
NFS with Four Large Primes:
An Explosive Experiment

Bruce Dodsonl, Arjen K. Lenstra2

Department of Mathematics, Lehigh University, Bethlehem, PA 18015-3174, U. S. A

MRE2Q330, Bellcore, 445 South Street, Morristown, NJ 07960, U. S. A
E-mail: badOQLehigh . EDU

Email: lenstra@bellcore .corn

Abstract. The purpose of this paper is to report the unexpected results
that we obtained while experimenting with the multi-large prime varia-
tion of the general number field sieve integer factoring algorithm (NFS,
cf. [8]). For traditional factoring algorithms that make use of at most
two large primes, the completion time can quite accurately be predicted
by extrapolating an almost quartic and entirely ‘smooth’ function that
counts the number of useful combinations among the large primes [l]. For
NFS such extrapolations seem to be impossible-the number of useful
combinations suddenly ‘explodes’ in an as yet unpredictable way, that
we have not yet been able to understand completely. The consequence of
this explosion is that NFS is substantially faster than expected, which
implies that factoring is somewhat easier than we thought.

1 Introduction

For the last ten years all ‘general purpose factoring records’, i.e., those that are
relevant for cryptographical applications of factoring, have been obtained by the
quadratic sieve factoring algorithm (QS, cf. [13, 151). The most recent of these
records was the factorization of the 129-digit RSA Challenge number, which was
published in 1977 and factored in 1994 using the double large prime multiple
polynomial variation of QS [l]. The authors of [l], however, suspected that their
factorization would be the last factoring record obtained by QS, and that future
records will be set by another, faster method, the general number field sieve

It has been known since 1989 that NFS is asymptotically superior to any of
the variants of QS: for n + 00 it can be expected, on loose heuristic grounds,
that it takes time

(N W [W.

exp((1.923 + o(1)) (log n) ‘ j 3 (log log n)2/3)

to factor a composite number n using NFS, as opposed to a (slower) heuristic
expected run time

exp((l+ o(1)) (log n)’l2 (log log

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 ’95, LNCS 963, pp. 372-385,1995.
0 Spnnger-Verlag Berlln Heidelberg 1995

373

also for n + 00, for QS. These heuristic run time estimates do not imply that
NFS is also faster than QS in practice. Indeed, it has for some time been sus-
pected that NFS would never be practical at all, and that, even if we would be
able to get it to work, the crossover point with QS would be far beyond our
current range of interest.

In this paper we present some evidence that NFS is actually more practical
than expected, and that the crossover point with QS is easily within reach of
our current computational resources. Our results indicate that NFS is already
substantially faster than QS for numbers in the 115 digit range. Since the ‘gap’
between the factorization times for these methods only widens for larger num-
bers, our results imply that the 124digit number factored in [l] could be factored
by NFS in about a quarter of the time spent by QS. The consequences for the
strength of 512-bit composites, as sometimes used in cryptographic applications,
will be commented on in future work.

One of the major reasons that NFS is performing so much better than ex-
pected, is that NFS has a certain advantage over QS that has almost no relation
to the theoretical advantage of NFS over QS. Roughly speaking, QS only allows
efficient usage of two ‘large primes’, whereas in NFS it should be possible to use
four large primes. Practical experiments that exploit this large prime advantage
have so far been limited to three large primes [3]. These experiments did not
indicate a distinct advantage of three over two large primes, possibly because
the numbers that were factored were rather small. The NFS implementation
from [S] allowed us to carry out some large scale experiments with four large
primes, which, for the first time, unequivocally proved the advantage of more
than two large primes.

In Section 2 we describe why it is easier for NFS to take advantage of large
primes than it is for QS. Our experiments and results are presented in Section 3,
followed by some of the new methods that were used to obtain our results: an
alternative ‘cycle’ counting method in Section 4, and a discussion of the matrix
step in Section 5.

2 Large primes in QS and NFS

Let n be an odd number that is not a prime power.

Large primes in QS. To factor n with QS, one begins by selecting a ‘factor
base’ P, consisting of -1 and certain primes up to some bound B. One then em-
ploys a ‘sieving’ process to efficiently collect a set V of more than # P ‘relations’,
which are identities modulo n of the form

v2 = n pe(’J’) mod n,

with I J , e (v ,p) E Z. Since #V > #P, the vectors e(v) = e (v ,p) ,Ep are linearly
dependent. This implies that #V - #P subsets W of V can be found (using
linear algebra) for which there are linearly independent dependencies of the

P E P

374

form xuEwe(o) = 2 (~ @)) ~ ~ p with w(p) E Z. Each W therefore leads to an
identity

VEW P E P

of the form z2 = y2 mod n with 2, y E Z. For each such identity there is a
chance of at least 1/2 that gcd(s - y, n) will be a nontrivial factor of n.

In [9] is was shown that it is advantageous to collect identities of a slightly
more general form, namely

PEP

with v, e(w,p) E Z and qI(w), qZ(v) either equal to 1 or to some prime not in
P satisfying qt(v) 5 qZ(v) 5 8 2 < B2, for some bound B2 with Bi < B3. If
q1(v) = qz(v) = 1 these are the same as the earlier relations, which will be called
‘full’ relations from now on; otherwise a relation is called ‘partial’. The qi’s are
referred to as the ‘large primes’. Partial relations are potentially useful because
it might be possible that they can be combined into ‘cycles’: collections of partial
relations where all occurring large primes can be combined into squarea, thus
making the combination ‘look like’ a full relation. As an example, if v and w are
two different partial relations for which q1(v) = q1(w) = 1 and ~ (w) = qz(w),
then

PE p

is just as useful as a full relation, unless gcd(qs(v),n) # 1. This implies that the
condition that the number of full relations is larger than # P can be replaced by
the condition that the number of full relations plus the number of independent
cycles is larger than #P. The large primes that occur in the cycles can be thought
of as cheap factor base extenders-cheap because they are found almost for free,
without having to sieve or to trial divide with them. The cycles are simply
linear combinations of exponent vectors where the coordinates corresponding to
the factor base extenders, the large primes, are even.

We explain how partial relations can efficiently be collected during the search
for full relations. During the sieving, candidate v’s are identified in an efficient
manner. For each candidate v the least absolute residue v2 mod n is trial divided,
to see if it factors using the elements of P. If so, a full relation has been found.
If not, and the remaining cofactor t after trial division with the primes < B
is < B2, a partial relation with q1(v) = 1, q 2 (w) = t has been found. How
many of such partial relations will be found depends on how easily candidates
are accepted after the sieving-if many near misses for fulls are accepted, many
partials will be found. If we accept even more candidates, we might also find
near misses for the partials with q1(v) = 1: if t > B2, t < B;, and t is composite
we find a partial relation if both of the prime factors of t are < B2 (note that
t can have at most two prime factors because B; < €I3). Since compositeness
tests are cheap, because composites of this form are fairly easy to factor, and

375

because relatively many t ’s will have their factors in the right range, it follows
that these partials can also be found at relatively small cost.3

Of course, it only makes sense to spend this extra effort if the partial relations
are useful in practice, i.e., if cycles among the partials indeed turn up. In [9] it
is shown that if only partials with q1(v) = 1 are allowed, the total number of
independent combinations (of the type as shown in the example above) can be
expected to behave as c - m2, where m is the number of partial relations (with
@(v) = l), and c is some very small constant depending on the bounds (cf. [9],
and the ‘birthday paradox’). This quadratic behavior can indeed be observed in
practice. Using these restricted partials leads to a speed-up of about a factor 2.5
compared to using only full relations.

Using all partials, i.e., also those with q1(v) # 1 leads to another speed-up
of about a factor 2.5, for sufficiently large numbers. A theoretical analysis of
the expected number of cycles has not been given yet, but according to the
data from (11 the number of cycles seem8 to grow almost as c‘ - m4, where c‘ is
another small constant, and m is now the total number of partials. In any case,
the number of independent cycles as a function of the number of partials seems
to behave as a very smooth curve, at least over the intervals where it has been
observed so far. Thus, reliable estimates of the expected completion time of the
relation collection stage can easily be derived from this curve.

Large primes in NFS. To factor n with NFS, one begins by selecting two bi-
variate polynomials f l (X , Y), f2(X, Y) E Z[X, Y] that satisfy certain properties
that are not relevant for this paper (cf. [8]). Given f1 and f z one selects two
factor bases PI and Pa, consisting of the primes I B1 and 5 B2, respectively.
Relations are given by coprime integers a, b, with b > 1, such that

Ifi(a,b)I = n pel(a*b’p) and If~(a,b)l = n pea(a*b*p),
PEP1 PE%

with el(a, b ,p) , eZ(a,b,p) E Z. If more than (approximately) #Pl+#P2 relations
have been found, a factorization of n can, with high probability, be derived from
linear dependencies modulo two among the (#PI + #P2)-dimensional vectors
consisting of the concatenation of (e l (0 , b , ~)) ~ ~ p ~ and (e2(0, b , ~)) ~ ~ p , . How this
is done is beyond the scope of this paper (but see [8]; lo]), and neither will we
discuss the influence of the (small) amount of ‘free’ relations.

As in QS, we can allow large primes in the factorizations of the Ifi(a,b)l,
where those that occur in cycles among the partial relations can be regarded
as cheap factor base extenders (where it should be noted that a large prime
dividing fi (a, b) cannot be combined with the same prime dividing fZ(a, b), and

’ If we relax the conditions on the candidates even more, we might be able to allow
three large primes in the factorization of w Z mod n. So far, however, this does not
seem to lead to a speed-up because it leads to a huge amount of numbers to be trial
divided, the vast majority of which will lead to cofactors that do not have the right
factoring pattern. Also the factorization of the composite cofactors is substantially
more expensive.

376

vice versa-even more restrictive, a large prime q dividing fi(a, b) can only be
combined with the same large prime q dividing fi(a’, b’) if ab’ G a’b mod q). In
the NFS implementations described in [8] at most one large prime per Ifi(a, b)l,
for a total of at most two per relation, was used. Candidate relations are identified
using a sieve, similar to QS. For each candidate, If1 (a, b)l is trial divided with
the primes 5 B1, and upon success Ifi(a,b)l is trial divided with the primes
5 B 2 . This implies that, in principle and as explained above, two large primes
per If,(a, b)l can quite easily be recognized. In [S] it was reported, however, that
actually finding these relations with up to 2 + 2 large primes was prohibitively
expensive. Fortunately, it was shown in [6] that they can efficiently be found
with better sieving and trial division methods. These methods do not seem to
apply to QS to efficiently generate three or more large primes per relation in QS.
The important difference is that in QS we have one composite cofactor that has
to be factored into three or more factors in the right range, whereas in NFS we
are dealing with two composite cofactors that each have to factor in the right
way - the latter both occurs with higher probability and is easier to decide.

The experiments from [8] indicated that the number of cycles in the 1 + 1
large prime variation of NFS is consistently lower than the number of cycles
found in the (two) large prime variation of QS, i.e., for NFS substantially more
relations are needed than for QS to get the same number of cycles. This is due
to the fact that in QS we have a single set of large primes, whereas in NFS we
have two ‘incompatible’ sets of large primes, one for fi and one €or f2. Thus, for
NFS it takes longer for the ‘birthday paradox’ to take effect. On the other hand,
1 + 1 large primes in NFS behaves markedly better than the single large prime
variation of Q S , i.e., if only partials with q1(v) = 1 are considered in QS.

Based on these observations, the work from [3], and the ‘almost quartic’
behavior observed in 111, we hoped that 2+ 2 large primes in NFS would produce
somewhat better than quartic cycle growth. We also expected that the number
of independent cycles as a function of the number of partial relations would, as
usual, behave as a nice and smooth curve that would allow easy extrapolation to
predict the completion time of the relation collection stage. These expectations
turned out to be wrong, a8 we will see in the next section.

In the sequel, partials with i large primes in Ifl(c,b)l and j large primes in
Ifi(a, b)l will be called ‘i,j-partials’. Partials for which i + j = k will be called
‘k-partials’, if a + j 5 k they will be called ‘5 k-partials’, and similarly for ‘2’.

3 Experiments and results

In this section we describe the details of three NFS factoring experiments in
chronological order: a 116, a 119, and a 107-digit number.

Factoring a 116-digit integer. Let n be the following 116-digit composite
factor of the 11887th partition number:

7E = 1 50802 87457 98463 07441 49612 94413 35408 90110 76626 79218 10826 04486

78500 16206 10665 65455 29820 06606 21307 78648 81680 71410 39443.

377

To factor n using NFS we first spent a few workstation days to find 5 reasonable
candidate polynomials f l and f2. Next we sieved a while with each candidate
pair, using reasonably sized factor bases. This yielded one pair that stood out
from the others with a more than 10% better yield than the next beat one:
fl(X,Y) = X - 49999 99918 54766 46567Y and

f 2 (X , Y) = 48 25692 37961 89830 X5 + 35 68080 39372 65531 X4Y
- 4 65605 61818 75120 X3Y2 - 59 69883 14526 21728 X 2 Y 3
- 13 44285 55250 45260 XY4 + 29 65432 72740 38354 Y5,

with common root X/Y = 49999 99918 54766 46567 modulo n. We could not
observe any correlation with properties that were thought to be relevant, like
coefficient sizes or number of roots modulo small primes. The issue of polynomial
selection in NFS needs to be understood better; we have not pursued this yet as
our current trial-and-error approach seems to work satisfactorily, for the moment.

Having thus decided on f r and f2, we selected #PI = 100,001, #P2 =
400,001, and B2 = 230. From our sieving experiments we derived that this
choice could lead to approximately 50 million partials in about 250 mips years,
using [6]. Given our experience with QS and NFS with fewer large primes, and the
expected counts of the various types of relations (i.e., with a total of 0, 1, 2, 3,
or 4 large primes), we expected that this choice would be enough to produce
more than 500,000 fulls plus cycles, even without relying on any 2 %partials.
Furthermore, since 250 mips years is less than QS would need for this number
(about 400 mips years), our choice of #PI, #Pz and B2 seemed not too bad.

Initial results were not surprising. The relations were found at the expected
rates and the cycle-yield followed our worst-case scenario. The 5 2-partials com-
bined more or less at their expected rate, and the other partials hardly con-
tributed to the cycles: at 7,336,602 partials (and 12,607 fulls) there were only
five bpartials involved in the 1,474 cycles, and no 2,2-partials.

The results were mixed after we had completed more than half our anticipated
sieving, at 28,243,830 partials (and 43,555 fulls). Even though the curve of the
cycleyield as a function of the number of partials resembled a quartic function,
extrapolation suggested that we would not even be close to what we needed
by the time we would be finished sieving. On the other hand, of the 2,a-partials
there were 10,495,464 of which 5,645 (0.054%) that occurred in cycles (of which
there were 41,366), which was a marked improvement.

It all looked different by the next time we attempted to count the cycles;
attempted, because the counting program failed to work properly, a first indica-
tion that something had changed. After replacing the failing counting approach
by a new one (cf. Section 4), we found 317,862 cycles among 33,264,762 par-
tials (and 49,680 fulls), with the 2,Zpartials at 12,460,866 with 672,773 (5.4%)
participating in the cycles. Although this was still not enough, we did not fail to
notice that our nice smooth curve had effectively been cut short by an almost
vertical line, implying that the sieving was almost complete.

A side effect associated with this explosive cycle behavior was that the aver-
age length of the cycles (i.e., the number of partials that together form a cycle)

378

total
fulls

12607
19456
25782
29744
332 15
37724
40466
43555
49680
58325
61849

total
partials
7336602

11521334
15773678
18368031
20736047
23902815
25972266
28243830
33264762
42202890
45876382

Table 1
useful

partials
3368
8913

18627
28982
42299
73039

11 1358
224217

348666 1
9369843

13970578

%

0.04
0.07
0.11
0.15
0.20
0.30
0.42
0.79

10.48
22.20
30.45

cycles

1474
3842
7491

10934
14895
22329
29415
4 1365

317862
1746609
2605463

seemed to grow rapidly (we failed to keep the number, but see Table 6). Because
longer cycles could lead to problems in the matrix step, and because we were cu-
rious to see if and how the explosion would continue, we decided to keep sieving
for a while-hoping that if we had many cycles, we would also be able to find
enough short ones, and restrict ourselves to those short ones in the matrix.

This led to two additional counts. At 42,202,890 partials, there were 1,746,
609 cycles of average length 93. Of the 16,079,778 2,2-partials 15.4% were useful,
i.e., occurred in cycles. At 45,876,382 partials, there were 2,605,463 cycles (and
61,849 fulls). The average length of these cycles had dropped to 74, and the
proportion of useful 2,2-partials m e to 23.4% with 4,111,077 useful 2,2-partials
out of a total of 17,572,446. Further, we note that 87.3% of the cycles used a
2,%partial. More details can be found in Tables 1, 2 and 3.

So the explosion indeed continued. Further, the cycle length went down suf-
ficiently that there were 459,922 cycles of length 5 23, which was acceptable for
our matrix processing method back then. Note that 459,922+61,849 > 500,002.
At this point we stopped sieving, after about 220 mips years. We could have
sieved more, and attempted to find the 50 million partials that we hoped to
find in 250 mips years, to see if indeed the 5 2-partials would have sufficed, as
expected. This is unlikely: where we stopped those partials led to only 93,328
cycles (with only 56,328 cycles among the i,j-partials with i, j 5 1 88 used in [8].
The 5 bpartials would have had a better chance, with 330,485 cycles where we

We have not yet been able to understand why this very sudden growth in
the number of cycles occurs. Counting arguments failed to prove anything, and
probabilistic arguments are complicated by the inhomogeneous nature of the
data. Connections with well-known ‘crystalization’ behavior of random graphs
have been suggested, but have so far not given any insights that could be used
to prove or predict cycle explosions. Obviously this would be useful for a better
selection of factor base sizes and minimization of the total sieving time: if no
explosion had occurred we would have needed larger factor bases, but if we had

stopped.

379

fulls % 0,l-partials % 0,a-partials %
total 61849 668995 1670521
useful 417840 62.45 753575 45.11

wrt total useful 2.99 5.39
1,O-partials 1,l-partials 1,Zpartials

total 466728 5038434 12521329
useful 303125 64.94 2043376 40.55 3670595 29.31

wrt total useful 2.16 14.62 26.27
2,O-partials 2,l-partials 2,a-partials

total 67621 1 7261718 17572446
useful 346120 51.18 2324870 32.01 4111077 23.39

-wrt total useful 2.47 16.64 29.42

cycles

10934
14895
22329
29415
41365

317862
1 746609
2605463

cycles

10934
14895
22329
29415
41365

317862
1746609
2605463

total
1-partials

515439
579057
660552
709775
768018
8841 18

1065782
1135723

total
&partials

7946983
8970893

103380 14
11 194689
12207997
14368629
18200456
19783047

useful
1-partials

21906
29991
45965
62463
9771 1

371434
600653
720965

useful
%partials

808
1666
4823

10389
35208

1379124
3968763
5995465

Table 2
%

4.24
5.27
6.95
8.80

12.72
42.01
56.35
63.48

%

0.01
0.01
0.04
0.09
0.28
9.59

21.80
30.30

total
2-partials

3157511
3556296
4076913
4395522
4772352
5551149
6856874
7385166

total
2,2-partials
’ 6748098

7629801
8827336
9591557

10495464
12460866
16079778
17572446

useful
2-partials

6224
10529
21808
37346
85653

1063330
2319722
3143071

useful
2,2-partials

44
113
443

1160
5645

672773
2480705
4111077

%

0.19
0.29
0.53
0.84
1.79

19.15
33.83
42.55

%

0.00
0.00
0.00
0.01
0.05
5.39

15.42
23.39

known about it we could have settled for smaller onea, so that the explosion
would occur exactly when the sieving is done. This would lead to either denser
or much larger matrices than we were used to, and thus would require better
matrix techniques than used at the time we sieved this 116-digit number.

For the present number the matrix did not pose a big problem, because of
all the extra sieving we had done. After inclusion of 256 columns for quadratic
signatures, we had a 521,771 x 500,258 bit-matrix, with on average 277 o n e
bits per row. This matrix was reduced to an almost 9 gigabyte dense 274,696 x
274,496 bit-matrix using ‘structured Gaussian elimination’ [7; 12; 141. It took 6

380

CPU-days on a 16K MasPar MP-1 to find the dependencies in the dense matrix
using plain Gaussian elimination.

The first dependency was processed by Peter Montgomery at the CWI in
Amsterdam, using the method from [lo], in less than 2.5 CPU-days on a MIPS
R4400 processor. This resulted in the following factorization:

n = 3 73787 18590 84719 25152 67256 20648 89920 58833 29019 x 40344 58115

87486 91262 33674 44522 38913 92270 04005 21248 10720 24860 30673 43497.

More data points can be obtained by pruning the data that we have for smaller
values of B2 = 230, and checking if and where the resulting sets of relations lead
to cycle-explosions. We have not done this for the present number, but we did
for the 114digit number discussed below. F'rom these and other experiments of
this sort that we carried out in [5] (for a QS factorization) it follows that using a
higher value of B2 indeed saves sieving time, at the cost of substantial amounts
of disk space.

Factoring a 119-digit integer. To convince ourselves that the cycleexplosion
described above wits not an isolated incident, we tried factoring the following
l lsdigi t composite factor of the 13171th partition number:

12 = 1472 39730 37795 02230 11857 21506 65046 38946 42104 16013 39117 46791 27360

74474 37214 92509 46318 17633 03651 67483 02069 42164 60898 11241.

We again found one pair of polynomials that stood out from the rest, for no
reasons that we could find: fl(X,Y) = X - 1 44999 99959 86876 68083Y and

f2(X, Y) = 229 71270 09947 70930 X5 - 75 24490 95044 76954 X4Y
- 349 19223 42428 31010X3Y2 + 213 34303 57653 48142 X2Y3
- 133 73262 31271 45009XY4 - 83 88784 35301 30136Y5,

with common root X/Y = 1 44999 99959 86876 68083 modulo n. Anticipating
the explosion this time, we chose relatively small factor bases (#PI = 100,001
and #P2 = 320,001). This turned out to be too small: after 195 mips years
sieving was complete with only about 24,000 cycles among 30 million partials
(and 30,000 fulls). Extension of #P2 to 360,000 and about 45 additional mips
years of sieving led to 470,000 cycles among 35.8 million partials (and 39,000
fulls), occupying almost 2 gigabytes of storage. Details can be found in Tables 4
and 5.

As expected this led to an unusually large matrix problem. Structured Gaus-
sian elimination would have required in exceas of 15 gigabytes of storage and
more than two CPU-weeks on a 16K MasPar MP-1, which is hardly feasible. In-
stead we used an experimental MasPar implementation of the blocked Lanczos
method from [ll] (cf. Section 5, and [4]). This took 2.5-CPU-days. The depen-
dencies were again processed by Peter Montgomery, this time in one CPU-day
per dependency-the factorization was found on the third one:

381

fulls % 0,l-partials % 0,Zpartials %
total 38741 459082 1254636
useful 207979 45.30 314563 25.07

.wrt total useful 4.40 6.66
1,O-partials 1,l-partials 1 ,Ppartials

total 303127 3603958 9746884
useful 148271 48.91 794788 22.05 1197510 12.29

, wrt total useful 3.14 16.82 25.34
P.O-~artials 2,l-~artials 2.2-~artials

total
fulls
5607

10426
13157
16363
18297
21100
25233
28194
30289

total
useful

wrt total useful

35953
38199
38741

462715 5476700 14456422
143305 30.97 770361 14.07 1148426 7.94

3.04 16.30 24.30

total
partials
3683540
7262853
9387071

121 5261 7
1401 7542
16950688
21930116
2646581 7
30107586

30 10 1922
34567876
35763524

Table 4
(with #P2 = 320,001)

useful % cycles, total 2 3- useful 2 3-
partials partials partials

588 0.01 280 2898623 2
2525 0.03 1157 5771533 6
4451 0.04 1997 7492921 24
7840 0.06 3371 9755753 69

10881 0.07 4549 11301609 138
16743 0.09 6621 13765642 365
31702 0.14 11118 18018822 1339
56158 0.21 16716 21950471 4146

110348 0.36 23886 25129694 15258
(after recounting with #P2 = 360,001)

219051 0.72 34728 24735646 44746
3980288 11.51 337351 28636652 2548939
4725203 13.21 472426 29680006 3116297

%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.06

0.18
8.90

10.49

n = 54 67135 70838 33359 03092 89109 24162 82702 67063 91975 73477 X 26 93178

62846 37991 75226 13452 71731 62372 36050 27370 88674 71432 35361 24533.

With less than 250 mips years spent on sieving, this factorization was completed
about 2.5 times faster than it would with Q S . Had we known how well our blocked
Lanczos implementation would work, then we would have used larger factor
bases, but sieved shorter per ‘special-q’ (cf. [S]), which would have reduced the
sieving time considerably. Combining this observation with many other possible
improvements, the 250 mips year figure should not be taken too seriously.

As indicated above, we obtained more data points by pruning the final data
sets for smaller values of B2. Some results are given in Table 6, including results
for the data sets as they were at 88%, 90%, and 95% of the sieving. Note the
sharp increase of the cycle length (of the cycles as found by our method, cf.
Section 4) ‘early’ in the explosion, and the subsequent decrease of the cycle
length as the explosion continues. Apparently, a first indication of an upcoming

382

Table 6
total % cycles longest average total 2 3-

partials useful cycle length partials
using the data sets after 88% of the sieving:

3716735 2.12 22920 66 4 2435866
7141411 1.49 26652 106 5 5172320

12566475 1.14 29867 564 6 9708 135
20536267 5.37 32464 1072 8 16560014
31471940 5.92 61402 2 lo6 >_ 388360 26118418

using the data sets after 90% of the sieving:
3801311 2.28 23477 65 4 2491247
7303838 1.69 27794 134 5 5289915

12852293 1.42 31665 997 8 9928854
21003354 8.26 59148 2 lo6 2 214885 16936513
32187175 7.35 98433 2 10’ 3 57252 26712006

using the data sets after 95% of the sieving:
4012410 3.93 33026 230 6 2629594
7709526 12.30 55897 127536 742 5583741

13566166 15.49 137720 50136 948 10480347
22169973 13.75 237435 34279 835 17877242
33975344 11.02 319882 32783 788 28195708

using the final data sets:
4223679 4.86 37133 619 8 2768053
8115376 17.25 86015 329761 2664 5877684

14280326 19.21 216173 21728 663 11032061
23337060 16.62 357792 17235 612 18818348
35763524 13.21 472426 16524 590 29680006

%
useful

0.28
0.27
0.22
3.17
3.95

0.34
0.33
0.35
5.56
5.18

0.95
7.52

11.30
10.44
8.46

1.41
11.87
14.77
13.13
10.49

cycleexplosion is the sudden growth of the number of useful relations and of
the average cycle length. Note also that for larger B2 there are relatively more
partials with more large primes.

Factoring a 107-digit integer. As a third experiment we factored a 107-digit
number, with assistance from Magnus Alvestad and Paul Leyland (using our
program described in [6]), Peter Montgomery (using his implementation at the
CWI in Amsterdam), and Jorg Zayer (using his implementation from [3]). Zayer’s
and our program both use ‘special q’s’ (cf. [6]), so that non-overlapping sieving
tasks could easily be distributed among Zayer and the users of our program. To
avoid overlap with Zayer’a and our results, Montgomery used his more traditional
siever with ‘large prime special q’s’, i.e., special q’s that would be considered as
large primes by the other programs. As a consequence, Montgomery’s program
also produced i,j-partials with i , j > 2 (but with i 5 4 and j 5 6).

Although smaller numbers lead to smaller factor bases, and therefore to
smaller large primes with a higher cycleyield, the cycle-yield for the 107-digit

383

number was initially even smaller than the cycleyield for the 116 and 11Sdigit
numbers reported above: at 12,921 fulls and 24,660,318 partials, there were only
7,552 cycles among 26,070 useful partials, compared to 22,239 cycles among
73,039 usefuls in 23,902,815 partials (for the 116-digit number) and 11,118 cy-
cles among 31,702 usefuls in 21,930,116 partials (for the 119-digit number).
This lower than expected cycle-yield cannot be explained by the _> 5-partials,
because at this point we had hardly received any partials from Montgomery yet.

At 29,061,638 partials (and 13,918 fulls) on the other hand, the cycleyield
was better than for the 119-digit number: 202,387 cycles among 2,856,606 u s e
fuls, compared to 34,728 cycles among 219,051 usefuls in 30,101,922 partials
for the 1lSdigit number (good comparison data with the 116digit number were
not available). When we stopped sieving, we had 34,135,923 partials, 5,531,053
of which were useful (we did not count the cycles).

We conclude that also for this smaller number we got a cycle-explosion, even
a bit more dramatic than before. The behavior of the cycle-yield is however suffi-
ciently erratic that we have not been able to derive a reasonable ‘ruleof-thumb’
that could be useful to predict the explosion for future NFS factorizations.

4 Counting

In [9] some elementary methods were given to count and build the useful combi-
nations among relations with at most two large primes per relation. A generaliza-
tion of these methods to the ca8e of at most three large primes per relation was
presented in [2]. This generalization does not extend to our case where relations
can have four (or more) large primes. We give an outline of our methods.

From the data presented in the previous section it should be clear that we
are dealing with large amounts of data: it takes at least 24 bytm to store one a,
b pair with four large primes, which already implies several hundred megabytes
for the 2,a-partials (which actually take more space than that). The first concern
while counting cycles therefore is to quickly weed out partials that are useless,
i.e., that do not occur in any cycle (of course they will be kept, because they
might be useful in later counts). Note that a partial is useless if it contains a
large prime that does not occur in any other partial.

We hashed each large prime, without collision resolution, to a 2-bit location
where the hits were counted (not counting further than 2). We kept only those
relations for which all large primes had hashed to a location with count 2. This
process waa repeated on the resulting collection, until the resulting relations
could be handled by another version of the same program that did use collision
resolution. The latter version was repeated until no relations were deleted. The
number of cycles among the partials in the resulting collection can then easily be
estimated by subtracting the total number of distinct primes from the number
of partials. The latter can also be done on ‘earlier’ collections of partials as long
as there is enough disk space for the sorting and uniqueing.

To do an exact count of the cycles, or to build them, we always first computed
the collection of useful partials, as sketched above, and next applied the following

384

‘greedy elimination’. First we process the single large prime partials, storing each
large prime when it is encountered for the first time, and counting (and building)
a cycle each time it is encountered after that. Next, we remove all those stored
primes from all other partials (counting, and building, cycles for partials where
all large primes get removed), separating the resulting partials that still have
at least one large prime into those with one, and those with at least two large
primes. The entire process is repeated until no new partials with one remaining
large prime are kept. Usually, at this point, no other partials remain; if there are,
the cycles among them can easily be found using a similar strategy. Note that for
the ‘building’ this greedy elimination requires some additional administration to
account for the ‘history’ of the large prime deletions; so far this has not taken
serious amounts of disk space.

5 The matrix step

In all previous QS and NFS factorizations, including the l lsdigi t one from
Section 3, we used the following strategy for the matrix step: first build all
cycles to get a, roughly, # P x # P (or (#PI + #P2) x (#PI + #&)) bit-matrix,
next apply structured Gaussian elimination [7; 12; 141, and finally apply ordinary
Gaussian elimination. The extent to which the first step should be carried out
before applying the last two steps is debatable. That is, we may remove all of the
large primes before starting elimination on the matrix; some of the large primes
may be removed in the first step, with the others included in the matrix; or
none of the large primes need to be removed-without a clear advantage among
these possible strategies. For the 119-digit number from Section 3, only the large
primes that occurred at most three times in the useful partials were removed by
constructing cycles. This resulted in a sparse 1,475,898 x 1,472,607 bit-matrix,
which could have been ‘reduced’ to a dense 362,597 x 362,397 bit-matrix by
structured Gauss. In our experience about the same would have happened if
we had removed all large primes and processed the (unusually dense) Lsparse’
461,001 x 460,001 matrix with structured Gauss.

We did, however, not actually build this dense 362,597 x 362,397 bit-matrix.
Instead we used the blocked Lanczos method from [ll] to process the sparse
1,475,898 x 1,472,607 bit-matrix for the l lsdigi t number. The reason that
we removed only the large primes that occur 5 3 times in the useful partials
before using blocked Lanczos, is the following. The expected run time of blocked
Lanczos applied to a matrix of (approximately) m rows and m columns with on
average ‘w non-zero entries per row, is proportional to m times the total weight
(i.e., mw) of the matrix. Initially, we may assume that all rows have about
equal weight. Therefore, removal of a large prime that occurs in k different rows
results in rn - 1 rows, m - k of the same average weight w as before, and k - 1 of
average weight at most 2w - 2, and thus expected run time for blocked Lanczos
proportional to rn- 1 times (m-k)w+ (k-1)(2w-2). In realistic circumstances,
the latter is less than m2w as long as k 5 3.

385

Evidently, removal of large primes destroys the even distribution of the non-
zeros over the rows, so the same argument cannot be used to analyse the effect
of removing more large primes. Nevertheless, similar arguments imply that the
run time can reasonably be expected to decrease if large primes tha t occur in at
most 3 rows are removed, but that an increase can be expected if large primes
that occur more often are removed. This explains the choice that we made for the
119-digit number. For a detailed description of the blocked Lanczos algorithm
we refer to [ll], and to [4] for a description of the implementation that we used.

Acknowledgments. Acknowledgments are due to M. Alvestad, S. Contini,
P. Leyland, P. Montgomery, and J. Zayer for their assistance.

References

1. D. Atkins, M. GrafT, A.K. Lenstra, and P.C. Leyland, THE MAGIC WORDS ARE

2. J. Buchmann, J. Loho, and J. Zayer, niple-largeprime variation, manuscript, 1993.
3. J. Buchmann, J. Loho, and J. Zayer, An implementation of the general number

field sieve, Advances in Cryptology, Crypto’93, Lecture Notes in Comput. Sci. 773

4. S. Contini and A. K. Lenstra, Implementations of blocked Lanczos and Wiedemann
algorithms, in preparation.

5. T. Denny, B. Dodson, A. K. Lenstra, and M. S. Manasse, On the factorization of
RSA-120, Advances in Cryptology, Crypto’93, Lecture Notes in Comput. Sci. 773

6. R. Golliver, A.K. Lenstra, and K. McCurley, Lattice sieving and trial division,
ANTS’94, Lecture Notes in Comput. Sci. 877 (1994), 18-27.

7. B. A. LaMacchia and A.M. Odlyzko, Solving Large Sparse Linear Systems over
Finite Fields, Advances in Cryptology, Crypto’90, Lecture Notes in Comput. Sci.

8. A. K. Lenstra and H. W. Lenstra, Jr. (eds), The development of the number field

9. A. K. Lenstra and M. S. Manasse, Factoring with two large primes, Math. Comp

10. P. L. Montgomery, Square roots of products of algebraic numbers, Proceedings
of Symposia in Applied Mathematics, Mathematics of Computation 1943-1993,
Vancouver, 1993, Walter Gautschi, ed.

11. P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2),
Advances in Cryptology, Eurocrypt’95, Lecture Notes in Comput. Sci. 921 (1995),

12. A. M. Odlyako, Discrete Logarithms in Finite Fields and their Cryptographic Sig-
nificance, Advances in Cryptology, Eurocrypt’M, Lecture Notes in Comput. Sci.

13. C. Pomerance, The quadratic sieve factoring afgorithm, Advances in Cryptology,

14. C. Pomerance and J. W. Smith, Reduction of huge, sparse matrices over finite fields

15. B. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987),

SQUEAMISH OSSIFRAGE, Asiacryp t ’94, to appear.

(1994), 159-165.

(1994), 166-1 74.

637 (1991), 109-133.

sieve, Lecture Notes in Math. 1564, Springer-Verlag, Berlin, 1993.

63 (1994), 785-798.

106-120.

209, 224-314.

Eurocrypt’84, Springer, Lecture Notes in Comput. Sci. 209, 169-182.

via created catastrophes, Experiment. Math. 1 (1992) 89-94.

329-339.

	NFS with Four Large Primes:An Explosive Experiment
	Introduction
	Large primes in QS and NFS
	Experiments and results
	Counting
	The matrix step
	References

