
Bucket Hashing and its Application to
Fast Message Authentication

Phillip Rogaway

Department of Computer Science, University of California,
Davis, CA 95616, USA. rogawayacs .ucdavis. edu

Abstract. We introduce a new technique for generating a message au-
thentication code (MAC). At its center is a simple metaphor: to (non-
cryptographically) hash a string z, cast each of its words into a small
number of buckets; xor the contents of each bucket; then collect up all
the buckets’ contents. Used in the context of Wegman-Carter authenti-
cation, this style of hash function provides the fastest known approach
to software message authentication.

1 Introduction

MESSAGE AUTHENTICATION. Message authentication is one of the most com-
mon cryptographic aims. The setting is that two parties, a signer S and veri-
fier V , share a (short, random, secret) key, a. When S wants to send V a me5
sage, t, S computes for it a message authenticaiion code (MAC), p + MAC,(Z),
and S sends V the pair (x , p) . On receipt of (t ’ , p ‘) , verifier V checks that

To describe the security of a message authentication scheme an adversary
is given an oracle for MAC,(-). Following [ll], she is declared successful if she
outputs an (t* , t*) such that MACV,(r*,t*) = 1 but x* was never asked of the
MAC,(.) oracle. For a scheme to be “good,” reasonable adversaries should rarely
succeed.

SOFTWARE-EFFICIENT MACS. In the current computing environment it is of-
ten necessary to compute MACs frequently and over strings which are com-
monly hundreds to thousands of bytes long. Despite this, there will usually be
no special-purpose hardware to help out: MAC generation and verification will
need to be done in software on a conventional workstation or personal computer.
So to reduce the impact of message authentication on the machine’s overall per-
formance, and to facilitate more pervasive use of message authentication, we
need substantially faster techniques. That is what this paper provides.

Two APPROACHES TO MESSAGE AUTHENTICATION. The fastest software MACs
in common use today are exemplified by MAC,(%) = h(t l la) , with h a (software-
efficient) cryptographic hash function, such as h =MD5. Such methods are de-
scribed in [22]. A scheme like this might seem to be about as software-efficient
as one might realistically hope for: after all, we are computing one of the fastest
types of cryptographic primitives over a string nearly identical in length to

MACV,(d,p’) = 1.

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 ’95, LNCS 963, pp. 29-42, 1995
0 Springer-Verlag Berlin Heidelberg 1995

30

that which we want to authenticate. But it is well-known that this reasoning
is specious: in particular, Wegman and Carter [23] showed back in 1981 that we
do not have to “cryptographically” transform the entire string x.

In the Wegman-Carter approach communicating parties S and V share a se-
cret key a which specifies both a random pad p and a hash function h drawn
randomly from a strongly universal2 family of hash functions H. (Recall that H
is strongly universalz if for all xo # 21, the random variable h(z0) 11 h(z1) is
uniformly distributed.) To authenticate a message x, the sender transmits h(x)
xor-ed with the next piece of the padp. The thing to notice is that x is trans-
formed first by a non-cryptographic operation (universal hashing) and only then
is it subjected to a cryptographic operation (encryption)-now applied to a much
shorter string.

As it turns out, to make a good MAC you don’t need to start from a strongly
universalz family. Carter and Wegman [7] also introduced the notion of an almost
universalz family, H. This must satisfy the weaker condition that Pr&% [h(zo) #
h(x,)] is small for all xo # 21. As observed by Stinson [19], an almost universalz
family can easily be turned into an almost strongly universal2 family (which can,
in turn, be used to authenticate ones messages). In this manner the problem
of finding an efficient MAC has effectively been reduced to that of finding an
efficient almost universalz family of hash functions.

OUR CONTRIBUTION. This paper provides a novel almost universal2 family of
hash functions. We call our hash family bucked hashing. It is distinguished by its
member functions being extremely fast to compute-as few as 6 elementary ma-
chine instructions per word (independent of word size) for the version of bucket
hashing we concentrate on in this paper. Putting such a family of hash func-
tions to work in the framework of known constructions gives rise to the most
efficient software MACs now known. For example, we estimate that a MAC
so constructed can authenticate (reasonably long) messages in about 10-15 in-
structions per 32-bit word. For comparison, authenticating messages using an
MD5-based technique requires some 40-50 instructions per word [21].

A bucket hash MAC has advantages in addition to speed. Bucket hashing
is a l inear function -it is a special case of matrix multiplication over GF(2)-
and this linearity yields many pleasant characteristics for a bucket hash MAC.
In particular, bucket hashing is parallelizable, since each word of the hash is just
the xor of certain words of the message. Bucket hashing is incremental in the
sense of [2] with respect to both append and substitute operations. Finally, the
only processor instructions a bucket hash needs are word-aligned load, store,
and xor; thus a bucket hash MAC is essentially endian-indifferent.

One might worry that the linearity of bucket hashing might give rise to some
“weakness” in a MAC which exploits it. But it does not. A bucket hash MAC,
like any MAC which follows the Wegman-Carter paradigm, enjoys the assurance
advantages of provable security. Moreover, this provable security is achieved
under extremely “tight” reductions, so that an adversary who can successfully
break the MAC can break the underlying cryptographic primitive (e.g., DES)
with essentially identical efficacy. In contrast, a scheme like MAC,(x) = h(z[la)

31

is not known to be provably secure under any standard assumption on h.

RELATED WORK. The general theory of unconditional authentication was de-
veloped by Simmons; see [18] for a survey. As we have already explained, the
universal-hash-and-then-encrypt paradigm is due to Wegman and Carter [23].
The idea springs from their highly influential [7].

In Wegman-Carter authentication the size of the hash family corresponds to
the number of bits of shared key-one reason to find smaller families of universal
hash functions than those of [7, 231. Stinson does this in [19], and also gives
general results on the construction of universal hash functions. We exploit some
of these ideas. Subsequent improvements (rooted in coding theory) came from
Bierbrauer, Johansson, Kabatianskii and Smeets [6], and Gemmell and Naor [9].

The above work concentrates on unconditionally-secure authentication. Bras-
sard [5] first connects the Wegman-Carter approach to the complexity-theoretic
case. The complexity-theoretic notion for a secure MAC is a straightforward
adaptation of the definition of a digital signature due to Goldwasser, Micali
and Rivest [ll]. Their notion of an adaptive chosen message attack is equally
at home for defining an unconditionally-secure MAC. Thus we view work like
ours as making statements about unconditionally-secure authentication which
give rise to corresponding statements and concrete schemes in the complexity-
theoretic tradition. To make this translation we regard a finite pseudorandom
function (PRF) as the most appropriate tool. Bellare, Kilian and Rogaway [3]
were the first to formalize such objects, investigate their usage in the construction
of efficient MACs, and suggest them as a desirable starting point for practical,
provably-good constructions. Finite PRFs are a refinement of the PRF notion
of Goldreich, Goldwasser and Micali [lo] to take account of the fixed lengths of
inputs and outputs in the efficient primitives of cryptographic practice.

Zobrist [25] gives a hashing technique which predates [7] and which, in im-
plementation, essentially coincides with the scheme 7 - l ~ described in Section 2
and due to [7]. Arnold and Coppersmith [l] give an interesting hashing technique
which allows one to map a set of keys ki into a set of corresponding values Vi
using a table only slightly bigger than Ci v i . The proof of our main technical
result is somewhat reminiscent of the analysis in [l].

Lai, Rueppel and Woolven [14], Taylor [20], and Krawczyk [12] have all been
interested in computationally efficient MACs. The last two works basically follow
the Wegman-Carter paradigm. In particular, Krawczyk obtains efficient message
authentication codes from hash families which resemble traditional cyclic redun-
dancy codes (CRCs), and matrix multiplication using Toeplitz matrices. Though
originally intended for hardware, these techniques are fast in software, too. We
recall Krawczyk’s CRC-like hash in Section 2.

2 Preliminaries

This section provides background drawn from Carter and Wegman [7, 231, Stin-
son [19], and Krawczyk [12]. The only new material is the (simple) scheme NJV
and the statement of Theorem 7. Proofs are omitted.

32

A family of hash functions is a finite multiset 7f of string-valued functions,
each h E 7f having the same nonempty domain A C_ {0,1}* and range B &
(01 I}*.

Definitionl. [7] A family of hash functions X = { h : A -+ B} is c-almost
universalz, written c-AU2, i f for all 20, c1 E A, z o # z1, PrhEw [h(zo) = h(zl)] 5
c. Family 31 c-almost XOR universalz, written c-AXU2, if for all zo,z1 E A,
Y E B, 20 # ~ 1 , Pr [h(zo)@h(zl) = Y] L 6.

h€%

The value of c* = maJLzofrnl (Prh[h(zo) = h(zl)]} is called the collision probabil-
ity. For us, the principle measures of the worth of an AU2 hash family are how
small is c* and how fast can one compute its functions.

To make a fast MAC we will want to "glue together" various universal hash
families. The following are our the basic methods for doing this.

First we need a way to make the domain of a hash family bigger. Let 7f = { h :
{0,1}" 3 (0,l)'). By Xm = { h : (0, l}am + (0, l}b"} we denote the family of
hash functions whose elements are the same as in ',V but where h(zlz2. . .zm),
for Izil = a, is defined by h(z1) 11 h(z2) 11 . . . 11 H(zm).

Proposition2. [19] If 7f is c-AU2 then 7fm is E - A U ~

Sometimes one needs a way to make the collision probability smaller. Let Xi =
{ h : {0,1}" --f (0, 1j6'} and 7 - l ~ = { h : (0, lIa -+ (0, 1}63) be families of hash
functions. By 7fl&7fz = { h : (0, 1)" +- (0, l}bl+'a} we mean the family of
hash functions whose elements are pairs of functions in 311 and 'H2 and where
(hl , h2)(z) is defined as h l (z) 11 h z (z) .

Proposition3. If 311 is 61-AU2 and 3 t z is EZ-AU~ then 3t1&X2 is E ~ E z - A U ~ .

Next is a way to make the image of a hash function shorter. Let XI = { h :
{0,1}' 3 (0, l}'} and Xz = { h : (0, 1}6 -+ (0, l}'} be familiesof hash functions.
Then by 'H2 03c1 = { h : {0,1}" --f (0,l)') we mean the family of hash function
whose elements are pairs of functions in and 3-12, and where (hl,hz)(z) is
defined as hz(hl(z)).

Proposition4. [19] If 311 is c1-AU2 and 7 - f ~ is 62-AUz then X Z 0311 is (€1 + E Z) -
AU2.

Composition can also be used to turn an AU2 family into AXU2 family:

Proposition5. [19] Suppose 7f1 = { h : A -+ B } is c1-AU2, and 7 f ~ = { h : B 3

C} is Q - A X U ~ . Then X)t2 0x1 = { l a : A -$ C} is (€1 + ez)-AXUz.

Now given a family of hash functions 7f = { A + (0, l}b} we can construct from
it a MAC. In the scheme we denote WC[3-1], the signer S and verifier V share a
random element h E 7 f , as well as an infinite random string p = poplpz . a , where
\pi1 = 6. Together, h and p comprise the shared secret. The signer maintains a

33

counter, cnt, which is initially 0. We let the MAC of x under key (h,p) be given
by (cnt,p,,&h(x)). The scheme is stateful: after the MAC of 2 is computed,
the number cnt is incremented. The following theorem says that it is impossible
(regardless of time, number of queries, or amount of MACed text) to forge with
probability exceeding the collision probability (see Appendix B for definitions):

Theorem6. [23,12] Let 1-1 be c-AXU2 and suppose E (t , q , p , 6)-breaks WC['H].
Then 6 5 6 .

A natural complexity-theoretic variant is to use, instead of the random pad p,
an index a E {0,1}" into a finite PRF F . The signer S maintains a counter
cnt E (0, l}'. Function Fa maps 1-bit strings to b-bit ones. Now S and V share
a random a E {0,1}' and a random h E 'H. The cntth MAC of 1: under key
(h , a) is given by (cnt, F,((cnt),)@h(z)). At most 2' messages may be MACed
before the key must be changed. We call the scheme just described WC[X,F].
Its security is described by the following:

Theorem7. Let li = { h : A -+ (0, l}*} be an eAXU2 family of hash functions,
let F : (0, l}& x (0 , l) ' ---* {0, l}* be a finite PRF, and let E be an adversary which
(t , q, p , 6)-breaks WC['H, F] . Suppose one can in t ime Tx compute a representation
o f a random element h E 'H, and from this representation one can compute h-values
on q strings totalling ,u bits in T),(q,,u) time. Then there is an algorithm D which
(t + At, q + 1, 6 - €)-breaks F , where At = O(Th(q ,p) + Tw + q l + qb) .

The value of At would usually be insignificant compared to t .
In the above two theorems the forging probability is independent of the num-

ber of queries (q) and the length of the queried messages (p) . This is a significant
advantage compared with constructions based on the iterated application of a
finite PRF.

We emphasize that the signer is stateful in both WC[X] and WC['H, F]. This
improves these schemes' security (compared with using a random value) at little
practical cost. Note that the verifier is not stateful, as we have chosen a definition
of security (see Appendix B) which does not address "replay attacks."

We end this section with some constructions for software-efficient hash fam-
ilies. In the first A = { O , l } O is the strings we want to hash and B = (0, l}b is
the space we want to hash our strings into. An element of 'HM[u, b] is described
by a b x a binary matrix. If h E 7 - l ~ is such a matrix we define h(x) as the
product hx of matrix h and column vector x.

Proposition& [7] ' H M [u , b] is 2-*-AXU2.

We can modify this family to trade c-AXU2 for E-AU~ and some speed. Let
A = (0, 1}'+* be the strings we want to hash and let B = (0, l}* be the space
we want to hash into. Each h E ' H ~ [a + b , b] is described by a b x a binary matrix.
If h E XN[a+b, b] is such matrix, we define h(zleo), where 1x11 = a and 1101 = b ,
by hzl @ zo-the product of matrix h and column vector z1 , xor-ed with 20.

34

Proposition 9. ‘ H j v [a + b , b] is 2-b - AU2.

Here’s a final construction, this one from [12]. An element of the hash family
7fK[a, b] = (h : (0,l)” -+ (0, l}a} is described by an irreducible polynomial
over GF[2] of degree b . Given such a polynomialh, the value of h (M) , where
M E (0, l}al is the coefficients of M (X) X b mod h (X) , where X is a formal
variable and M (X) is the polynomial over X whose coefficients are given by M .

Theoremlo. [12] X K [U , b] is g - A X U 2 .

3 Bucket Hashing

In software, hash families such as X N , ‘HM and 3 - l ~ are all reasonably efficient.
Still, for reasonably long message, we can do quite a bit better.

3.1 Defining ‘Hs[w, n, N]

Fix a “word size” w 2 1. For some particular n 2 1 and N 2 3 we will be
hashing from A = (0, l}wn to B = (0, l}wN. We call N the “number of buckets”
for reasons soon to be clear. As a typical example, take w = 32, n = 1024, and
N = 140. We require that (:) 2 n.

Each h E ‘HB [w, n, N] is specified by a length-n list of cardinality-3 subsets
of [O..N - 11. We denote this list by h = (ho,. . . , hn-l). We denote the three
elements of hi by hi = { h: , h: , h:} .

Choosing a random h from ‘HE[[W, n, N] means choosing a random length-n
list of three-element subsets of [O..N - 11 subject to the constraint that no two
of these sets are the same. That is, for all i # j, we demand that hi # hj .

E ‘HB[w, n, N] be as above. Then h(x) is defined by
the following algorithm. Let z = XO-..X,-~ E A, with each l t i l = w. First,
initialize yj to 0’” for each j E [O..N - 11. Then, for each i E [O..n - 11 and
k E hi, replace yk by Y k @xi. When done, set h (z) = yo 11 y1 11 11 yjv-1. In
pseudocode we have:

Let h = (ho, . . . ,

for j t 0 to N - 1 do yj t Ow
for i t 0 to n - 1 do

Yh: Yh:
Yh; + Yh: @ xi
Yhf Yh: @ xi

return Yo I I Y l II . . . I I YN-1
The computation of a h(z) can be envisioned as follows. We have N buckets,
each initially empty. The first word of z is thrown into the three buckets specified
by ho. The second word of x is thrown into the three buckets specified by hi.
And so on, with the last word of x being thrown into the three buckets specified
by hn-l. Our N buckets now contain a total of 3n words. Compute the xor of
the words in each of the buckets (with the xor of no words being defined as 0”’).
The hash of z, h(z) , is the concatenation of the final contents of the buckets.

35

3.2 Collision probability of 7iB [w,n,N]

The following theorem shows that 7iB[w,n,N] is @(iV~6)-good. For large AT
and n, where N <C n, the bound approaches 3348AT"6.

Theo rem 11 . [Bucket hash bound] Assume w > 1, N > 20 and n < (^).

Then HB[V>, n, N] is (An|jV • a(N))-A\]2, where An_^ = - r ^ and a(n) =
1 I

N3(N-l)3{N-2)3

The proof (given in Appendix A) involves a tedious calculation on a Markov
chain. For intuition, it is not hard to guess that m a x , ^ , , Pr[/i(xo) = h(xi)] is
achieved on strings xo and £1 which differ in exactly four (appropriately selected)
words. Bounding the collision probability for this case gives the formula of above.
Most of the effort is showing that XQ and xi differing by four words really is the
case which which maximizes the collision probability.

By way of example, suppose we use HB[W, n, N] to hash n G {256,1024,4096}
words down to N £ {20,40, • • -,200} words. From Theorem 11, upper bounds
on the probability that distinct but equal length strings collide are given by:

20 40 60 80 100 120 140 160 180 200

256
14.012-
4 0 9 6

2-14.01 2-20.25 2~ 2 3 - 7 6 2 - 2 6 - 2 * 2 ~ 2 8 1 7 o""29 '75 9 ~ 3 1 0 8 2 ~ 3 o 2
2-14.01 2-20.25 2-23.76 2-26.24 2-28.17 2-29.75 2-31.08 2 - 3 2 . 2 3 2 - 3 3 . 2 5 2 - 3 4 . 1 6

2-19.51 2~23.59 2 - 2 6 - l 7 2~ 2 8 - 1 4 2 ~ 2 8 ' 7 3 2 ~ 3 1 0 7 2~

The first entry of the last row is missing because it does not satisfy the condition
of Theorem 11: there are not enough distinct triples of 20 buckets to accommo-
date 4096 words.

4 The Efficiency of Universal Hash Methods

To make a practical MAC we want a fast-to-compute e-AU2 hash family % =
{h : {0,1}- — {0,1}"} where, for example, a tst 230, b et 64, and e at 2" 3 0 .
This section compares the efficiency of various universal hash families useful
to construct such an H. Efficiency comparisons are given in a very concrete
way: we count the machine instructions per word of a; to compute h(x). We
assume a contemporary 32-bit architecture. Though instruction counting is only
a crude predictor of speed, an analysis like this is still the best implementation-
independent way to get a feel for our methods' efficiency.

EFFICIENCY OF %B- From Section 3.2 and the above preamble it is apparent
that we need more buckets than can be accommodated by a typical machine's
register set. So there are two natural strategies to hash x = XQ • • -xn-i'-

• M e t h o d 1 - Process words XQ, . . . , xn-i. We can read each a:,- from mem-
ory and then, three times: (1) read the value j/j of some bucket j from
memory; (2) compute Xj© j ^ ; (3) write the result back to bucket j . Total
instruction count is 10 instructions per word.

36

• Method 2 — Fill buckets yo, •.., J/JV-I- We can xor together all words that
should wind up in bucket 0; then xor all words that go in bucket 1; and so
forth, for each of the N buckets. A total of 3n reads into x0,.. •, xn-i will
be needed; plus a total of 3n — N xor operations; and (possibly) another N
writes back to memory. Total instruction count is 6 instructions per word.

Achieving the stated instruction counts requires the use of self-modifying code
("sm code"); above, it is implicitly assumed that the representation of ft € T~LB
is the piece of executable code which computes it. In implementation, this can
be tricky. If we must spend the time to load the bucket location (Method 1)
or word location (Method 2) out of memory ("kiss code"), these loads comprise
extra overhead. For Method 2, a refusal to use self-modifying code will further
increase the instruction count because of overhead to control the looping: it is
key-dependent how many words fall into a given bucket.

method
nB[W,n,N]
•HB[M,n,N]
-HBm,n,N]
nB[M,n,N]

implement at ion
Method 1 (sm code)
Method 2 (sm code)
Method 1 (kiss code)
Method 2 (kiss code)

table size (Bytes)
code - no table
code - no table

3n or12n
6n or12n

» instrs/wd
10
6
13

9+

For Method 2, n should be at most a few thousand to retain reasonable cache
performance.

EFFICIENCY OF HN AND % . The software-efficient implementation of
relies on a table of pre-computed inner products. There is a tradeoff between the
size of this table and the number of instructions. Consider 7£JV[64,32] and assume
we partition words as 8-bit bytes to look up inner products in a pre-computed
table TN. The table size is then 4 x 28 words, or 4 KBytes. To hash the two-word
string a;0a;iiC2«3 x^x^x^x-r to the one-word string 2/o2/i3/22/3 we must isolate the
four bytes xo,x\,X2,X3; lookup in TN the entries these bytes index; then xor
what we get out of the table. We need 3-5 instructions per table lookup, plus
an extra couple of instructions to read xix$xeX'r and xor it with what we have
already. Other examples:

method
7*2 = ?M2 x 32,32]

IP~[2 x 32,321
Ti.2 o 7^2 o li-x

cmprsn
2
8
8

coll prob
2~32

2-32
2-30.4

table size (Bytes)
4K
24 K
28 K

fa instrs/wd
7-11
7-11

13.5-19.5

Overall compression is poor unless the table size is quite large, leading one
towards multiple applications of concatenation and composition (using Proposi-
tions 2 and 4) as in the third row of the table.

The instruction count and table size oiTiu are worse than Wjv—for example,
12-20 instructions with an 8 KByte table for HM[1 x 32,32].

EFFICIENCY OF Wjf[n,64]. The collision probability of ?{K[n,32] is inadequate
for the stated goal, and there is no apparent way to implement "Wjj[n,u;] for

37

w E [33..64] any faster than implementing 7 f ~ [n , 641. The software-efficient im-
plementation of 7-I~[n, 641 relies on a table TK of pre-computed quotients. Let
us assume that we index into T K in &bit bytes. Computing h E 7 - I ~ [n , 641 on
Z O . * . Z , - ~ , where lzil = 8, could be done as in

crc t 064
for i = 0 to n / 8 - 1 do

return crc
index +- z i @ (crc & OXFF); crc c crc))) 8; crc + crc @ TK[index]

which, coded in the natural manner on a 32-bit machine gives, gives 44-48
instrs/wd with a 2 KByte table.

5 Towards a F’ully-Specified Scheme
AN EXAMPLE. This section provides an illustrative example of a concrete MAC
based on the ideas presented so far. This is only a “toy” example; doing a good
job at specifying a softwareoptimized bucket hash MAC will involve further
design, experimental, and theoretical work.

To keep things simple, first suppose we want to MAC strin s which are always
4096 bytes (1024 words). Let F : (0,l)“ x {0, 1}64 --i (0 , l) be a (candidate)

. Recall the finite PRF. Here’s how to MAC the cntth message 2 E (0 , l)
Z’ notation from Section 2.

$4

32 x 1024

1. Hash 2 with hl E 3tg[32,1024,144] to get a 144-word result, y1 + hl (z) .
2. Hash y1 with hz E (31~[64, to get a 72-word result, y2 t h&).
3. Hash y2 with h3 E (31~[64, 32])36 to get a 36-word result, y3 - h&).
4. Hash y3 with h4 E (3 t ~ [6 4 , 3 2]) ~ ~ to get an 18-word result, y4 + h . 4 ~ 3) .
5. Hash y4 with h5 E Hx[576,64] to get a 2-word result, y5 t hS(y4).
6. Compute p = Fa((cnt)64).
7. Return (cnt, pey5).

Conceptually, the MAC key is (a, hl, h2, h3, h4, h5); in practice, it would be the
seed used by a pseudorandom generator to generate such a tuple.

Let us estimate the speed of the above scheme, TOY-MAC. Assume the most
pessimistic instruction counts in Section 4, and assume 200 instructions for the
computation of Fa. With bucket hashing achieved by Method 2 (sm code), we get
6+11(144/1024)+11(72/1024)+11(36/1024)+48(18/1024)+200(2/1024) M 10.3
instructions per word. The tables add up to 14 KBytes and the total collision

2-53 M 2-29.8. For comparison, recall that authenticating messages using an
MD5-based technique requires some 40-50 instructions per word [21].

Notice that the “cryptographic” contribution (Step 6) of TOY-MAC takes
just 200(2/1024) M 0.4 instructions, which is less than 5% of the total work.
In a Wegman-Carter MAC one is afforded the luxury of conservative (slow)
cryptography even in an aggressive (fast) MAC, since one arranges that the
time complexity for the MAC is dominated by the non-cryptographic work.

Schemes simpler than TOY-MAC still perform well. Replacing steps (1)-(5) by
y4 t hs(hl(2)) gives 6 + (144/1024)48 + (2/1024)200 B 13.2 instructions/word.

probability (using Propositions 2,4,5,9; Theorems 10,l l) is 5 2-31.32 +3 x 2-32+

38

Alternatively] since MD5 is about the same speed as ‘HK, a similar estimate
would hold for a scheme like MACa,,,t(z) = (cnt, M D ~ (Q . cnt . It1 . hl(z))).

Our instruction counts are attractive even if we do not use self-modifying
code: naive implementations would take fewer than 20 instrs/wd.

SHORT STRINGS. What if the strings we are MACing haves lengths which are a
constant substantially less than 4096 bytes? Using the layers of hash functions
chosen for TOY-MAC makes no sense if IzI is too short. In general, the hash
method which will be fastest for a string depends strongly on its length. For
a software-optimized MAC to be most useful it should be as fast as possible
for each input length. We thus suggest designing a Wegman-Carter MAC using
multiple AU2-hash functions] choosing the best sequence of these to apply to x
based on 1x1. While this may seem complex, the user of a MAC typically cares
about performance and security, not definitional simplicity.

While instruction counts for fast AU2-hashing are best (per word) when the
strings being hashed are long, even strings of a few words benefit from having
their lengths reduced (e.g. by ‘HN) before being cryptographically acted on.

LONG STRINGS. Modifying TOY-MAC to deal with long strings is easy: for exam-
ple, if x is 1024k words then one can replace Steps 1-4 by y4 + (h 4 0 h 3 0 h z o h l) ~ .

LENQTH VARIABILITY. TOY-MAC is only correct when the strings to MAC have
some fixed length. The reason is that ‘ H E is eAU2 only when restricted to strings
of a fixed length. For example, h(x) = h(x0”’) for any h E ‘HB. Fortunately,
eliminating the fixed-length restriction is easy. One solution is to include 1x1 in
the scope of Fa(.), which ensurea that WC[’H, F] is secure across variable-length
strings as long as 7i is E-AXU~ on equal-length ones. The bound in Theorem 7
is unchanged. A second approach is to use constructions like hj ((lx I) . ho(z)).
Neither approach requires 1.1 be known before x is hashed.

6 Extensions and Directions
Generalizing 7 i ~ we call by “bucket hashing” any scheme in which the hash
function h is a given by a list (ho, . . . , hn-l) of “small” subsets of [O..N - 11 and
the hash of I = xo.- .zn- l1 where Ixjl= w, is:

for j t 0 to N - 1 do y, t 0”
for i + 0 to n - 1 do

for each k E hi do
y6 + yk @ zi

return Yo \I Y1 I1 . * . II YN-1
In the general case the distribution on h-values is arbitrary. So 3tg[wl n, N] is the
special case in which we use the uniform distribution on three-elements subsets
of distinct triples in [O..N - 11.

One could imagine many alternate distributions] some of which will give rise
to faster-bcompute hash functions or better bounds on the collision proba-
bility. As an example, suppose 7-f is given by choosing ho, h l , . . ., in sequence,
where hi is a random triple of [O..N - 11 subject to the constraint that among

39

{ho, . . . ,hi} there are no two and no four of the hj’s such that the multiset
Uhj has an even number of each point 0, 1, . . . , N - 1. (Dropping the italicized
words we would recover the definition of ‘HB[w, n, N] .) This new family of hash
functions, 3-11,[w, n, N] , may have substantially smaller collision probability than
H B [w , n, N] , allowing one to choose a smaller value of N .

THE BUCKET HASH SCHEME OF A GRAPH. Hash family ‘ H H ~ would have been
more efficient had each word gone into two buckets instead of three. One way
to specify such a scheme is with a graph G whose N vertices comprise the N
buckets and whose rn edges [O..m - 11 indicate the pairs of buckets into which
a word may fall. A random hash function from the family is given by a random
permutation ?r on [O..rn- 11. To hash a string to.. . zn-l using r, where Izil = w
and n 5 m, each word zi is dropped into the two buckets at the endpoints
of edge n(i). As before, we xor the contents of each bucket and output their
concatenation in some canonical order. We call the above scheme 7 f ~ [w , n, N] .

Finding a “good” x ~ [w , n , N] amounts to finding a graph G on a small
number of vertices N , a large number of edges m, and such that for all 1 5 k 5
n 5 m, if t distinct edges are selected at random from GI then the probability
that their union (with multiplicities) comprises a union of cycles is at most some
small number E

One interesting set of graphs in this regard are the (d,g)-cages (see [4]). A
(d , 9)-cage is a smallest d-regular graph whose shortest cycle has g edges. These
graphs have been explicitly constructed for various values of (d , g). Though (d , 9)-
cages are rather large (for even g they have at least (2(d - l)g/’ - 2)/(d - 2)
nodes) some (d, g)-cages may give rise to useful hash families. The following is
an example.

For d - 1 a prime power, let C[d, 61 be the (d , 6)-cage. This is the the point-
line incidence graph of the projective plane of order d - 1. I conjecture that
3 - 1 ~ ~ [d , ~] [w , d ~ - d ~ + d - l , 2 d ~ - 2 d + 2] iseAU2 for c = (d2T)/(d(d2y)). As-
suming this, ‘HC[~O,~] [w, 909,1821 achieves compression M 5, collision probability
2-32.5721 and Method 2 cost of 4 (sm code) or 6 (kiss code) instrs/wd.

OPEN QUESTIONS. The generalized notion of bucket hashing amounts to say-
ing that hashing is achieved for each bit position 1 . . . w by matrix multipli-
cation with a sparse Boolean matrix H . Expressing the method in this gener-
ality raises questions like the following: for all distributions D [N , n] of binary
N x n matrices H having k ones per column (e.g., k = 2,3,4) for which is
mqc{o,l)n-{on} P ~ H ~ D ” , ~] [H z = ON] minimized? What if we also demand
that each pair of rows have the same number of ones? (This is true in the matrix
of C[d, g], and having this property eliminates the Method 2 (kiss code) overhead
mentioned in Section 4.) What if we demand density 2 p but make no further
restriction on H? Answers will lead to still faster bucket hash MACs.

Acknowledgments

The author thanks Mihir Bellare, Don Coppersmith, Hugo Krawczyk, David
Zuckerman, and an anonymous reviewer for their comments and suggestions.

40

References

1. R. ARNOLD AND D. COPPERSMITH, ”An alternative to perfect hashing.” IBM
RC 10332 (1984).

2. M. BELLARE, 0. GOLDREICH AND S. GOLDWASSER. “Incremental cryptogra-
phy: The case of hashing and signing.” Advances in Cryptology - CRYPTO ’94
Proceedings, Springer-Verlag (1994).

3. M. BELLARE, J . KILIAN AND P. ROGAWAY, “The security of cipher block chain-
ing.” Advances in Cryptology - CRYPTO ’94 Proceedings, 341-358 (1994).

4. J . BONDY AND U. MURTY, Graph theory with Applications. North Holland
(1976).

5. G. BRASSARD, “On computationally secure authentication tags requiring short
secret shared keys.” Advances in Cryptoiogy - CRYPTO ’82 Proceedings, 79-86
(1983).

6. J . BIERBRAUER, T. JOHANSSON, G. KABATIANSKII AND B. S~IEETS, “On families
of hash functions via geometric codes and concatenation.” Advances in Cryptology
-CRYPT0 ‘93 Proceedings, Springer-Verlag, 331-342 (1994).

7. L. CARTER AND M. WEGMAN, “Universal hash functions,” J . of Computer and
System Sciences 18, 143-154 (1979).

8. Y. DESMEDT, “Unconditionally secure authentication schemes and practical and
theoretical consequences.” Advances in CryptoZogy - CRYPTO ’85 Proceedings,
Springer-Verlag, 4 2 4 5 (1985).

9. P. GEMMELL AND M. NAOR, “Codes for interactive authentication.” Advances in
Cryptology - CRYPTO ’93 Proceedings, Springer-Verlag, 355-367 (1994).

10. 0. GOLDREICH, S. GOLDWASSER AND S. MICALI, “How to construct random func-
tions.” Journal of the ACM, Vol. 33, No. 4, 210-217 (1986).

11. S . GOLDWASSER, S . MICALI AND R. RIVEST, “A digital signature scheme se-
cure against adaptive chosen-message attacks,” SIAM Journal of Computing,

12. H. KRAWCZYK, “LFSR-based hashing and authentication.” Advances in Cryptol-
ogy - CRYPTO ’94 Proceedings, Springer-Verlag, 129-139 (1994).

13. M. LUBY AND C. RACKOFF, “HOW to construct pseudorandom permutations from
pseudorandom functions,” SIAM J . Comput, Vol. 17, No. 2, April 1988.

14. X. LAI, R. RUEPPEL AND J. WOOLLVEN, “A fast cryptographic checksum al-
gorithm based on stream ciphers.” Advances in Cryptology, Proceedings of

’
A USCRYPT 92. Springer-Verlag (1992).

15. P. PEARSON, “Fast hashing of variable-length text strings.” Communications of
the ACM, 33 (6), 677-680 (1990).

16. R. RIVEST, “The MD5 message digest algorithm.” IETF RFC-1321 (1992).
17. P . ROGAWAY, “Bucket hashing and its application to fast message authen-

tication.” (Full version of this paper.) Available from the author or out of
http://vw.cs.ucdavis.edu/“rogavay/

18. G. SIMMONS, “A survey of information authentication.” In Contemporary cryp-
tography, The Science of Information Integrity, G. Simmons, editor. IEEE Press,
New York (1992).

19. D. STINSON, “Universal hashing and authentication codes.” Designs, Codes and
Cryptography, vol. 4, 369-380 (1994). Earlier version in Advances in Cryptology -
CRYPTO ‘91 Proceedings, Springer-Verlag, 74-85 (1991).

20. R. TAYLOR, “An integrity check value algorithm for stream ciphers.” Advances in
Cryptology - CRYPT0 ‘93 Proceedings, Springer-Verlag, 4 0 4 8 (1994).

17(2):281-308, A p d 1988.

41

21. J . TOUCH, “Performance analysis of MD 5.” Manuscript, February 1995.
22. G. T S U D ~ , “Message authentication with one-way hash functions.” Proceedings

of Infocom 92, IEEE Press (1992)
23. M. WEGMAN AND L. CARTER, “New hash functions and their use in authentic*

tion and set equality.” J . of Computer and System Sciences 22, 265-279 (1981).
24. D. WHEELER, “A bulk data encryption algorithm.’’ Fast Software Encryption,

Cambridge Security Workshop, 1993 Proceedings, R. Anderson, ed., 127-134. Lec-
ture Notes in Computer Science, vol. 809, Springer-Verlag (1994).

25. A. ZOBRIST, “A new hashing method with applications for game playing.” Uni-
versity of Wisconsin, Dept. of Computer Science, TR #88 (April 1970).

A Proof of Theorem 11

Due to page limits we give only the briefest sketch. The complete proof is in [17].
We argue first that wlog we may assume w = 1. Then we observe that h (z)

is a product H x over GF[2] for an N x n matrix H and so h is linear and the
collision probability is E* = m q E { O , 1) m - { p] Prhcxs [h (z) = O N] . This depends
only on the number of ones in x . Thus our problem has been reduced to deciding
which string xt = l‘O”-t, t 2 1, maximizes 6: = PrhExa [h (x t) = O N] . It is easy
to see that it’s not any odd-indexed 2,. Furthermore, 6; = 0 because of our
exclusion of hi = hj for i # j . So E* = max{Ei, ET;, ~ l ; , . . .}.

Upperbounding E* is facilitated by looking not at ‘ H B , where no hi = hj for
i # j , but at the related hash family 7-lk which removes this constraint. Let E{

be defined by PrhExL [h (z t) = O N] and let E‘ = maxt=4,6,8, ...{ 6 :) .

To analyze ‘HJ, we construct an (N + 1)-state Markov chain M. States are
numbered 0,1, . . . , N . The e-th state models that e buckets have an even number
of ones while N - e buckets have an odd number of ones. So N is the start
state. Let h/ = N (N - 1)(N - 2) . For 3 5 i 5 N - 3 chain M has transition
probabilities pj,j given by pi,^ = i(i-l)(i-2)/N, = 3i(i-l)(N-i)/N,
p i , j + l = 3 i (N - i) (N - i - l) / N and p j , i + 3 = (N - i) (N - i - l) (N - i & 2) / N , for all
p i , j where both i and j are in [1 . .N] and they differ by f l or A 3 . For 0 5 i 5 2
and N - 2 5 i 5 N we have p 0 , 3 = P N , N ~ = 1, p l , z = PN-l,N-2 = 3 / N ,
P1,4 = PN-1,N-l = N - 3 / N , P 2 , l = PN-2,N-1 = 6 / N (N - 1) , p 2 , 3 = P N - 2 , N d =
6 (N - 3) / N (N - 1) , and p 2 , 5 = p N - 2 , N q = (N - 3) (N - 4) / N (N - l) . For all other
transition probabilities p i , j we have p i j = 0. A simple calculation now shows
that 6: = a (N) . Using that N 2 20 we get that a (N) 2 1997 /N2 and so the
following proves that E’ = E L .
Lemma12. Suppose N 2 20. If t 2 6 then 6: 5 1788/N2

To prove this we bound selected probability masses r:(t) for i E [l..N] in M’ by
considering the 7-state process M which we get by collapsing a certain N - 6
set of states of MI. Process M has states which we shall call N , N-1, N - 2 ,
N - 3 , N-4, N - 6 , and R. The first six represent the corresponding states in
M’ while state R represents the remaining states, combined. One can verify
that the nonzero transition probabilities pi,j of M axe bounded by P N , N ~ = 1,
PN-l ,N-4 5 1’ PN-1,N-2 = 3 / N , PN-2,R 5 1, p N - 2 , N 3 = 6 (N - 2) (N - 3) / N ,

42

PN-2,N-1 = 6 (N - 2) / N , PN+N = 6 / N , P N ~ , N - s I 1, P N - ~ , N ~ = 9(N-3)(N-
4) f N , P~44.w-2 = 18(N-3)/Ml F N - ~ , R I 1, P N - ~ , N ~ = 36(N-4)/N, P N - ~ , N - I =
24/N, P N - ~ , N ~ = 12O/N, ? ~ N - S , R 5 1, PR,R 5 1, P R , N - ~ 5 15(N-5)(N-6)/N,
P R , N ~ 5 6 0 (N - 5) / M ?~R,N-z = 60/N, We show that a ~ (6) 5 1788/N2 by
induction on t . The basis and induction are obtained by calculations using the
above bounds.

We conclude the theorem by showing that y n , ~ adequately compensates for
the error we have induced by examining 3tb instead of 'HB. This follows from
a lemma asserting that if p is the probability that a random set of n distinct
random triples of elements drawn from [O..N - 11 contains no repeated triple,
then E* 5 E ' / (1 - p) .

B Definitions of Security

SECURITY OF A MAC. We define (deterministic, counter-based) message au-
thentication schemes. In this case a MAC scheme M specifies a set Messages =
(0, l}'L that can be authenticated; a finite set Keys C {0,1}* of keys; a set
Tags (0, l}*; a number MAX = 2' which is the number of messages that can
be authenticated; and a pair of functions (MAC, MACV) where MAC : Messages x
Keys x [O..MAX - 11 + Tags, and MACV : Messages x Keys x Tags + (0 , l) .
We write MACTtk) for MAC(z, a, cnt), MACV,(z, t) for MACV(z, a, it), and
MAC,($) for MAC,(z), We demand that for any z E Messages, a E Keys, and
cnt E [O..MAX - 11, MACV,(z, MACrt(z)) = 1 .

Let M be a message authentication scheme. A MAC oracle MAC,(-) for
M behaves as follows: it answers its first query co E Messages with the string
MACZ(zo); it answers its second query z1 E Messages with the string MACt(z1);
and so forth.

An adversary E for a message authentication scheme M is an algorithm
equipped with a MAC oracle. Adversary E is said to succeed on a particular
execution having MAC oracle MAC,(.) if E outputs a string (z*, t*) where
MACVa(z*,t*) = 1 yet E made no earlier query of z*.

Adversary E is said to be [t , q, m, cl-break M , where 0 5 q < MAX and
0 5 E 5 1, if E makes at most q queries of its oracle, asks its oracle a total of m
bits, runs in at most t time, and E 2 Pr a t Keys : EMACa(.) succeeds] .
SECURITY OF A FINITE PRF. A finite PRF is a map F : {0,1)" x { o , I ~ ' +

(0, l}L. We write Fa(z) in place of F (a , 2). We let &,L be the set of all functions
mapping (0,1}' to (0, l}L. Following [lo], a distinguisher is an oracle algorithm
D. We say that D [t,q,c]-breaks F if D runs in at most t steps, makes at
most q oracle queries, and Pra+{o,llk [gF,(.) = 11 - [P = 11 2 E .
Complexity is measured in a standard RAM model of computation, with oracle
queries counting as one step.

1

	Bucket Hashing and its Application to Fast Message Authentication
	Introduction
	Preliminaries
	Bucket Hashing
	The Efficiency of Universal Hash Methods
	Towards a F’ully-Specified Scheme
	Extensions and Directions
	Acknowledgments
	References
	A Proof of Theorem 11
	B Definitions of Security

