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Abstract. A t-out-of-l threshold signature scheme allows 1 members of 
a group to own shares of a private key such that any t of them can create 
a signature, while fewer than t cannot. Most of these schemes require a 
single trusted party to create the secret key and calculate the 1 shares. 
Harn [lo] and Li, Hwang, and Lee [13] have devised threshold schemes 
based on the difficulty of solving the discrete logarithm problem which 
do not require such a trusted party. This paper extends that property to 
2-out-of4 threshold signatures based on the Digital Signature Standard 
and describes two possible generalizations to a t-out-of4 scheme. 

1 Introduction 

A digital signature, like a handwritten signature, is used to verify the sender of 
a particular message. The signer is generally a single person. However, when the 
message is on behalf of an organization, a valid message may require the approval 
of several people. A common example of this policy is a large bank transaction, 
which requires signatures from two people. Such a policy could be implemented 
by having a separate digital signature for every required signer, but this solution 
increases the effort to verify the message linearly with the number of signers. 

An alternative method is a threshold signature scheme. In a t-out-of4 thresh- 
old signature scheme, there is one public key for the group while the private key 
is shared among the 1 members of the group. Any t members can cooperate to  
create a digital signature without revealing their shares of the private key. Fewer 
than t members cannot create a valid signature. 

Threshold signatures are closely related to the concept of threshold cryptog- 
raphy, first introduced by Desmedt [5]. A number of group oriented systems have 
been proposed and, for an overview of the field, t,he reader is referred to [6]. 

Threshold signature schemes have been proposed using RSA signatures [7, 
11, 91. These schemes require the use of a trusted center to generate the private 
key and calculate the share values. While the existence of such a center is not 
an unreasonable assumption, there are two potential problems. First, for many 
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applications, there is no one person or device which can be completely trusted 
by all members of the group. Second, the use of a key center creates a single 
point failure. Any security lapse at the key center can reveal the private key. 
Once the shares are distributed, careless handling of any one share reveals no 
information about the private key. At least t shares must be compromised before 
an attacker has any useful information. 

To avoid these problems, Harn [lo] introduced a scheme based on a modified 
ElGamal signature which does not require a trusted key center. Li, Hwang, 
and Lee used Harn's scheme to allow the receiver to verify which members of 
the group signed a given message [13]. These schemes show that it is possible 
to generate threshold signatures without a trusted party, but leave open the 
question of how to create such schemes .for other signature algorithms. 

This paper extends the idea of distributed generation of the private key 
by proposing three threshold schemes based on the Digital Signature Standard 
(DSS). The first is a 2-out-of-l threshold scheme which requires a small amount 
of interaction between the co-signers, but does not require the use of a trusted 
center to generate the shares. This scheme does need a third person as combiner, 
but the combiner need not be any more trusted than other members of the group. 
In fact, the combiner may be a member of the group who is not a co-signer. The 
second scheme uses precomputed values to create t-out-of-1 threshold signatures. 
The key generation center for this scheme can be distributed into three centers, 
any two of which must be compromised to expose the private key. The third 
scheme does not require the use of a semi-trusted combiner or precomputed 
lists. However, the scheme requires t2 - t  + 1 signers for t-out-of-l security. These 
three schemes are the first threshold schemes to be proposed using DSS. 

2 Digital Signature Standard 

The Digital Signature Standard (DSS) [l] is based on the difficulty of computing 
discrete logs. For this algorithm, we need the following parameters. 

1. p = a prime modulus, L bits long, where 512 5 L 5 1024, and L is a multiple 

2. q = a 160-bit prime divisor of p - 1. 
3. g = h(P-')/q mod p, where h is any integer with 0 < h < p such that g mod 

4. x = an integer with 0 < x < q. 
5. y =gx modp. 
6. M = a one-way hash of the message to be signed. 
7. k = a random integer with 0 < k < q .  

of 64. 

p > 1 (g is an element of order q in GF(p)). 

The system parameters p, q ,  and g are public. The user's public key and 
private key are y and 2 ,  respectively. To create a signature, the user chooses a 
random k, computes IC-' mod q ,  and calculates 

T = (gk-l mod p) mod q ,  
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and 
s = Ic(M + m) mod q. 

The pair (r, s) is the desired signature. A new value for k must be generated for 
each new signature. 

Note: For this paper, k and k-' are switched from the standard DSS nota- 
tion. This is merely to simplify the following discussion. Since k is random, this 
interchange is immaterial. 

To verify a signature, the recipient calculates gMa-'yrs-' mod p and checks 
that the result equals P. Since y = gz,  when we multiply the two values together, 
the exponent becomes Ms-' + trs- l  = (M + 2r)s-l mod q. This expression 
reduces to k-' in the exponent, yielding the desired result r as in equation (1). 

3 Secret Sharing of Sums and Products 

Shamir [15] developed a secret sharing scheme based on polynomials over a finite 
field. A polynomial f of degree t - 1 is chosen such that f(0) is the secret. Every 
participant i ,  (i # 0), in the scheme is given f ( i ) ,  a share of the secret. Any t of 
these shares can be used to calculate f(0).  Further, if any t - 1 of these shares 
are combined, then no information is revealed about f(0). 

In general, from any t distinct points of a degree t - 1 polynomial, we can 
calculate the value of any other point of the polynomial by interpolation. For a 
set T o f t  shareholders with shares f(zj), over the field GF(q) ,  the formula for 
this interpolation is 

Therefore the formula for calculating the secret f(0) is the linear combination 
of the shares, 

where is a constant which can be publicly determined because its value does 
not depend on any secret information. 

Although generally defined over a field, this scheme can be defined mod n, 
where n is not prime, if the quantities zi - zj have inverses for all i and j .  If the 
shareholders are numbered from 1 to I, this is equivalent to requiring that n has 
no prime factors less than 1.  

It is natural to think of secret sharing in terms of an existing secret owned 
by an individual or device. The owner of the secret then creates and distributes 
the shares. However, we can also implement secret sharing so that the secret 
is created as part of the process of creating the shares. The value of the secret 
is determined by the value of the shares, but the secret itself is not explicitly 
calculated at the time the shares are created. This process will be useful for 
creating threshold signatures, where we want to create shares of a private key. 
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The private key itself is never used directly, so there is no reason that it ever 
needs to be explicitly calculated. 

Shamir's scheme can be used to implement this idea of implicitly creating 
the secret. Suppose that a group wishes to create shares in a secret which is the 
sum of two numbers, without any one person ever knowing that sum. Person 
A creates a secret sharing polynomial f ~ ( 2 )  with secret SA (i.e., f ~ ( 0 )  = SA)]  
and distributes the shares. Similarly, person B creates fg (x) with secret Sg and 
distributes the resulting shares. Then f(z) = f ~ ( t )  + fg(z) is a new polynomial 
with secret f ( 0 )  = f~(0) + fg(0) = SA + SB. If shareholder i has received 
f A ( i )  and fg(i), he can create the share of the new polynomial by adding the 
two shares, f ( i )  = f ~ ( i )  + fg(i). Clearly, this scheme is not limited to two 
equations, the only requirement for additional equations is that the numbering 
of the shareholders remains consistent. Shareholder i must receive the polynomial 
evaluated at point i for all polynomials involved. 

If we use these polynomials in the exponent, then we create shares which 
multiply together] rather than add. Given a prime q and an element ,O of order 
n in GF(q),  we can create a polynomial f(z) mod n and define the secret as 
@I(') mod q. The secret can be recovered by exponentiating the normal linear 
interpolation formula. As explained above, n must not have any small prime 
factors or this interpolation is not possible. We will use this multiplicativesharing 
technique to create the shares of the private key in our threshold scheme. 

The methods for creating additive or multiplicative shares without a trusted 
center are well known. However, generating DSS threshold signatures leads to a 
new problem-creating shares of an arbitrary product. We would like to be able 
to have every member of a group generate a number and calculate shares which 
combine linearly to form the product of those numbers. We have not solved this 
problem in general. The remainder of this section explains the solution for the 
case of the product of two numbers. 

Suppose Alice knows secret A and Bob knows secret B. Together, they would 
like to create shares which can produce the secret AB mod q. However, they 
would like to create these shares without having any one person know the secret 
AB. To do this, they need the help of a third person, Charles. 

1. Alice generates a random number RA and Bob generates RB, where 0 5 
RA,RE < q. 

2. Alice privately sends Charles A - RA mod q and privately sends Bob RA. 
Bob privately sends Charles B - Rg mod q and privately sends Alice RE. 

3. Alice calculates SA = ARB - ~ R A R B  mod q ,  and Bob calculates SB = 
BRA - ~ R A R B  mod q. Charles calculates Sc = ( A  - RA)(B  - RE)  mod q. 

The sum of the three secrets, SA,  SB ,  and Sc, is the desired product, AB. 
Notice that no single person has sufficient information to calculate AB, but that 
any two of the three can work together to recover the secret. Thus, Charles must 
be trusted exactly the same amount as Alice or Bob. 
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4 2-out-of-l Threshold Signature Algorithm 

4.1 DSS Parameters 

The 2-out-of-I threshold signature scheme places an additional requirement on 
the parameters of DSS. We require that ( q  - 1)/2 has no prime divisors smaller 
than I ,  the number of shareholders.2 This requirement will slow the generation 
of the system parameters slightly. We will also need an additional parameter, p, 
where p is the square of a primitive element mod q. (p  has order ( q  - 1)/2.) 

4.2 Creating the Shares 

To create the 2-out-of-! threshold signature algorithm, every shareholder needs 
a multiplicative share of the secret key, x. We will define 2 = /3fco) mod q ,  where 
f is a secret sharing polynomial. Since p is the square of a primitive element, 
arithmetic in the exponent is done mod ( q  - 1)/2. Therefore, we will define f 
mod ( q  - 1)/2. All necessary inverses exist since q has been chosen such that 
(q  - 1)/2 has no prime factors less than 1.  

As described in Section 3, the generation of the secret sharing polynomial 
f can be accomplished cooperatively, rather than relying on a trusted center. 
Each member of the group generates a degree one polynomial mod ( q  - 1)/2. 
For instance, if Alice is member number 1, she generates f l (z)  = ylz  + 61 mod 
( q  - 1)/2, where 71 and 61 are random. She now generates shares of f1 and 
distributes them privately to each member of the group, taking care to give each 
member i the share fi (i). 

When every member of the group has generated and distributed shares of 
their polynomial, Alice has fi  (1), f2( l), . . . fi (1). She now adds them together. 
Since the polynomials are linear, the result gives her f(l),  where f ( z )  = fl(z) + 
f z ( z ) + .  . .+f i (z ) .  Now everyone.has a share of the polynomial f, yet no single 
person knows f( 0). 

To calculate the public key, member a computes za = T*,-f(') modq and 
member b computes Z b  = pbgrf(b) mod q. The product of these two numbers is 
the secret key since Z a Z b  = T02*f(a)+cb*wf(b) = pf(O) = mod q. Members a and 
b can use their values of x, and zb in a Diffie-Hellman exchange to  calculate 
y = g X a C b  modp. This process can be repeated for any pair, allowing group 
members to  check their shares without revealing them. 

4.3 Creating the Signature 

The signature is created using the method for creating shares of a product de- 
scribed in Section 3. We will be creating shares of the values k and kx. Creating 
a signature requires two shareholders, Alice and Bob, and a trusted combiner, 
Charles. Any two of these three can cooperate to recover the secret, so Charles 
must be trusted the same amount as any shareholder. 

For simplicity, we could require that (q  - 1)/2 be prime. However, this stronger 
requirement is not necessary. 
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To create a signature, Alice generates three independent random numbers, 
k A ,  R A ~ ,  and R A ~ ,  uniformly between 0 and q - 1. She then sends gkA-’ mod p, 
R A ~ ,  and R A ~  privately to Bob. Similarly, Bob sends gkB-’ mod p I  RBI ,  and 
Rg2 privately to Alice. Alice and Bob can avoid the need for a Secure channel 
by generating R A ~ ,  R A ~ ,  RBI ,  and R B ~  by a Diffie-Hellman exchange. 

Alice and Bob can now calculate r = (gkA-’*B-’ mod p) mod q, and send 
the result publicly to Charles. Alice calculates X A  = , F A , i f ( A )  mod q for her 
private use. Note that X A X ~  = x mod q and k A k g  = k mod q. So Alice can use 
the number k A  and the method of Section 3 to create a sharing scheme for k .  
Similarly, she can create a sharing scheme for k x .  Let s A 1  be Alice’s share of k 
and S A ~  be Alice’s share of k x .  Alice computes 

She then sends S A ,  k~ - R A ~ ,  and k A z A  - R A ~  privately to Charles. Similarly, 
Bob computes 

and sends SB,  k g  - RBI ,  and k g z g  - Rs2 privately to Charles. 
Charles now computes his shares of k and k z ,  

Sci = ( k ~  - R ~ i ) ( k g  - Rsi)  mod q 

sC2 = ( k A z A  - RA2) (kBZB - R B 2 )  mod Q. 

(7) 

(8) 
and 

He can now calculate s = SA + 8~ + (SclM + Scar) mod q. The result (r ,  s) is 
a valid DSS signature, since 

= (sA1 + SBl + SCl)M + ( s A 2  + s B 2  + s C 2 ) r  (9) 
= kM + k x r  (10) 
= k ( M  + zr)  mod q. (11) 

4.4 Maintenance of Shares 

One of the benefits of a threshold scheme is that if a single share is compromised, 
the private key is not revealed. If the shareholders know that a share has been 
compromised, for security they should generate a new public key and shares 
of the private key. However, the shareholders may not realize that a share has 
been compromised, or the cost of changing the public key may be quite high. 
To help preserve the security of the system in these cases, we can change the 
shares in such a way that although the public and private keys do not change, 
the old shares and the new shares are incompatible. This process is similar to 
the disenrollment capability described in [2] and [3]. 

To create the new shares, one of the shareholders should distribute shares 
of a polynomial with a “secret” of zero (ie., gz(z) = R x  + 0 mod ( q  - 1)/2, 
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where R is random). Each shareholder then adds the share of gz to the share 
of the private key. Adding the two polynomials does not change the secret, but 
does change the value of all shares. Visualizing the secret sharing polynomial as 
a line, we have changed the slope of the line, but not the intercept. Once the 
shareholders confirm that their shares are still valid, they destroy their shares 
of g z .  Since the old shares and the new shares now correspond to two different 
polynomials, they cannot be combined to calculate the private key. The private 
key is only compromised if someone has access to two shares which are valid at 
the same time. 

Any two shareholders can cooperate to replace a lost or damaged share with- 
out revealing their shares or calculating the secret. To create share i, the two 
shareholders use the interpolation formula (3) to calculate the value of f ( i ) .  Each 
calculates one of the terms of this sum and adds a share of a polynomial with 
secret zero as described in the preceding paragraph. The result is transmitted 
secretly to shareholder i. Share i is the sum of the these two results. The two 
shareholders generating these pieces must use independent polynomials. Oth- 
erwise, shareholder i would have sufficient information to calculate the secret. 
Once share i is created, shares of the two polynomials with secret zero should 
be distributed to the remaining shareholders. 

4.5 Security of 2-out-of-Z Scheme 

Because the partial signer, Alice (or by symmetry Bob), knows only a share of 
x, a share of k, and four random numbers, she has no information that could 
not be simulated by an external attacker. She therefore cannot break the system 
faster than an attacker who sees only the final DSS signature which is a result 
of this scheme. 

The only participant with information which cannot be simulated by an 
attacker is the combiner. Coppersmith [4] has observed that the combiner Charles 
can compute quadratic residues involving ZA and XB, but that this does not 
seem to lead to an attack. Essentially, this “attack” manipulates the equations 
Charles knows to generate a quantity which is a function of X A  and XB and 
known information. Charles does not know the quantity itself, merely that it is 
a quadratic residue. This information does not appear to help Charles calculate 
X A  and ZB. For a description of the method for calculating quadratic residues, 
see [12]. 

5 t-out-of4 Threshold Signatures 

To create general t-out-of4 threshold signaturesi we will precompute and store 
information for each signature. While this approach raises non-trivial implemen- 
tation problems, it may be suitable for certain applications. 
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5.1 With a Trusted Center 

For simplicity, we will first assume the existence of a trusted center to create 
the shares. The next section will show how to remove this requirement. The 
center creates the private key x, and the public key y. For a single signature, the 
center generates a random k and creates two independent secret sharing schemes, 
one with secret k and the other with secret kx. Then the centef privately gives 
Alice her share of k, her share of kx, and the quantity r = (gk- mod p )  mod q. 
Since the sharing schemes for k and kx are both mod q ,  and q is 160 bits 
long, the entire share is 480 bits. The center repeats the process for the other 
shareholders. Notice that, unlike the 2-out-of-l scheme, this scheme does not 
place any additional restrictions on the parameters of the system. 

In order to sign a message, any t of the shareholders must create a partial 
signature. Let UA be Alice’s share of k and VA be Alice’s share of kx. Then her 
partial signature would be SA = UAM + VAT. She sends this partial signature 
to a combiner. Once the combiner has accumulated t partial signatures for a 
message, he can combine them into a single signature using equation (3), 

= k M  + kxr = k ( M  + ZV). (14) 

The interpolation constant ci,% can be calculated by the combiner, so the signers 
do not need to know who else is signing. Notice that unlike the method from 
Section 4, this method does not require trusting the combiner or keeping the 
partial signatures secret. 

Once the share has been used to create a signature, it must never be used 
to create another signature. Therefore, the center will create a list of shares, 
with each share to be used exactly once. Since about 20,000 shares would fit on 
a floppy disk, the storage requirements for this are not unreasonable. However, 
using these lists creates a new problem. The shareholders need some system to 
insure that two messages are never signed using the same k. One of the simplest 
methods would be to have one person in charge of sending out message signing 
requests which include the number of the share to be used to create the signature. 
Each signing request would be signed by the individual. The shareholders could 
then keep track of what requests had been sent. If the requester cheats and 
requests that two different messages be signed with the same k, the shareholders’ 
records will show this, and he will be eventually caught. 

Other protocols may be possible depending on the individual application. For 
example, the following protocol might be acceptable for a small group of share- 
holders which creates signatures infrequently. Whenever a message to be signed 
is sent to the group, each member signs with her personal key an acknowledge- 
ment giving the message and the current k value. Group members wait to receive 
acknowledgements from all members before partially signing the message. 
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5.2 Distributing the Share Generation 

To avoid the single point failure of Section 5.1, we can replace the single trusted 
center with three share creation centers. The three centers use the method of 
sharing a product described in section 3 to create additive shares of k and kx, 
then create t-out-of-I secret sharing schemes and distribute these shares to the 
shareholders. This method requires a great deal of interaction between the share 
creation centers at the time when they create all of the shares. 

If t > 2 then this system puts more trust in the centers than in the share- 
holders since any two of the centers can compromise the private key, while two 
shareholders cannot reveal any information about it. 

As in Section 4, we need some method for checking the validity of the shares. 
The shareholders can check their shares by choosing random shares within the 
list and computing 

y" = r I Y C ' . . U *  mod P ,  (15) 
i E s  

a function of their shares of k, and 

a function of their shares of kx. Since y = gx modp, if equation (15) equals 
equation (16), then the shares are legitimate. 

5.3 Security of t-out-of4 Scheme 

The security of this scheme depends critically on preventing shareholders from 
signing more than one message with the same k. If the protocol for determining 
the current k value is not secure, then two messages may be signed using the same 
k, revealing the private key. While the reliance on lists is clearly a disadvantage 
of this system, the t-out-of-l scheme does have the nice property that the partial 
signatures are zero-knowledge. Therefore, we can prove the following theorem. 

Theorem 1. If the Shareholders never partially sign different messages with the 
same k value, then breaking the t-out-of4 signature scheme is equivalent to break- 
ing DSS. 

To prove this theorem, we need to show that an external attacker, Eve, 
can simulate the threshold signature scheme given a standard DSS signature. 
Without loss of generality, we show that Eve can simulate a threshold signature 
scheme in which she knows the t - 1 shares f( l),  . . . , f ( i -  1). Eve generates t - 1 
random numbers, U1,.  . . , Ut-1, which are shares of k. For every possible value 
of k, there is exactly one degree t - 1 polynomial, f(r), such that f (i) = Ui and 
f (0) = k. Eve's "shares" are therefore perfectly legitimate shares of the secret k. 
Similarly, Eve generates t - 1 random numbers, &, . . . , &-I, which are shares 
of kx. Let sj = f ( j ) M  + g ( j ) .  mod q ,  where f is the polynomial determined 
by Eve's choice of U, and the value of k, and g is the polynomial determined 
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by Eve's choice of Vi and the value of kz. Eve creates t - 1 partial signatures, 
s; = U;M + Vir mod q,  for i = 1,. . . , t - 1. Eve does not know f(j) or g(j) for 
t 5 j 5 I ,  but she does know that 

t-1 

s = cj,=sj + C Cj,rsj  mod q. (17) 
i=l 

Therefore, using s, she can solve for sj , for any j of interest. 
Eve can thus simulate a threshold signature scheme in which she knows t - 1 of 

the shares and sees partial signatures created by all shareholders. Therefore, she 
can use any attack on the threshold scheme to attack standard DSS signatures. 

6 (itz - t + 1)-out-of4 Scheme 

This section presents an alternate way to generalize the 2-out-of-2 signature 
scheme. This method avoids the precomputed lists of the previous section, but 
requires ta - t+ l  signers to participate in a signature which has t-out-of4 security. 
The additional signers are required because we are multiplying secret sharing 
polynomials. Let h(z )  = f(z) x g ( z ) ,  then h(0) = f(0) x g(O), and the degree of 
h is equal to the degree off  plus the degree of g. For the signature algorithm, t 
people generate shares of k, and multiply the secret sharing polynomials. While 
this method is clearly impractical for large t,  it may be usable for small values. 
For example, a scheme with 2-out-of-I security requires only three signers. 

For this algorithm, we will place the same requirements on q as those of 
Section 4 and create the private key as described in that section. An individual 
signature is created by the following steps: 

1. Identify t of the signers to act as dealers for 12. Let T represent this group. 
2. Each dealer, i ,  generates ki and k;' mod q.  

3. The dealers calculate r = (gk;'k;''..k;' mod p) mod q. 
4. Each dealer generates and distributes shares of the following polynomials 

mod q:  
Kj(t), degree t - 1 polynomial, K j ( 0 )  = k i .  

X ~ ( Z ) ,  degree t - 1 polynomial, Xj(0) = kizj, where x i  = ~ ~ ~ * f ( o ) .  
Ti(.), degree t2  - t polynomial, Ti(0) = 0. 
di(z), degree t2 - t polynomial, di(0) = 0. 

5.  Signer j creates the shares 

iEr i E r  

and 
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6. Signer j creates the partial signature 

~j = UjM + Vjr, (20) 
and sends the result to the combiner. (Note: the combiner is not trusted as 
in Section 4.) 

7 .  After receiving t 2  - t + 1 partial signatures, the combiner calculates 

where p is the set of t 2  - t + 1 signers and the cjlP’s are the interpolation 
constants for a t2  - t degree polynomial. 

6.1 

Like the algorithm of Section 5 ,  the partial signatures of this algorithm are 
zero-knowledge. Therefore, we can prove the following theorem. 

Theorem2. If t - 1 or fewer of the shareholders collude, then breaking the 
(ta-t+l)-out-of-Z signature scheme i s  no more than twice as daficult as breaking 
a standard DSS signature with the same pJ q J  and g pammeters. 

Again, to prove this theorem, we need to show that an external attacker, Eve, 
can simulate the threshold signature scheme given a standard DSS signature. 
Recall that the method for creating the private key, z, caused z to be a quadratic 
residue mod q .  Since z may not be a quadratic residue for a standard DSS 
signature, Eve first conducts her simulation using the signature (r, a), then if the 
attack fails she repeats the attack using the value (r, as). This value corresponds 
to a signature with message aM and private key az. Let a be a primitive element 
mod q,  so either 2: or az must be a quadratic residue, and one of Eve’s simulations 
should succeed. 

Now Eve can simulate the knowledge o f t  - 1 signers of the threshold ~ c h e m e . ~  
For 1 5 j < t and 1 E A, Eve generates ~,(j), A;(j),  yj(j), and % ( j )  randomly. 
For every value of kj and kizj, and any t - 1 values for rci(j) and A i ( j ) ,  there is 
exactly one polynomial K; such that ~ j ( 0 )  = kj and one polynomial A, such that 
Ai(0) = kizj. Eve then computes Uj and Vj according to equations (18) and (19) 
and calculates the partial signatures sj . 

Now she generates t 2  - 2t + 1 additional independent, random s j ,  where 
j = t ,  . . . , t 2  - t .  We need to show that these are valid partial signatures for 
those t 2  - 2t + 1 signers. Let X ( z )  be a ta  - t degree polynomial with X ( 0 )  = 0 
and X ( j )  = CT=, r;(j). Similarly, let Y(z) be a t 2  - t degree polynomial with 
Y ( 0 )  = 0 and Y ( j )  = ct=, & ( j ) .  Rewriting the formula for the partial signature, 
equation (20), we have 

Security of the (t’ - t + 1)-out-of-I Scheme 

The proof that Eve can simulate t - 1 dealers is a straightforward extension of this, 
but is more complicated to follow. 
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The values of ~i( j )  and Xi ( j )  were fixed for all j by the random numbers Eve 
generated. The polynomials X ( z )  and y ( z )  each have degree t2 - t ,  and t 2  - t 
unknown terms. (The zeroth order term is fixed at zero.) For arbitrary S j ,  j = 
t ,  . . . , t2 - t ,  there are t2 - 2t + 1 linear equations in these unknowns created 
by equation (22). There are an additional 2(t - 1) equations from our above 
definitions of X ( r )  and y(z). Therefore, there are a total of t2-1 linear equations 
in 2t2-2t unknowns. Since 2t2-2t > t2- 1 for all t > 1, the number of unknowns 
is greater than the number of equations, and there must be a solution for the 
system. Therefore, the random sj ’s are legitimate partial signatures. 

Eve now has t2 - t valid partial signatures. She can use the equation 

to find any other partial signature, si . Therefore, she can perfectly simulate the 
threshold signature scheme using a standard DSS signature. 

7 Conclusion 

This paper describes three threshold signature schemes for the Digital Signa- 
ture Standard. The 2-out-of-l scheme does not require a trusted party to create 
the shares or to recreate lost shares. The more general t-out-of4 scheme is less 
practical, requiring precomputation and storage of shares for each individual 
signature. The (t2 - t + 1)-out-of-l scheme does not require precomputed lists, 
but approximately t2 signers are required €or t-out-of-Z security. Both generalized 
schemes have provable levels of security. 
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