de-
creases by the use of flower nodes inside the tree. Experiments with eleven data
sets showed that our D3-B, compared with C4.5 and other methods, typically
constructs more accurate and/or smaller trees.
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