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Abstract. We introduce a new technique for generating a message au- 
thentication code (MAC). At its center is a simple metaphor: to (non- 
cryptographically) hash a string z, cast each of its words into a small 
number of buckets; xor the contents of each bucket; then collect up all 
the buckets’ contents. Used in the context of Wegman-Carter authenti- 
cation, this style of hash function provides the fastest known approach 
to software message authentication. 

1 Introduction 

MESSAGE AUTHENTICATION. Message authentication is one of the most com- 
mon cryptographic aims. The setting is that two parties, a signer S and veri- 
fier V ,  share a (short, random, secret) key, a. When S wants to send V a me5 
sage, t, S computes for it a message authenticaiion code (MAC), p + MAC,(Z), 
and S sends V the pair ( x , p ) .  On receipt of ( t ’ , p ‘ ) ,  verifier V checks that 

To describe the security of a message authentication scheme an adversary 
is given an oracle for MAC,(-). Following [ll], she is declared successful if she 
outputs an ( t* , t*)  such that MACV,(r*,t*) = 1 but x* was never asked of the 
MAC,(.) oracle. For a scheme to be “good,” reasonable adversaries should rarely 
succeed. 

SOFTWARE-EFFICIENT MACS. In the current computing environment it is of- 
ten necessary to compute MACs frequently and over strings which are com- 
monly hundreds to thousands of bytes long. Despite this, there will usually be 
no special-purpose hardware to help out: MAC generation and verification will 
need to be done in software on a conventional workstation or personal computer. 
So to reduce the impact of message authentication on the machine’s overall per- 
formance, and to facilitate more pervasive use of message authentication, we 
need substantially faster techniques. That is what this paper provides. 

Two APPROACHES TO MESSAGE AUTHENTICATION. The fastest software MACs 
in common use today are exemplified by MAC,(%) = h(t l la) ,  with h a (software- 
efficient) cryptographic hash function, such as h =MD5. Such methods are de- 
scribed in [22]. A scheme like this might seem to be about as software-efficient 
as one might realistically hope for: after all, we are computing one of the fastest 
types of cryptographic primitives over a string nearly identical in length to 

MACV,(d,p’) = 1. 

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 ’95, LNCS 963, pp. 29-42, 1995 
0 Springer-Verlag Berlin Heidelberg 1995 



30 

that which we want to authenticate. But it is well-known that this reasoning 
is specious: in particular, Wegman and Carter [23] showed back in 1981 that we 
do not have to “cryptographically” transform the entire string x. 

In the Wegman-Carter approach communicating parties S and V share a se- 
cret key a which specifies both a random pad p and a hash function h drawn 
randomly from a strongly universal2 family of hash functions H. (Recall that H 
is strongly universalz if for all xo # 21, the random variable h(z0)  11 h(z1)  is 
uniformly distributed.) To authenticate a message x, the sender transmits h(x) 
xor-ed with the next piece of the padp. The thing to notice is that x is trans- 
formed first by a non-cryptographic operation (universal hashing) and only then 
is it subjected to a cryptographic operation (encryption)-now applied to a much 
shorter string. 

As it turns out, to make a good MAC you don’t need to start from a strongly 
universalz family. Carter and Wegman [7] also introduced the notion of an almost 
universalz family, H. This must satisfy the weaker condition that Pr&% [h(zo) # 
h(x,)] is small for all xo # 21. As observed by Stinson [19], an almost universalz 
family can easily be turned into an almost strongly universal2 family (which can, 
in turn, be used to authenticate ones messages). In this manner the problem 
of finding an efficient MAC has effectively been reduced to that of finding an 
efficient almost universalz family of hash functions. 

OUR CONTRIBUTION. This paper provides a novel almost universal2 family of 
hash functions. We call our hash family bucked hashing. It is distinguished by its 
member functions being extremely fast to compute-as few as 6 elementary ma- 
chine instructions per word (independent of word size) for the version of bucket 
hashing we concentrate on in this paper. Putting such a family of hash func- 
tions to work in the framework of known constructions gives rise to the most 
efficient software MACs now known. For example, we estimate that a MAC 
so constructed can authenticate (reasonably long) messages in about 10-15 in- 
structions per 32-bit word. For comparison, authenticating messages using an 
MD5-based technique requires some 40-50 instructions per word [21]. 

A bucket hash MAC has advantages in addition to speed. Bucket hashing 
is a l inear function -it is a special case of matrix multiplication over GF(2)- 
and this linearity yields many pleasant characteristics for a bucket hash MAC. 
In particular, bucket hashing is parallelizable, since each word of the hash is just 
the xor of certain words of the message. Bucket hashing is incremental  in the 
sense of [2] with respect to both append and substitute operations. Finally, the 
only processor instructions a bucket hash needs are word-aligned load, store, 
and xor; thus a bucket hash MAC is essentially endian-indifferent. 

One might worry that the linearity of bucket hashing might give rise to some 
“weakness” in a MAC which exploits it. But it does not. A bucket hash MAC, 
like any MAC which follows the Wegman-Carter paradigm, enjoys the assurance 
advantages of provable security. Moreover, this provable security is achieved 
under extremely “tight” reductions, so that an adversary who can successfully 
break the MAC can break the underlying cryptographic primitive (e.g., DES) 
with essentially identical efficacy. In contrast, a scheme like MAC,(x) = h(z[ la)  
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is not known to be provably secure under any standard assumption on h.  

RELATED WORK. The general theory of unconditional authentication was de- 
veloped by Simmons; see [18] for a survey. As we have already explained, the 
universal-hash-and-then-encrypt paradigm is due to Wegman and Carter [23]. 
The idea springs from their highly influential [7]. 

In Wegman-Carter authentication the size of the hash family corresponds to 
the number of bits of shared key-one reason to find smaller families of universal 
hash functions than those of [7, 231. Stinson does this in [19], and also gives 
general results on the construction of universal hash functions. We exploit some 
of these ideas. Subsequent improvements (rooted in coding theory) came from 
Bierbrauer, Johansson, Kabatianskii and Smeets [6], and Gemmell and Naor [9]. 

The above work concentrates on unconditionally-secure authentication. Bras- 
sard [5] first connects the Wegman-Carter approach to the complexity-theoretic 
case. The complexity-theoretic notion for a secure MAC is a straightforward 
adaptation of the definition of a digital signature due to Goldwasser, Micali 
and Rivest [ll]. Their notion of an adaptive chosen message attack is equally 
at home for defining an unconditionally-secure MAC. Thus we view work like 
ours as making statements about unconditionally-secure authentication which 
give rise to corresponding statements and concrete schemes in the complexity- 
theoretic tradition. To make this translation we regard a finite pseudorandom 
function (PRF) as the most appropriate tool. Bellare, Kilian and Rogaway [3] 
were the first to formalize such objects, investigate their usage in the construction 
of efficient MACs, and suggest them as a desirable starting point for practical, 
provably-good constructions. Finite PRFs are a refinement of the PRF notion 
of Goldreich, Goldwasser and Micali [lo] to take account of the fixed lengths of 
inputs and outputs in the efficient primitives of cryptographic practice. 

Zobrist [25] gives a hashing technique which predates [7] and which, in im- 
plementation, essentially coincides with the scheme 7 - l ~  described in Section 2 
and due to [7]. Arnold and Coppersmith [l] give an interesting hashing technique 
which allows one to map a set of keys ki into a set of corresponding values Vi 
using a table only slightly bigger than Ci v i .  The proof of our main technical 
result is somewhat reminiscent of the analysis in [l]. 

Lai, Rueppel and Woolven [14], Taylor [20], and Krawczyk [12] have all been 
interested in computationally efficient MACs. The last two works basically follow 
the Wegman-Carter paradigm. In particular, Krawczyk obtains efficient message 
authentication codes from hash families which resemble traditional cyclic redun- 
dancy codes (CRCs), and matrix multiplication using Toeplitz matrices. Though 
originally intended for hardware, these techniques are fast in software, too. We 
recall Krawczyk’s CRC-like hash in Section 2. 

2 Preliminaries 

This section provides background drawn from Carter and Wegman [7, 231, Stin- 
son [19], and Krawczyk [12]. The only new material is the (simple) scheme NJV 
and the statement of Theorem 7. Proofs are omitted. 
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A family of hash functions is a finite multiset 7f of string-valued functions, 
each h E 7f having the same nonempty domain A C_ {0,1}* and range B & 
(01 I}*. 

Definitionl. [7] A family of hash functions X = { h  : A -+ B} is c-almost 
universalz, written c-AU2, i f for  all 20, c1 E A, z o  # z1, PrhEw [h(zo) = h(zl)] 5 
c. Family 31 c-almost XOR universalz, written c-AXU2, if for all zo,z1 E A,  
Y E B, 20 # ~ 1 ,  Pr [h(zo)@h(zl) = Y] L 6. 

h€% 

The value of c* = maJLzofrnl (Prh[h(zo) = h(zl)]} is called the collision probabil- 
ity. For us, the principle measures of the worth of an AU2 hash family are how 
small is c* and how fast can one compute its functions. 

To make a fast MAC we will want to "glue together" various universal hash 
families. The following are our the basic methods for doing this. 

First we need a way to  make the domain of a hash family bigger. Let 7f = { h : 
{0,1}" 3 (0,l)'). By Xm = { h  : (0, l}am + (0, l}b"} we denote the family of 
hash functions whose elements are the same as in ',V but where h(zlz2.  . .zm), 
for Izil = a, is defined by h(z1) 11 h(z2) 11 . . . 11 H(zm). 

Proposition2. [19] If 7f is c-AU2 then 7fm is E - A U ~  

Sometimes one needs a way to make the collision probability smaller. Let Xi = 
{ h  : {0,1}" --f (0, 1j6'} and 7 - l ~  = { h  : (0, lIa -+ (0, 1}63) be families of hash 
functions. By 7fl&7fz = { h  : (0, 1)" +- (0, l}bl+'a} we mean the family of 
hash functions whose elements are pairs of functions in 311 and 'H2 and where 
(hl ,  h2)(z)  is defined as h l ( z )  11 h z ( z ) .  

Proposition3. If 311 is 61-AU2 and 3 t z  is EZ-AU~ then 3t1&X2 is E ~ E z - A U ~ .  

Next is a way to make the image of a hash function shorter. Let XI = { h  : 
{0,1}' 3 (0, l}'} and Xz = { h  : (0, 1}6 -+ (0, l}'} be familiesof hash functions. 
Then by 'H2 03c1 = { h  : {0,1}" --f (0,l)') we mean the family of hash function 
whose elements are pairs of functions in and 3-12, and where (hl,hz)(z) is 
defined as hz(hl(z)). 

Proposition4. [19] If 311 is c1-AU2 and 7 - f ~  is 62-AUz then X Z  0311 is (€1 + E Z ) -  
AU2. 

Composition can also be used to turn an AU2 family into AXU2 family: 

Proposition5. [19] Suppose 7f1 = { h  : A -+ B }  is c1-AU2, and 7 f ~  = { h  : B 3 

C} is Q - A X U ~ .  Then X)t2 0x1 = { l a  : A -$ C} is (€1 + ez)-AXUz. 

Now given a family of hash functions 7f = { A  + (0, l}b} we can construct from 
it a MAC. In the scheme we denote WC[3-1], the signer S and verifier V share a 
random element h E 7 f ,  as well as an infinite random string p = poplpz . a ,  where 
\pi1 = 6. Together, h and p comprise the shared secret. The signer maintains a 
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counter, cnt, which is initially 0. We let the MAC of x under key (h,p) be given 
by (cnt,p,,&h(x)). The scheme is stateful: after the MAC of 2 is computed, 
the number cnt is incremented. The following theorem says that it is impossible 
(regardless of time, number of queries, or amount of MACed text) to forge with 
probability exceeding the collision probability (see Appendix B for definitions): 

Theorem6. [23,12] Let 1-1 be c-AXU2 and suppose E (t ,  q ,  p ,  6)-breaks WC['H]. 
Then 6 5 6 .  

A natural complexity-theoretic variant is to use, instead of the random pad p, 
an index a E {0,1}" into a finite PRF F .  The signer S maintains a counter 
cnt E (0, l}'. Function Fa maps 1-bit strings to b-bit ones. Now S and V share 
a random a E {0,1}' and a random h E 'H. The cntth MAC of 1: under key 
(h ,  a)  is given by (cnt, F,((cnt),)@h(z)). At most 2' messages may be MACed 
before the key must be changed. We call the scheme just described WC[X,F]. 
Its security is described by the following: 

Theorem7. Let li = { h  : A -+ (0, l}*} be an eAXU2 family of hash functions, 
let F : (0, l}& x (0 , l ) '  ---* {0, l}* be a finite PRF, and let E be an adversary which 
( t ,  q,  p ,  6)-breaks WC['H, F ] .  Suppose one can in t ime Tx compute a representation 
o f  a random element h E 'H, and from this representation one can compute h-values 
on q strings totalling ,u bits in T),(q,,u) time. Then there is an algorithm D which 
(t + At, q + 1, 6 - €)-breaks F ,  where At = O(Th(q ,p )  + Tw + q l +  qb ) .  

The value of At would usually be insignificant compared to t .  
In the above two theorems the forging probability is independent of the num- 

ber of queries ( q )  and the length of the queried messages ( p ) .  This is a significant 
advantage compared with constructions based on the iterated application of a 
finite PRF. 

We emphasize that the signer is stateful in both WC[X] and WC['H, F]. This 
improves these schemes' security (compared with using a random value) at little 
practical cost. Note that the verifier is not stateful, as we have chosen a definition 
of security (see Appendix B) which does not address "replay attacks." 

We end this section with some constructions for software-efficient hash fam- 
ilies. In the first A = { O , l } O  is the strings we want to hash and B = (0, l}b is 
the space we want to hash our strings into. An element of 'HM[u, b] is described 
by a b x a binary matrix. If h E 7 - l ~  is such a matrix we define h(x) as the 
product hx of matrix h and column vector x. 

Proposition& [7] ' H M [ u ,  b] is 2-*-AXU2. 

We can modify this family to trade c-AXU2 for E-AU~ and some speed. Let 
A = (0, 1}'+* be the strings we want to hash and let B = (0, l}* be the space 
we want to hash into. Each h E ' H ~ [ a + b ,  b] is described by a b x a binary matrix. 
If h E XN[a+b, b] is such matrix, we define h(zleo), where 1x11 = a and 1101 = b ,  
by hzl @ zo-the product of matrix h and column vector z1 , xor-ed with 20. 
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Proposition 9. ‘ H j v  [a + b ,  b] is 2-b - AU2. 

Here’s a final construction, this one from [12]. An element of the hash family 
7fK[a, b] = ( h  : (0,l)” -+ (0, l}a} is described by an irreducible polynomial 
over GF[2] of degree b .  Given such a polynomialh, the value of h ( M ) ,  where 
M E (0, l}al is the coefficients of M ( X ) X b  mod h ( X ) ,  where X is a formal 
variable and M ( X )  is the polynomial over X whose coefficients are given by M .  

Theoremlo. [12] X K [ U ,  b] is g - A X U 2 .  

3 Bucket Hashing 

In software, hash families such as X N ,  ‘HM and 3 - l ~  are all reasonably efficient. 
Still, for reasonably long message, we can do quite a bit better. 

3.1 Defining ‘Hs[w, n, N] 

Fix a “word size” w 2 1. For some particular n 2 1 and N 2 3 we will be 
hashing from A = (0, l}wn to B = (0, l}wN. We call N the “number of buckets” 
for reasons soon to be clear. As a typical example, take w = 32, n = 1024, and 
N = 140. We require that (:) 2 n. 

Each h E ‘HB [w, n, N ]  is specified by a length-n list of cardinality-3 subsets 
of [O..N - 11. We denote this list by h = (ho,. . . , hn-l). We denote the three 
elements of hi by hi = { h: , h: , h:} . 

Choosing a random h from ‘HE[[W,  n, N ]  means choosing a random length-n 
list of three-element subsets of [O..N - 11 subject to the constraint that no two 
of these sets are the same. That is, for all i # j, we demand that hi # hj .  

E ‘HB[w, n, N ]  be as above. Then h(x) is defined by 
the following algorithm. Let z = XO-..X,-~ E A,  with each l t i l  = w. First, 
initialize yj to 0’” for each j E [O..N - 11. Then, for each i E [O..n - 11 and 
k E hi, replace yk by Y k  @xi. When done, set h ( z )  = yo 11 y1 11 11 yjv-1. In 
pseudocode we have: 

Let h = (ho, . . . , 

for j t 0 to N - 1 do yj t Ow 
for i t 0 to n -  1 do 

Yh: Yh: 
Yh; + Yh: @ xi 
Yhf Yh: @ xi 

return Yo I I  Y l  II . . .  I I  YN-1 
The computation of a h(z)  can be envisioned as follows. We have N buckets, 
each initially empty. The first word of z is thrown into the three buckets specified 
by ho. The second word of x is thrown into the three buckets specified by hi. 
And so on, with the last word of x being thrown into the three buckets specified 
by hn-l. Our N buckets now contain a total of 3n words. Compute the xor of 
the words in each of the buckets (with the xor of no words being defined as 0”’). 
The hash of z, h(z) ,  is the concatenation of the final contents of the buckets. 
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3.2 Collision probability of 7iB [w,n,N]

The following theorem shows that 7iB[w,n,N] is @(iV~6)-good. For large AT
and n, where N <C n, the bound approaches 3348AT"6.

Theo rem 11 . [Bucket hash bound] Assume w > 1, N > 20 and n < (^).

Then HB[V>, n, N] is (An|jV • a(N))-A\]2, where An_^ = - r ^ and a(n) =
1 I

N3(N-l)3{N-2)3

The proof (given in Appendix A) involves a tedious calculation on a Markov
chain. For intuition, it is not hard to guess that m a x , ^ , , Pr[/i(xo) = h(xi)] is
achieved on strings xo and £1 which differ in exactly four (appropriately selected)
words. Bounding the collision probability for this case gives the formula of above.
Most of the effort is showing that XQ and xi differing by four words really is the
case which which maximizes the collision probability.

By way of example, suppose we use HB[W, n, N] to hash n G {256,1024,4096}
words down to N £ {20,40, • • -,200} words. From Theorem 11, upper bounds
on the probability that distinct but equal length strings collide are given by:

20 40 60 80 100 120 140 160 180 200

256
14.012-
4 0 9 6

2-14.01 2-20.25 2~ 2 3 - 7 6 2 - 2 6 - 2 * 2 ~ 2 8 1 7 o""29 '75 9 ~ 3 1 0 8 2 ~ 3 o 2
2-14.01 2-20.25 2-23.76 2-26.24 2-28.17 2-29.75 2-31.08 2 - 3 2 . 2 3 2 - 3 3 . 2 5 2 - 3 4 . 1 6

2-19.51 2~23.59 2 - 2 6 - l 7 2~ 2 8 - 1 4 2 ~ 2 8 ' 7 3 2 ~ 3 1 0 7 2~

The first entry of the last row is missing because it does not satisfy the condition
of Theorem 11: there are not enough distinct triples of 20 buckets to accommo-
date 4096 words.

4 The Efficiency of Universal Hash Methods

To make a practical MAC we want a fast-to-compute e-AU2 hash family % =
{h : {0,1}- — {0,1}"} where, for example, a tst 230, b et 64, and e at 2" 3 0 .
This section compares the efficiency of various universal hash families useful
to construct such an H. Efficiency comparisons are given in a very concrete
way: we count the machine instructions per word of a; to compute h(x). We
assume a contemporary 32-bit architecture. Though instruction counting is only
a crude predictor of speed, an analysis like this is still the best implementation-
independent way to get a feel for our methods' efficiency.

EFFICIENCY OF %B- From Section 3.2 and the above preamble it is apparent
that we need more buckets than can be accommodated by a typical machine's
register set. So there are two natural strategies to hash x = XQ • • -xn-i'-

• M e t h o d 1 - Process words XQ, . . . , xn-i. We can read each a:,- from mem-
ory and then, three times: (1) read the value j/j of some bucket j from
memory; (2) compute Xj© j ^ ; (3) write the result back to bucket j . Total
instruction count is 10 instructions per word.
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• Method 2 — Fill buckets yo, •.., J/JV-I- We can xor together all words that
should wind up in bucket 0; then xor all words that go in bucket 1; and so
forth, for each of the N buckets. A total of 3n reads into x0,.. •, xn-i will
be needed; plus a total of 3n — N xor operations; and (possibly) another N
writes back to memory. Total instruction count is 6 instructions per word.

Achieving the stated instruction counts requires the use of self-modifying code
("sm code"); above, it is implicitly assumed that the representation of ft € T~LB
is the piece of executable code which computes it. In implementation, this can
be tricky. If we must spend the time to load the bucket location (Method 1)
or word location (Method 2) out of memory ("kiss code"), these loads comprise
extra overhead. For Method 2, a refusal to use self-modifying code will further
increase the instruction count because of overhead to control the looping: it is
key-dependent how many words fall into a given bucket.

method
nB[W,n,N]
•HB[M,n,N]
-HBm,n,N]
nB[M,n,N]

implement at ion
Method 1 (sm code)
Method 2 (sm code)
Method 1 (kiss code)
Method 2 (kiss code)

table size (Bytes)
code - no table
code - no table

3n or12n
6n or12n

» instrs/wd
10
6
13

9+

For Method 2, n should be at most a few thousand to retain reasonable cache
performance.

EFFICIENCY OF HN AND % . The software-efficient implementation of
relies on a table of pre-computed inner products. There is a tradeoff between the
size of this table and the number of instructions. Consider 7£JV[64,32] and assume
we partition words as 8-bit bytes to look up inner products in a pre-computed
table TN. The table size is then 4 x 28 words, or 4 KBytes. To hash the two-word
string a;0a;iiC2«3 x^x^x^x-r to the one-word string 2/o2/i3/22/3 we must isolate the
four bytes xo,x\,X2,X3; lookup in TN the entries these bytes index; then xor
what we get out of the table. We need 3-5 instructions per table lookup, plus
an extra couple of instructions to read xix$xeX'r and xor it with what we have
already. Other examples:

method
7*2 = ?M2 x 32,32]

IP~[2 x 32,321
Ti.2 o 7^2 o li-x

cmprsn
2
8
8

coll prob
2~32

2-32
2-30.4

table size (Bytes)
4K
24 K
28 K

fa instrs/wd
7-11
7-11

13.5-19.5

Overall compression is poor unless the table size is quite large, leading one
towards multiple applications of concatenation and composition (using Proposi-
tions 2 and 4) as in the third row of the table.

The instruction count and table size oiTiu are worse than Wjv—for example,
12-20 instructions with an 8 KByte table for HM[1 x 32,32].

EFFICIENCY OF Wjf[n,64]. The collision probability of ?{K[n,32] is inadequate
for the stated goal, and there is no apparent way to implement "Wjj[n,u;] for
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w E [33..64] any faster than implementing 7 f ~ [ n ,  641. The software-efficient im- 
plementation of 7-I~[n,  641 relies on a table TK of pre-computed quotients. Let 
us assume that we index into T K  in &bit bytes. Computing h E 7 - I ~ [ n ,  641 on 
Z O . * . Z , - ~ ,  where lzil = 8, could be done as in 

crc t 064 
for i = 0 to n / 8  - 1 do 

return crc 
index +- z i  @ (crc & OXFF); crc c crc))) 8; crc + crc @ TK[index] 

which, coded in the natural manner on a 32-bit machine gives, gives 44-48 
instrs/wd with a 2 KByte table. 

5 Towards a F’ully-Specified Scheme 
AN EXAMPLE. This section provides an illustrative example of a concrete MAC 
based on the ideas presented so far. This is only a “toy” example; doing a good 
job at specifying a softwareoptimized bucket hash MAC will involve further 
design, experimental, and theoretical work. 

To keep things simple, first suppose we want to MAC strin s which are always 
4096 bytes (1024 words). Let F : (0,l)“ x {0, 1}64 --i ( 0 , l )  be a (candidate) 

. Recall the finite PRF. Here’s how to MAC the cntth message 2 E (0 , l )  
Z’ notation from Section 2. 

$4 

32 x 1024 

1. Hash 2 with hl E 3tg[32,1024,144] to get a 144-word result, y1 + hl (z ) .  
2. Hash y1 with hz E (31~[64, to get a 72-word result, y2 t h&). 
3. Hash y2 with h3 E (31~[64, 32])36 to get a 36-word result, y3 - h&). 
4. Hash y3 with h4 E ( 3 t ~ [ 6 4 , 3 2 ] ) ~ ~  to get an 18-word result, y4 + h . 4 ~ 3 ) .  
5. Hash y4 with h5 E Hx[576,64] to get a 2-word result, y5 t hS(y4). 
6. Compute p = Fa((cnt)64). 
7. Return (cnt, pey5). 

Conceptually, the MAC key is (a, hl,  h2, h3, h4, h5);  in practice, it would be the 
seed used by a pseudorandom generator to generate such a tuple. 

Let us estimate the speed of the above scheme, TOY-MAC. Assume the most 
pessimistic instruction counts in Section 4, and assume 200 instructions for the 
computation of Fa. With bucket hashing achieved by Method 2 (sm code), we get 
6+11( 144/1024)+11(72/1024)+11(36/1024)+48(18/1024)+200(2/1024) M 10.3 
instructions per word. The tables add up to 14 KBytes and the total collision 

2-53 M 2-29.8. For comparison, recall that authenticating messages using an 
MD5-based technique requires some 40-50 instructions per word [21]. 

Notice that the “cryptographic” contribution (Step 6) of TOY-MAC takes 
just 200(2/1024) M 0.4 instructions, which is less than 5% of the total work. 
In a Wegman-Carter MAC one is afforded the luxury of conservative (slow) 
cryptography even in an aggressive (fast) MAC, since one arranges that the 
time complexity for the MAC is dominated by the non-cryptographic work. 

Schemes simpler than TOY-MAC still perform well. Replacing steps (1)-(5) by 
y4 t hs(hl(2)) gives 6 + (144/1024)48 + (2/1024)200 B 13.2 instructions/word. 

probability (using Propositions 2,4,5,9; Theorems 10,l l)  is 5 2-31.32 +3  x 2-32+ 
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Alternatively] since MD5 is about the same speed as ‘HK, a similar estimate 
would hold for a scheme like MACa,,,t(z) = (cnt, M D ~ ( Q  . cnt . It1 . hl(z))). 

Our instruction counts are attractive even if we do not use self-modifying 
code: naive implementations would take fewer than 20 instrs/wd. 

SHORT STRINGS. What if the strings we are MACing haves lengths which are a 
constant substantially less than 4096 bytes? Using the layers of hash functions 
chosen for TOY-MAC makes no sense if IzI is too short. In general, the hash 
method which will be fastest for a string depends strongly on its length. For 
a software-optimized MAC to be most useful it should be as fast as possible 
for each input length. We thus suggest designing a Wegman-Carter MAC using 
multiple AU2-hash functions] choosing the best sequence of these to apply to x 
based on 1x1. While this may seem complex, the user of a MAC typically cares 
about performance and security, not definitional simplicity. 

While instruction counts for fast AU2-hashing are best (per word) when the 
strings being hashed are long, even strings of a few words benefit from having 
their lengths reduced (e.g. by ‘HN) before being cryptographically acted on. 

LONG STRINGS. Modifying TOY-MAC to deal with long strings is easy: for exam- 
ple, if x is 1024k words then one can replace Steps 1-4 by y4 + ( h 4 0 h 3 0 h z o h l ) ~ .  

LENQTH VARIABILITY. TOY-MAC is only correct when the strings to MAC have 
some fixed length. The reason is that ‘ H E  is eAU2 only when restricted to strings 
of a fixed length. For example, h(x) = h(x0”’) for any h E ‘HB. Fortunately, 
eliminating the fixed-length restriction is easy. One solution is to include 1x1 in 
the scope of Fa(.), which ensurea that WC[’H, F ]  is secure across variable-length 
strings as long as 7i is E-AXU~ on equal-length ones. The bound in Theorem 7 
is unchanged. A second approach is to use constructions like hj ( ( lx I )  . ho(z)). 
Neither approach requires 1.1 be known before x is hashed. 

6 Extensions and Directions 
Generalizing 7 i ~  we call by “bucket hashing” any scheme in which the hash 
function h is a given by a list (ho, . . . , hn-l) of “small” subsets of [O..N - 11 and 
the hash of I = xo.- .zn- l1  where Ixjl= w, is: 

for j t 0 to N - 1 do y, t 0” 
for i + 0 to n - 1 do 

for each k E hi do 
y6 + yk @ zi 

return Yo \I Y1 I1 . * .  II YN-1 
In the general case the distribution on h-values is arbitrary. So 3tg[wl n,  N ]  is the 
special case in which we use the uniform distribution on three-elements subsets 
of distinct triples in [O..N - 11. 

One could imagine many alternate distributions] some of which will give rise 
to faster-bcompute hash functions or better bounds on the collision proba- 
bility. As an example, suppose 7-f is given by choosing ho, h l ,  . . ., in sequence, 
where hi is a random triple of [O..N - 11 subject to the constraint that among 
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{ho, . . . ,hi} there are no two and no four of the hj’s such that the multiset 
Uhj has an even number of each point 0, 1, . . . , N - 1. (Dropping the italicized 
words we would recover the definition of ‘HB[w, n, N ] . )  This new family of hash 
functions, 3-11,[w, n, N ] ,  may have substantially smaller collision probability than 
H B [ w ,  n, N ] ,  allowing one to choose a smaller value of N .  

THE BUCKET HASH SCHEME OF A GRAPH. Hash family ‘ H H ~  would have been 
more efficient had each word gone into two buckets instead of three. One way 
to specify such a scheme is with a graph G whose N vertices comprise the N 
buckets and whose rn edges [O..m - 11 indicate the pairs of buckets into which 
a word may fall. A random hash function from the family is given by a random 
permutation ?r on [O..rn- 11. To hash a string to.. . zn-l using r, where Izil = w 
and n 5 m, each word zi is dropped into the two buckets at the endpoints 
of edge n(i). As before, we xor the contents of each bucket and output their 
concatenation in some canonical order. We call the above scheme 7 f ~ [ w ,  n, N ] .  

Finding a “good” x ~ [ w , n , N ]  amounts to finding a graph G on a small 
number of vertices N ,  a large number of edges m, and such that for all 1 5 k 5 
n 5 m, if t distinct edges are selected at random from GI then the probability 
that their union (with multiplicities) comprises a union of cycles is at most some 
small number E 

One interesting set of graphs in this regard are the (d,g)-cages (see [4]). A 
(d ,  9)-cage is a smallest d-regular graph whose shortest cycle has g edges. These 
graphs have been explicitly constructed for various values of (d ,  g). Though (d ,  9)- 
cages are rather large (for even g they have at least (2(d - l)g/’ - 2)/(d - 2) 
nodes) some (d, g)-cages may give rise to useful hash families. The following is 
an example. 

For d - 1 a prime power, let C[d,  61 be the (d ,  6)-cage. This is the the point- 
line incidence graph of the projective plane of order d - 1. I conjecture that 
3 - 1 ~ ~ [ d , ~ ] [ w , d ~ - d ~ + d - l , 2 d ~ - 2 d + 2 ]  iseAU2 for c =  (d2T)/(d(d2y)). As- 
suming this, ‘HC[~O,~] [w, 909,1821 achieves compression M 5, collision probability 
2-32.5721 and Method 2 cost of 4 (sm code) or 6 (kiss code) instrs/wd. 

OPEN QUESTIONS. The generalized notion of bucket hashing amounts to say- 
ing that hashing is achieved for each bit position 1 . . . w by matrix multipli- 
cation with a sparse Boolean matrix H .  Expressing the method in this gener- 
ality raises questions like the following: for all distributions D [ N ,  n] of binary 
N x n matrices H having k ones per column (e.g., k = 2,3,4) for which is 
mqc{o,l)n-{on} P ~ H ~ D ” , ~ ]  [ H z  = ON] minimized? What if we also demand 
that each pair of rows have the same number of ones? (This is true in the matrix 
of C[d,  g], and having this property eliminates the Method 2 (kiss code) overhead 
mentioned in Section 4.) What if we demand density 2 p but make no further 
restriction on H? Answers will lead to still faster bucket hash MACs. 
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A Proof of Theorem 11 

Due to page limits we give only the briefest sketch. The complete proof is in [17].  
We argue first that wlog we may assume w = 1. Then we observe that h ( z )  

is a product H x  over GF[2] for an N x n matrix H and so h is linear and the 
collision probability is E* = m q E { O , 1 ) m - { p ]  Prhcxs [h ( z )  = O N ] .  This depends 
only on the number of ones in x .  Thus our problem has been reduced to deciding 
which string xt = l‘O”-t, t 2 1, maximizes 6: = PrhExa [ h ( x t )  = O N ] .  It is easy 
to  see that it’s not any odd-indexed 2,. Furthermore, 6; = 0 because of our 
exclusion of hi = hj for i # j .  So E* = max{Ei, ET;, ~ l ; ,  . . .}. 

Upperbounding E* is facilitated by looking not at ‘ H B ,  where no hi = hj for 
i # j ,  but at the related hash family 7-lk which removes this constraint. Let E{ 

be defined by PrhExL [ h ( z t )  = O N ]  and let E‘ = maxt=4,6,8, ...{ 6 : ) .  

To analyze ‘HJ, we construct an ( N  + 1)-state Markov chain M. States are 
numbered 0,1, .  . . , N .  The e-th state models that e buckets have an even number 
of ones while N - e buckets have an odd number of ones. So N is the start 
state. Let h/ = N ( N  - 1)(N - 2 ) .  For 3 5 i 5 N - 3 chain M has transition 
probabilities pj,j given by  pi,^ = i(i-l)(i-2)/N, = 3i(i-l)(N-i)/N, 
p i , j + l  = 3 i ( N - i ) ( N - i - l ) / N  and p j , i + 3  = ( N - i ) ( N - i - l ) ( N - i & 2 ) / N ,  for all 
p i , j  where both i and j are in [1 . .N]  and they differ by f l  or A 3 .  For 0 5 i 5 2 
and N - 2  5 i 5 N we have p 0 , 3  = P N , N ~  = 1, p l , z  = PN-l,N-2 = 3 / N ,  
P1,4 = PN-1,N-l  = N - 3 / N ,  P 2 , l  = PN-2,N-1 = 6 / N ( N - 1 ) ,  p 2 , 3  = P N - 2 , N d  = 
6 ( N - 3 ) / N ( N - 1 ) ,  and p 2 , 5  = p N - 2 , N q  = ( N - 3 ) ( N - 4 ) / N ( N - l ) .  For all other 
transition probabilities p i , j  we have p i j  = 0. A simple calculation now shows 
that 6: = a ( N ) .  Using that N 2 20 we get that a ( N )  2 1997 /N2  and so the 
following proves that E’ = E L .  
Lemma12. Suppose N 2 20. If t 2 6 then 6: 5 1788/N2 

To prove this we bound selected probability masses r:(t) for i E [l..N] in M’ by 
considering the 7-state process M which we get by collapsing a certain N - 6 
set of states of MI.  Process M has states which we shall call N ,  N-1, N - 2 ,  
N - 3 ,  N-4, N - 6 ,  and R. The first six represent the corresponding states in 
M’ while state R represents the remaining states, combined. One can verify 
that the nonzero transition probabilities pi,j of M axe bounded by P N , N ~  = 1, 
PN-l ,N-4 5 1’ PN-1,N-2 = 3 / N ,  PN-2,R 5 1, p N - 2 , N 3  = 6 ( N - 2 ) ( N - 3 ) / N ,  
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PN-2,N-1 = 6 ( N - 2 ) / N ,  PN+N = 6 / N ,  P N ~ , N - s  I 1, P N - ~ , N ~  = 9(N-3)(N- 
4 ) f N ,  P~44.w-2 = 18(N-3)/Ml F N - ~ , R  I 1, P N - ~ , N ~  = 36(N-4)/N, P N - ~ , N - I  = 
24/N, P N - ~ , N ~  = 12O/N, ? ~ N - S , R  5 1, PR,R 5 1, P R , N - ~  5 15(N-5)(N-6)/N, 
P R , N ~  5 6 0 ( N - 5 ) / M  ?~R,N-z  = 60/N, We show that a ~ ( 6 )  5 1788/N2 by 
induction on t .  The basis and induction are obtained by calculations using the 
above bounds. 

We conclude the theorem by showing that y n , ~  adequately compensates for 
the error we have induced by examining 3tb instead of 'HB. This follows from 
a lemma asserting that if p is the probability that a random set of n distinct 
random triples of elements drawn from [O..N - 11 contains no repeated triple, 
then E* 5 E ' / (  1 - p )  . 

B Definitions of Security 

SECURITY OF A MAC. We define (deterministic, counter-based) message au- 
thentication schemes. In this case a MAC scheme M specifies a set Messages = 
(0, l}'L that can be authenticated; a finite set Keys C {0,1}* of keys; a set 
Tags (0, l}*; a number MAX = 2' which is the number of messages that can 
be authenticated; and a pair of functions (MAC, MACV) where MAC : Messages x 
Keys x [O..MAX - 11 + Tags, and MACV : Messages x Keys x Tags + (0 , l ) .  
We write MACTtk) for MAC(z, a, cnt), MACV,(z, t )  for MACV(z, a, it), and 
MAC,($) for MAC,(z), We demand that for any z E Messages, a E Keys, and 
cnt E [O..MAX - 11, MACV,(z, MACrt(z)) = 1 . 

Let M be a message authentication scheme. A MAC oracle MAC,(-) for 
M behaves as follows: it answers its first query co E Messages with the string 
MACZ(zo); it answers its second query z1 E Messages with the string MACt(z1); 
and so forth. 

An adversary E for a message authentication scheme M is an algorithm 
equipped with a MAC oracle. Adversary E is said to succeed on a particular 
execution having MAC oracle MAC,(.) if E outputs a string (z*, t*)  where 
MACVa(z*,t*) = 1 yet E made no earlier query of z*. 

Adversary E is said to be [ t ,  q,  m, cl-break M ,  where 0 5 q < MAX and 
0 5 E 5 1, if E makes at most q queries of its oracle, asks its oracle a total of m 
bits, runs in at most t time, and E 2 Pr a t Keys : EMACa(.) succeeds ] . 
SECURITY OF A FINITE PRF. A finite PRF is a map F : {0,1)" x { o , I ~ '  + 

(0, l}L. We write Fa(z) in place of F ( a ,  2). We let &,L be the set of all functions 
mapping (0,1}' to (0, l}L. Following [lo], a distinguisher is an oracle algorithm 
D. We say that D [t,q,c]-breaks F if D runs in at most t steps, makes at 
most q oracle queries, and Pra+{o,llk [gF,(.) = 11 - [P = 11 2 E . 
Complexity is measured in a standard RAM model of computation, with oracle 
queries counting as one step. 

1 
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