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Abstract. In this paper, we discuss an approach for discovering tempo-
ral changes in event sequences, and present first results from a study on
demographic data. The data encode characteristic events in a person’s
life course, such as their birth date, the begin and end dates of their
partnerships and marriages, and the birth dates of their children. The
goal is to detect significant changes in the chronology of these events
over people from different birth cohorts. To solve this problem, we en-
coded the temporal information in a first-order logic representation, and
employed Warmr, an ILP system that discovers association rules in a
multi-relational data set, to detect frequent patterns that show significant
variance over different birth cohorts. As a case study in multi-relational
association rule mining, this work illustrates the flexibility resulting from
the use of first-order background knowledge, but also uncovers a number
of important issues that hitherto received little attention.

1 Introduction

In this paper, we study the problem of discovering patterns that exhibit a signif-
icant change in their relative frequency of occurrence over time. As was already
argued by [§], in many domains the step beyond discovering frequent item sets
to the discovery of second-order phenomena like the temporal change in these
frequencies is of crucial importance.

The analysis of life courses is such a problem. In the social sciences, and
especially in demography and sociology, there has been a diffusion of the so-called
life course approach [15]. One of the principal interests in that approach is the
study of how the lives of humans change as far as the age and the sequencing
and the number of crucial events are concerned. To study the evolution of a
whole society, it is common to analyze successive cohorts of people, i.e., groups
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of people that were born in the same period of time (e.g. the same year or the
same decade).

Previous approaches to detecting change mostly propose special-purpose al-
gorithms that had to treat time as special type of variable [12[8]. Instead, we
suggest to address this problem by exploiting the power of a general, multi-
dimensional data mining system. The system that we use—Warmr [9]—is based
on the level-wise search of conventional association rule learning systems of the
Apriori-family [IJT1]. It extends these systems by looking for frequent patterns
that may be expressed as conjunction of first-order literals. This expressive power
allows to encode temporal relationships fairly easily. In fact, the system does not
need to discriminate between temporal relations and other domain-dependent re-
lations, which is typical for conventional solutions to sequence discovery [3[13],
and lets them co-exist in a natural and straight-forward way.

2 The Dataset

The data for our analysis originate from the Austrian Fertility and Family Survey
(FFS), which was conducted between December 1995 and May 1996. In the
survey, retrospective histories of partnerships, births, employment and education
were collected for 4,581 women and 1,539 men between ages 20 and 54. Hence, the
Austrian FFS covers birth cohorts from 1941 to 1976. The retrospective histories
of partnerships and fertility for each respondent allow us to determine the timing
of all births in the current and any previous union. Moreover, information about
the civil status of each partnership in any month of observation is available,
which allows us to determine whether a union started as a marriage or whether
it was transformed into a marriage later on.

We are interested in studying the main features that discriminate between
the life courses of older and younger cohorts as far as the number of children,
number and type of unions, fertility before and after unions, etc. are concerned.
The present study should be considered a first step into that direction.

3 Multi-relational Data Mining — Using Warmr for
Discovering Temporal Changes

The dataset under consideration is essentially a multi-relational dataset: a per-
son’s life course is not described with a single tuple but by a set of tuples. Most
common data mining algorithms expect the data to reside in a single table, and
when the data are actually stored in a database with multiple tables they have
to be preprocessed: one needs to derive a single table from the original data
that hopefully retains as much of the original information as possible. This is
a non-trivial task. Two directions are possible: one is to devise automatic pre-
processing methods, another is to use data mining methods that can handle a
multi-relational database, e.g., inductive logic programming (ILP) methods [I0].
Our approach falls into the second category as we employ the ILP system Warmr
[9] to detect interesting patterns.



Detecting Temporal Changes in Event Sequences 31

female(159) . subject(I) :- female(I),
birth_date(159,6001). birth_date(I,X),
children(159,2). X >= 4100, X<=6000.
child_birth_date(159,7810). gen40(I) :- birth_date(I,X),
child_birth_date(159,8706). X >= 4100, X<4600.
unions(159,2). child_out_of_wedlock_at_age(I,A) :-
union(159,7805, 8106) . birth_date(I,X),
union(159,8306, -2). child_birth_date(I,M),
marriage_date(159,7807) . \+ (marriage_date(I,N), N=<M),
marriage_date(159,8706) . A is (M-X)/100, A =< 35.

Fig. 1. On the left, a Prolog encoding of a typical entry in the database is shown. This
snapshot represents a female person with id 159 who was born in January 1960. Up
to the interview date (=~ December 1995), she had formed two unions. The first lasted
from May 1978 to June 1981, and the second started in June 1983 (and has not ended
at the time of the interview). Both unions were converted to marriages (July 1978 and
June 1987) and in each union one child was born (October 1978 and June 1987).

The right half shows a few predicate definitions that operated on the basic data encod-
ing. The subject/1 predicate served as a key, and could be used to filter the data (in
this case to admit only persons from cohorts 1941-60). gend0/1 encodes one of the class
values (the cohort 1941-1945), and child_out_of wedlock_at_age/2 shows an example
for abstract background knowledge that can be defined upon the base predicates, as
well as an example for censoring events above a certain age.

As multi-relational data mining is a relatively unexplored field, few guidelines
exist as to the methodology that should be followed. Consequently, this section
describes the complete data mining process that we employed for addressing our
problem. On the way, we will also describe the workings of Warmr, the first-order
data mining system that we used, as well as the way the data was represented
for the use by this system. Although the following sections will only describe
the final data representation, it should be noted that this was not the result of
a top-down design, but of repeated exploration of several options.

3.1 Data Preprocessing

Data preprocessing consisted of several steps. First, the data were converted into
a Prolog format. A typical entry is shown in the left half of Fig. [1. From then
on, preliminary experiments could be run, which were helpful to further improve
the quality of the domain representation.

To this base representation, we added several pieces of background knowledge
in the form of Prolog predicates that operate upon these operational predicates.
These were mostly conversions from dates to ages (which is needed when one
wants to find, e.g., changes in the average age of marrying etc.), but also included
complex high-level predicates such as child_out_of_wedlock_at_age/2, which
encodes whether a person had a child out of wedlock. Most importantly, we
included the </2 predicate, which allowed the system to compare ages at which
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Fig. 2. Relative frequencies of people that
had a union before they married. The
steady increase up to 1960 is a true reg-
ularity, while the decline for the cohorts
1960 — 1975 is due to the fact that for
increasingly many individuals of these co-
horts, union formation and marriage has
not yet taken place in their lives at the
time of the interview (=~ December 1995),
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events take place in people’s life courses, and thus to describe their chronology.
Note that this approach does not only allow to find sequences in the strict sense,
but also partially ordered events, such as A<B, A<C, where the order of the
events B and C is left open (both A<B<C and A<C<B are possible). It is precisely
this facility which makes the use of a relational data mining system necessary,
because this functionality cannot be achieved with a conventional, propositional
association rule finder without using a pre-processing phase that encodes all
possible event sequences as separate features. Note that such a procedure would
basically reduce the task of the frequent pattern discovery to a single pass over
all possible, pre-compiled sequences, which defeats the purpose of the efficient,
level-wise search.

In addition, the flexibility of the first-order background knowledge also facil-
itated censoring of the data. In social sciences, this term describes the situation
that, when using data collected from interviews where people are asked about
their past experience of events, only their life courses up to the age at interview
are available to the analyst. Such a situation can, e.g., be seen in the decline of
frequencies of people that formed a union before they were married (Fig.[2). As
people born after 1965 were, at the time of the interview (=~ December 1995)
30 years or younger, it is quite natural that the probability for these people to
have experienced certain events or event sequences in their life course is not the
same as for people in their forties or older. Consequently, in preliminary experi-
ments we discovered many rules because of the comparably low frequencies for
marriage, union formation, and child birth for people born in the seventies.

After some experimentation, we decided to censor items in the following way:

— only people born in the forties or fifties were retained
— events in people’s lives that occurred after the age of 35 were ignored

Censoring was easily done by adding inequations in the relevant definitions of
background knowledge (like in the last rule of Fig. 2)). Naturally, looking only at
events happening before the age of 35 severely limits our study, but increasing
this age limit could only be done at the expense of reducing the data set (in
order to increase the age limit to 40 and yet avoid artificial patterns, the set
of subjects would need to be reduced to those people born before 1956). Our
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choice is a compromise between keeping as much data as possible and looking
at a reasonable set of events in people’s lives.

The original dataset contained 6120 entries, 1539 representing male subjects,
and 4581 representing female subjects. As the distribution of male and female
subjects is obviously skewed, we decided to only work with the larger, female
group Again, this could easily be achieved by adding an appropriate condition
in subject/2 (see Fig. [I]), which defines the key (as defined below).

3.2 Discovery of Frequent Patterns

Warmr [9] is an ILP system that discovers frequent patterns in a data set, where
a “pattern” is defined as a conjunction of first order literals. For instance, in our
data set patterns may look like this:

subject(S), married_at_age(S,A), child_at_age(S,B), B>A.
subject(S), child_at_age(S,A), child_at_age(S,B), B>A.

The first pattern describes a person S who married and subsequently had
a child; the second one describes a person who had at least two children (with
different ages).

Each pattern is associated with a so-called key: the frequency of a pattern is
determined by counting the number of key items (i.e., the number of instantia-
tions of the key variable) that satisfy the constraints stated in the pattern. In
the above example, it is natural to have the subject S as the key.

Warmr can be considered a first-order upgrade of Apriori [1]; it performs a
top-down level-wise search, starting with the key and refining patterns by adding
literals to them. Infrequent patterns (i.e. patterns of which the frequency is below
some predefined threshold) are pruned as are their refinements. We refer to [J]
for more details.

3.3 Discovering Temporal Change

As described above, Warmr finds all patterns that have a frequency above a user-
specified threshold. In a second phase, Warmr can combine these patterns into
first order association rules; basically, these rules are of the form “if LHS occurs,
then RHS occurs with probability ¢”. Contrary to conventional, propositional
association rule finders, patterns may be formulated in first-order logic, which
allows conditions to be linked together by sharing the same variables.

In order to limit the number of possible rules, the current version of Warmr
expects that the user provides a list of possible patterns that can occur on
the left-hand side (LHS) or right-hand side (RHS) of a rule. This is done with
Warmr’s classes setting. More specifically, if there is a frequent pattern P and
subsets A and B, such that A C P is one of the classes and B = P\ A, then

! The over-sampling of female individuals was intentional in the family and fertility
survey from which the data originate because fertility is more closely linked to female
life courses.
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Warmr returns the rules A => B and B => A (assuming they fulfill possible
additional criteria, such as achieving a minimal confidence level).

In our application, we used the classes to separate people into different co-
horts. After some experimentation, we decided to use four different cohorts,
each encompassing a 5-year span. In Warmr, this could be simply encoded using
generation literals as classes:

classes([gend40(_), gend45(_), gen50(_), genb5(_)]1).
This tells Warmr that we expect to see rules of the following typ
gend40(8) => subject(S), child_at_age(S,A), child_at_age(S,B), B>A.

The rules are ordered according to their interestingness. Interestingness is defined
in Warmr as the number of standard deviations the observed frequency of a
pattern in an age group differs from the average frequency in the whole data
set under consideration. More precisely, for a rule A => B, interestingness
d(A => B) is defined as

n(AAB) _ n(B)

p(B|A) —p(B) _ A N
p(B)(1—p(B)) nB) (1_n(B))
\/ n(4) \/ Ty

where p(B) ~ @ is the probability /relative frequency of the pattern B in the

entire data set, whereas p(B|A) ~ "(n‘?g])g) is the probability/relative frequency
of the same pattern occurring in the subgroup defined by the class A. Hence,
the numerator computes the deviation of the expected frequency of pattern B
(if it were independent of A) from its actual frequency of occurrence in the
subgroup defined by pattern A. This difference is normalized with the standard
deviation that could be expected if p(B) were the true frequency of occurrence
of B within A. Thus, d(A => B) computes the number of standard deviations
that the actual frequency is away from the expected frequency. In our case,
the interestingness measure compares the expected number of individuals that
satisfy a certain pattern in a cohort to the expected number of individuals that
should satisfy this pattern if the occurrence of the pattern were independent
from the birth cohort.

d(A=> B) =

3.4 Filtering of Semantic Redundancy

Many of the discovered rules are syntactically different but semantically equiva-
lent because redundant conditions are added to a rule (if, e.g., a constraint that
specifies that a person has more than 3 children is followed by redundant tests for
having more than 2 or 1 children) or the same situation is expressed in different

2 As mentioned above, Warmr will also produce rules of the form subject(S),
child at_age(S,A) ...=> gen40(S). because the evaluation of rules A => B and
B => A may differ. However, as characteristic rules of the form gen40(S) =>
pattern are more natural to interpret, we applied a filter to Warmr’s output that
only retained this kind of rules.
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ways (e.g., the above-mentioned constraint on the number of children can also be
formulated using an equivalent number of child_at_age/2 predicates together
with inequalities that assure that they refer to successive events). Some (but not
all) of these cases can be addressed by Warmr’s configurable language bias (e.g.,
by specifying that only one constraint on the number of children is admissible in
a rule) and its constraint specification language (e.g., by specifying that literal
p(X) must not be added if literal q(X) already occurs). We will return to this
issue in Sect. Bl

To reduce the number of rules, we employ a simple filtering strategy: for rules
that share the same frequencies for all its components (n(4), n(B), n(A A B))
and hence have the same measure of interestingness d(A => B), we simply
assume that they are semantically equivalent. In such cases we automatically
removed all rules except those that were found at the minimum level (i.e., all
but the shortest rules)

Figure Bl shows the number of frequent patterns found in one of our exper-
iments, the number of rules generated from these patterns, and the number of
rules that survived the filtering process. What also becomes apparent is that the
number of irrelevant and redundant patterns increases with the level. At level
10, where the largest number of frequent patterns is discovered (1795), only four
rules survive the filtering, and at subsequent levels none remain (0 frequencies
are shown as 1 in the log-scale).

3.5 Visualizing the Results

Rules reported by Warmr to be interesting (in the sense that they describe pat-
terns whose frequency in a certain age group deviates significantly from its av-

3 A better approximation of semantical equivalence would be to consider the actual
sets of covered instances, instead of just their size. However, after inspecting a num-
ber of rules with the same interesting measure, we found no examples where rules
with the same interestingness measure were not semantically equivalent, so we did
not consider it worthwhile to implement this more accurate approximation. Concern-
ing the choice of the simplest rule, when several rules had the same interestingness
measure and the same complexity, we arbitrarily decided for one of them.
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Fig. 4. The trends behind a very simple pattern and a very complex pattern. The

left graph shows the negative trend in people that started their first union when they
married. The pattern behind the right graph is explained in the text.

erage frequency in the entire population) were inspected manually, looking at
the most interesting rules first. The temporal change of interesting patterns was
visualized by plotting the frequency of occurrence of the pattern over 1-year
cohorts from 1940 to 1960. This was very useful for assessing whether the found
anomaly for one age group represented a trend throughout the years or only
a temporary change in behavior. This phase could be enriched using a query
language for trend shapes, such as the one proposed by [12].

4 Selected Results

In this section, we report on some of the results obtained in our case study.
For these experiments we used the Warmr algorithm as implemented in the
data mining tool ACE-ilProlog [6], version 1.1.6. We used the default settings
for Warmr, except for a minimal support of 0.01 (the default is 0.1). No minimal
confidence was specified for the generated rules.

The used background knowledge allowed the system to consider the events
of child birth, start of a marriage and start of a union, and to order these events
using inequalities, as well as test whether events occurred at the same time. To
prevent infinite chains, the latter tests were restricted to ages originating from
different event types (e.g., the system was not allowed to test the equality of two
marriage dates), and only one equality test per pair of event types was allowed.
In addition, all rules were initialized with the date of the first union. With this
language, a Warmr run that went 16 levels deep took approximately 6 hours.

Figure[d shows two discovered trends, one originating from a very simple rule,
and the second from a fairly complex rule. The first pattern is the relation that
people formed their first union when they married. This pattern was found with a
negative deviation of 8.07 for the cohort 19561960, and with a positive deviation
of 7.05 for the cohort 1941-1945. Together with its counter-part (Fig. B), this
pattern showed the strongest deviation of all discovered rules. Near these two
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Fig. 5. People that have a child between their first union and a marriage over all people
(left) and the same group over those people that had a marriage after their first union.

rules were several similar rules, that add minor restrictions to these rules (e.g.,
marrying at the time of the first union and having a child at a later time).

The second rule is shown below; it was found at level 7, with negative devi-
ation of 2.17. Only a few rules at levels > 8 survived the filtering process and
none of them had a deviation of more than 2 standard deviations.

genb5(A) :- subject(d), first_union_at_age(A,B),
married_at_age(A,C),C>B, child_at_age(A,D),D>C,
child_at_age(A,E) ,E>B,
married_at_age(A,F),F>E, child_at_age(A,G),G>E]

The first part of this rule states that persons satisfying this pattern married
after their first union and had a child thereafter. The second part specifies that
they had a child after their first union and after this child, they had both a
marriage and a second child. Note that not all of the events in this rule are
strictly ordered, and it is sometimes left open whether they refer to identical or
different events. For example, both marriages referred to in the rule could be
bound to the same marriage, in which case the pattern describes women that
had at least two children, at least one of them before the marriage. However,
all 6 event predicates could also refer to different events. The partial ordering
of these events makes these patterns more general and may result in interesting
combinations of subgroups.

More complicated rules have to be interpreted with caution, as can be seen
from Fig. Bl Its left graph shows the trend for people that have a child between
their first union and a marriage as discovered by the system, but the second
graph, which normalizes this number over the number of people that had their
first union before they married, shows that trend was mostly due to the trend
in the normalizing pattern.

5 Lessons Learnt

An interesting, somewhat unexpected result of our explorations was that adding
domain knowledge not only slows down the system but does not necessarily
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yield more interesting results. The reason for this is that frequently the same
relationships were also found in the form of the conjunctions of the operational
predicates that were used to define the high-level predicates in the first place. So
while we started our exploration by adding high-level predicates that appeared
to be interesting to us (such as child_out_of_wedlock_at_age/2), we even-
tually ended up in removing most of these patterns because they unnecessarily
slowed down the system’s performanceﬂ Warmr currently allows to formulate
simple, syntax-oriented constraints (such as “do not add literal p(X) if the lit-
eral q(X) already occurs”), but this is insufficient for our application, where,
e.g., the transitivity of < causes many dependencies that cannot be avoided us-
ing the current constraint specification language. A more powerful language for
expressing semantic constraints is clearly a promising topic for further research.

In particular for higher values of the frequency threshold, we often encoun-
tered the problem that negative deviations are often missed by the system. The
reason for this is that patterns that occur significantly less frequently than ex-
pected are often below the frequency threshold. This is not a big problem in our
application because a negative deviation for, e.g., the early cohorts 1941-1945 is
typically paired with a positive deviation for the later cohorts 1956-1960, which
is easily detected by the system. As we visually inspect the found patterns over
all cohorts, it does not matter which deviation is found by the system.

In general, however, these issues may hint at an important shortcoming: in
domains where frequency thresholds cannot be applied for effectively reducing
the number of candidates (or can only reduce them at the expense of loosing
interesting patterns) the level-wise search pioneered by Apriori might in fact
not be a suitable choice. In particular if the search is performed in memory,
alternative search strategies [5J16] might be considered because of their more
flexible pruning strategies. It is an open research problem which strategy is
more appropriate for multi-relational data mining systems like Warmr.

6 Related Work

The problem of detecting temporal change in frequent patterns by grouping
objects over time was also studied by [4]. In their application, they discovered
trends in student admissions to UCI in the years 1993-1998. Their approach
was limited to detecting changes in propositional patterns (which they called
contrast sets), while we consider change in temporal patterns.

The problem of discovering frequent episodes in event sequences could also be
solved by other techniques [BJT3]. These could then be post-processed with simi-
lar techniques for detecting deviations over time. In fact, [12] discuss such a two-
phase solution to the problem of discovering trends in text databases. The first
phase consists of discovering frequent phrases in documents, i.e., in sequences of
words using the advanced sequence discovery algorithm described in [T4]. In the

4 The problem occurs less frequently in propositional tasks, but there too it is rec-
ognized that if such dependencies do exist, one needs special techniques to handle
them [7].
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second phase, the frequencies of the phrases over given time groups are deter-
mined, and their shape can be queried using the query language described in [2],
which could, in principle, be replaced by our technique of detecting significant
deviations from the mean over different periods of time.

The above-mentioned approaches basically treat the problem as a basket
analysis problem with time as a special, designated variable that allows to inte-
grate multiple baskets into single rules, as long as certain temporal constraints
(e.g., a maximum window size) are followed. Our approach, however, is more
general in the sense that it does not give a special role to time. Temporal re-
lations are represented in the same way as other domain-dependent knowledge
(even though this was not the main focus of this particular application). As a
consequence, we are not only searching for sequential patterns (i.e., strict tempo-
ral orders of the form A<B<C), but for more general, graph-like structures (such
as A<B and A<C).

Several people have recognized the importance of taking dependencies into
account when searching for association rules, and proposed solutions, e.g., in the
form of itemset closures [{]; some of that work is currently being extended to
first-order association rules [De Raedt; personal communication], but we have
no knowledge of existing publications in this area.

7 Conclusions

In this paper, we demonstrated a way for exploiting the generality of Warmr, a
multi-relational data mining system, for the task of discovering temporal changes
in sequential patterns. The generality of Warmr allows a straight-forward encod-
ing of time-dependent information and a seamless integration with additional
background knowledge, which facilitates ease of experimentation and flexibility
in incorporating new knowledge. In particular, during our experimentation, we
frequently changed the system’s view of the data, e.g., by censoring recent co-
horts and late events in people’s life courses. Such changes could be handled by
simple changes in the background knowledge, while the underlying data repre-
sentation could remain the same.

On the other hand, our current experiments clearly show the need for han-
dling dependencies in first order association rule mining in general. A specifically
interesting consequence of this is that the use of background knowledge may hurt
the performance of systems such as Warmr, rather than improving it. This is an
important issue, as the possibility to use background knowledge is one of the ad-
vantages of ILP approaches. In the current version of Warmr, dependencies can
to some extent be handled using syntactical constraints on clauses, but this is
clearly insufficient to handle semantic dependencies between background knowl-
edge definitions (e.g. the transitivity of <). Further research is needed to address
such problems in first-order association rule mining.
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