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Abstract. Side-channel attacks are a recent class of attacks that have
been revealed to be very powerful in practice. By measuring some side-
channel information (running time, power consumption, . . . ), an attacker
is able to recover some secret data from a carelessly implemented crypto-
algorithm. This paper investigates the Hessian parameterization of an
elliptic curve as a step towards resistance against such attacks in the
context of elliptic curve cryptography. The idea is to use the same proce-
dure to compute the addition, the doubling or the subtraction of points.
As a result, this gives a 33% performance improvement as compared to
the best reported methods and requires much less memory.
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1 Introduction

Side-channel attacks are a recent class of attacks that have been revealed to be
very powerful in practice. By measuring some side-channel information (running
time, power consumption, . . . ), an attacker is able to recover some secret data
from a carelessly implemented crypto-algorithm. This paper investigates the
Hessian parameterization of an elliptic curve as a step towards resistance against
such attacks in the context of elliptic curve cryptography. The idea is to use the
same procedure to compute the addition, the doubling or the subtraction of
points. As a result, this gives a 33% performance improvement as compared to
the best reported methods and requires much less memory.

The rest of this paper is organized as follows. The next section introduces
the theory of elliptic curves and reviews the related work for computing the
multiple of a point on an elliptic curve. Section 3 presents the Hessian parame-
terization of an elliptic curve. It also proves some useful results on this special
parameterization. The side-channel attacks are defined in Section 4 and some
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countermeasures are discussed. Finally, Section 5 shows how the Hessian param-
eterization helps to efficiently foil such attacks in the context of elliptic curve
cryptography.

2 Elliptic Curve Multiplication

To ease the exposition we assume throughout this paper that K is a field of
characteristic p > 3.

2.1 Basic Facts

We start with a short introduction to elliptic curves.

Definition 1. Up to a birational equivalence, an elliptic curve over a field K is
a plane nonsingular cubic curve with a K-rational point.

Elliptic curves are often expressed in terms of Weierstraß equations:

E/K : y2 = x3 + ax+ b (with 4a3 + 27b2 �= 0) (1)

where a and b ∈ K. The condition 4a3 + 27b2 �= 0 ensures that the discriminant

∆ = −16(4a3 + 27b2) (2)

is nonzero, or equivalently that the points (x, y) on the curve are nonsingular.
More importantly, together with the point at infinity O, the points of an

elliptic curve form an Abelian group (with identity element O) under the chord-
and-tangent rule defined as follows. If P = (x1, y1), then its inverse is given by
−P = (x1,−y1). The sum of two points P = (x1, y1) and Q = (x2, y2) (with
Q �= −P ) is equal to R = (x3, y3) where

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3) − y1

with λ =




3x2
1 + a

2y1
if x1 = x2 ,

y1 − y2

x1 − x2
otherwise .

The previous formulæ require 2 or 3 multiplications and 1 inversion to add
two points. Since this latter operation is costly (an inversion roughly takes the
same amount of time as 23 multiplications [8]), projective representations of
Weierstraß equations may be preferred.

3 Hessian Curves

In this section, we formally define the Hessian elliptic curves [10] (see also [2,
p. 36] and [15]) and give some results on this special parameterization.
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Definition 2. An Hessian elliptic curve over K is a plane cubic curve given by
an equation of the form

E/K : u3 + v3 + 1 = 3Duv , (3)

or in projective coordinates,

E/K : U3 + V 3 +W 3 = 3DUVW (4)

where D ∈ K and D3 �= 1.

As shown in the next lemma, the condition D3 �= 1 imposes that the curve
is nonsingular, that is, elliptic.

Lemma 1. An Hessian cubic curve ED(K) is singular if and only if D3 = 1.

Proof. Let P = (U1 : V1 : W1) be a singular point. Then U2
1 − DV1W1 =

V 2
1 − DU1W1 = W 2

1 − DV1W1 = 0, hence U3
1 = V 3

1 = W 3
1 (�= 0). Therefore

there exist k ∈ K
∗ and r, s, t ∈ Z3 such that U1 = kωr, V1 = kωs and W1 = kωt

where ω is a non-trivial cubic root of unity. Together with Eq. (4), this yields
3k3 = 3Dk3ωr+s+t, or equivalently, D3 = 1. ��

Proposition 1. The Hessian curve given by Eq. (3) is birationnally equivalent
to the Weierstraß equation

y2 = x3 − 27D(D3 + 8)x+ 54(D6 − 20D3 − 8) , (5)

under the transformations

(u, v) =
(
η(x+ 9D2),−1 + η(3D3 −Dx− 12)

)
(6)

and
(x, y) =

(−9D2 + ξu, 3ξ(v − 1)
)

(7)

where η = 6(D3−1)(y+9D3−3Dx−36)
(x+9D2)3+(3D3−Dx−12)3 and ξ = 12(D3−1)

Du+v+1 .

Proof. Sending the point P0 = (0,−1) to the origin via the map v �→ v − 1,
Eq. (3) becomes

3∑
i=1

ci(u, v) = 0 (*)

where c3(u, v) = u3 + v3, c2(u, v) = −3v(Du + v) and c1(u, v) = 3(Du + v).
The slope λ of the tangent at P0 is equal to −D. Letting d(u, v) = c2(u, v)2 −
4c1(u, v)c3(u, v), we have d(u, λu+1) = 12(D3−1)u3−27D2u2+18Du−3. Hence,
by Nagell reduction (see Theorem 7.4.9 in [5, p. 393]) and letting B = 12(D3−1),
Eq. (*) is birationnally equivalent to y2 = x3 − 27D2x2 + 18DBx − 3B2 under
the transformations

(u, v) =
(x(By−c2(x,λx+B))

2c3(x,λx+B) , (λx+B)(By−c2(x,λx+B))
2c3(x,λx+B)

)
=

(Bx(y+3B−3Dx)
2(x3+(B−Dx)3) ,

B(B−Dx)(y+3B−3Dx)
2(x3+(B−Dx)3)

)
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and, noting from Eq. (*) that 2c3(u, v) + c2(u, v) = −2c1(u, v) − c2(u, v),

(x, y) =
(

Bu
v−λu ,

B(2c3(u,v)+c2(u,v))
(v−λu)2

)
=

( 12(D3−1)u
Du+v , 36(D3−1)(v−2)

Du+v

)
.

Replacing now x by x+9D2, we finally obtain the required equation and the
corresponding transformations. ��

A ‘straight-forward’ application of the chord-and-tangent rule yields rather
cumbersome formulæ for the doubling and the addition on an Hessian curve.
The correct way is to use the Cauchy-Desboves’ s formulæ (see Appendix A),
which exploit the symmetry of Eq. (4). Plugging W = 0 into Eq. (4), we get the
point at infinity O = (1 : −1 : 0). The inverse of O is O. For P �= O we can
work in affine coordinates. Let P = (u1, v1) be a point on the curve. The line
v = −u+ (u1 + v1) contains the point P and, considering its projective version
V = −U + (u1 + v1)Z, it also contains the point at infinity O. Therefore, −P is
the third point of intersection of this line connecting P and O with the curve.
Substituting v = −u+ (u1 + v1) into Eq. (3), we obtain

u3 + (−u+ (u1 + v1))3 + 1 = 3Du(−u+ (u1 + v1))
⇐⇒ 3(u1 + v1 +D)u2 − 3(u1 + v1)(u1 + v1 +D)u+ (u1 + v1)3 + 1 = 0
⇐⇒ u2 − (u1 + v1)u+ u1v1 = 0 .

(Note that u1 + v1 +D �= 0 because D3 �= 1.) So, the u-coordinate of −P is v1,
and hence its v-coordinate is u1, i.e., −P = (v1, u1) or, in projective coordinates,

− P = (V1 : U1 : W1) . (8)

We use the same notations as in Appendix A. The tangent at P = (U1 :
V1 : W1) intersects the curve at the third point −2P whose coordinates are
given by Eq. (15), with F (U, V,W ) = U3 + V 3 + W 3 − 3DUVW . We have
ϕ = 3(U1

2 −DV1W1), χ = 3(V1
2 −DU1W1) and ψ = 3(W1

2 −DU1V1) and so,
−2P = ((ψ3 − χ3)/U1

2 : (−ψ3 + ϕ3)/V1
2 : (χ3 − ϕ3)/W1

2). A short calculation
gives

ψ3 − χ3 = 27(W1
2 −DU1V1)3 − 27(V1

2 −DU1W1)3

= 27[(W1
6 − V1

6) +D3U1
3(W1

3 − V1
3) − 3DU1V1W1(W1

3 − V1
3)]

= 27(W1
3 − V1

3)(D3 − 1)U1
3 ,

and, by symmetry, −ψ3 + ϕ3 = 27(U1
3 − W1

3)(D3 − 1)V1
3 and χ3 − ϕ3 =

27(V1
3 − U1

3)(D3 − 1)W1
3. Hence, with Eq. (8), we finally obtain

2P =
(
V1(U1

3 −W1
3) : U1(W1

3 − V1
3) : W1(V1

3 − U1
3)

)
. (9)

From Eq. (16) (in Appendix A), the line connecting the points P = (U1 : V1 :
W1) and Q = (U2 : V2 : W2) intersects the curve at the third point −(P + Q) =
(U1Θ − U2Υ : V1Θ − V2Υ : W1Θ − W2Υ ), where Θ = 3U1(U2

2 − DV2W2) +
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3V1(V2
2−DU2W2)+3W1(W2

2−DU2V2) and Υ = 3U2(U1
2−DV1W1)+3V2(V1

2−
DU1W1) + 3W2(W1

2 −DU1V1). We have

U1Θ − U2Υ = 3V1V2(U1V2 − U2V1)
+ 3W1W2(U1W2 − U2W1) − 3D(U1

2V2W2 − U2
2V1W1) ,

V1Θ − V2Υ = 3U1U2(U2V1 − U1V2)
+ 3W1W2(V1W2 − V2W1) − 3D(V1

2U2W2 − V2
2U1W1) ,

W1Θ −W2Υ = 3U1U2(U2W1 − U1W2)
+ 3V1V2(V2W1 − V1W2) − 3D(W1

2U2V2 −W2
2U1V1) ,

and thus, exploiting the fact that P and Q belong to the curve [9, no. 12], we
obtain

U1Θ − U2Υ

W1Θ −W2Υ
=
U1

2V2W2 − U2
2V1W1

W1
2U2V2 −W2

2U1V1
,

V1Θ − V2Υ

W1Θ −W2Υ
=
V1

2U2W2 − V2
2U1W1

W1
2U2V2 −W2

2U1V1
.

Therefore, with Eq. (8), the sum R = P + Q is given by

R =
(
V1

2U2W2−V2
2U1W1 : U1

2V2W2−U2
2V1W1 : W1

2U2V2−W2
2U1V1

)
. (10)

We now study the points of order 2 and 3. We work in affine coordinates
since we are looking at points P �= O such that 2P = O or 3P = O. Let
P = (u1, v1). The condition 2P = O is equivalent to P = −P . Therefore, since
−P = (v1, u1), the points P = (u1, v1) of order 2 are those for which u1 = v1.

Suppose P = (u1, v1) with u1 �= v1, that is, P , 2P �= O. To find the points
P of order 3, we use the doubling formula: 3P = O ⇐⇒ 2P = −P . So, a few
algebra shows that the points of order 3 are exactly those with u1 = 0 or v1 = 0.
In particular, the points (0,−1) and (−1, 0) have order 3.

Finally, it is interesting to note that a generic point P = (U : V : W ) on the
Hessian curve (4) satisfies

(D2+D+1)(U+V +W )3 = 3(DU+V +W )(U+DV +W )(U+V +DW ) , (11)

since (D2 +D+1)(U+V +W )3−3(DU+V +W )(U+DV +W )(U+V +DW ) =
(D−1)2(U3 +V 3 +W 3 −3DUVW ) = 0. Moreover, since (DU +V +W ) + (U +
DV +W ) + (U + V +DW ) = (D + 2)(U + V +W ), it follows that

(Ũ + Ṽ + W̃ )3 = 3D̃Ũ Ṽ W̃ , (12)

where



Ũ = DU + V +W

Ṽ = U +DV +W

W̃ = U + V +DW

and D̃ = (D+2)3

D2+D+1 .
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4 Side-Channel Attacks

At crypto ’96 and subsequently at crypto ’99, Kocher et al. introduced a
new class of attacks, the so-called side-channel attacks. By measuring some side-
channel information (e.g., timing [11], power consumption [12]), they were able
to find the secret keys from tamper-resistant devices.

When only a single measurement is performed the attack is referred to as
simple side-channel attack, and when there are several correlated measurements
sometimes it is referred to as a differential side-channel attack. The main con-
cern at the moment for public-key cryptography are the simple side-channel
attacks [12]. Efficient countermeasures are known for exponentiation-based cryp-
tosystems (e.g., [4]), but they require the atomic operations to be indistinguish-
able. For elliptic curve cryptography, the atomic operations are addition, sub-
traction and doubling of points. Within the Weierstraß model, as suggested
in [1], these operations appear to be different and some secret information may
therefore leak through side-channel analysis.

The next section shows that the Hessian parameterization allows one to im-
plement the same algorithm for the addition (or subtraction) of two points or
for the doubling of a point.

5 Implementing the Hessian Curves

Figure 1 gives a detailed implementation to add two (different) points on an
Hessian curve. The algorithm requires 12 multiplications (or 10 multiplications
if one point has its last coordinate equal to 1) and 7 temporary variables.

Input: P = (U1 : V1 : W1) and Q = (U2 : V2 : W2) with P �= Q
Output: P +Q = (U3 : V3 : W3)

T1 ← U1; T2 ← V1; T3 ←W1 T4 ← U2; T5 ← V2; T6 ←W2

T7 ← T1 · T6 (= U1W2)
T1 ← T1 · T5 (= U1V2)
T5 ← T3 · T5 (= W1V2)
T3 ← T3 · T4 (= W1U2)
T4 ← T2 · T4 (= V1U2)
T2 ← T2 · T6 (= V1W2)
T6 ← T2 · T7 (= U1V1W

2
2 )

T2 ← T2 · T4 (= V 2
1 U2W2)

T4 ← T3 · T4 (= V1W1U
2
2 )

T3 ← T3 · T5 (= W 2
1 U2V2)

T5 ← T1 · T5 (= U1W1V
2
2 )

T1 ← T1 · T7 (= U2
1 V2W2)

T1 ← T1 − T4; T2 ← T2 − T5; T3 ← T3 − T6

U3 ← T2; V3 ← T1; W3 ← T3

Fig. 1. AddHesse(P , Q): Addition algorithm on an Hessian curve.
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We note that there are variants for this implementation. For instance, we
are able to describe similar implementations with only 4 auxiliary variables and
18 multiplications, 5 auxiliary variables and 16 multiplications, and 6 auxiliary
variables and 14 multiplications.

More remarkably, owing to the high symmetry of the Hessian parameteriza-
tion, the same algorithm can be used for doubling a point. We have:

Proposition 2. Let P = (U1 : V1 : W1) be a point on an Hessian elliptic curve
ED(K). Then

2(U1 : V1 : W1) = (W1 : U1 : V1) + (V1 : W1 : U1) . (13)

Furthermore, we have (W1 : U1 : V1) �= (V1 : W1 : U1).

Proof. Addition formula (10) yields (W1 : U1 : V1)+(V1 : W1 : U1) = (U1
2V1U1−

W1
2W1V1 : W1

2W1U1 − V1
2U1V1 : V1

2V1W1 − U1
2W1U1) = (V1(U1

3 − W1
3) :

U1(W1
3 − V1

3) : W1(V1
3 − U1

3)) = 2(U1 : V1 : W1) by Eq. (9).
The second part of the proposition follows by contradiction. Suppose that

(W1 : U1 : V1) = (V1 : W1 : U1), i.e., that there exists some t ∈ K
∗ s.t. W1 = tV1,

U1 = tW1 and V1 = tU1. This implies W1 �= 0 and t3 = 1. Moreover, since
(U1 : V1 : W1) ∈ ED(K), U1

3 + V1
3 + W1

3 = 3DU1V1W1, which in turn implies
(t3 + t6 + 1)W1

3 = 3Dt3W1
3 and thus D = 1, a contradiction by Lemma 1. ��

In [13], Liardet and Smart suggest to represent elliptic curves as the inter-
section of two quadrics in P

3 as a means to protect against side-channel attacks.
Considering the special case of an elliptic curve whose order is divisible by 4
(i.e., the Jacobi form), they observe that the same algorithm can be used for
adding and doubling points with 16 multiplications (see also [3] for the for-
mulæ). Using the proposed Hessian parameterization, only 12 multiplications
are necessary for adding or doubling points. The Hessian parameterization gives
thus a 33% improvement over the Jacobi parameterization. Another advan-
tage of the Hessian parameterization is that points are represented with fewer
coordinates, which results in substantial memory savings.

Finally, contrary to other parameterizations, there is no (field) subtraction to
compute the inverse of a point (see Eq. (8)). Hence, our addition algorithm can be
used as is for subtracting two points P = (U1 : V1 : W1) and Q = (U2 : V2 : W2)
on an Hessian elliptic curve:

(U1 : V1 : W1) − (U2 : V2 : W2) = (U1 : V1 : W1) + (V2 : U2 : W2) . (14)

To sum up, by adapting the order of the inputs accordingly to Eq. (13) or
(14), the addition algorithm presented in Fig. 1 can be used indifferently for

– adding two (different) points;
– doubling a point;
– subtracting two points;

with only 12 multiplications and 7 auxiliary variables including the 3 result
variables. This results in the fastest known method for implementing the elliptic
curve scalar multiplication towards resistance against side-channel attacks.
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A Cauchy-Desboves’ s Formulæ

Let F (U, V,W ) = 0 be the (homogeneous) equation of a general cubic curve and
let P1 = (U1 : V1 : W1) and P2 = (U2 : V2 : W2) be two points on the curve.

We let denote ϕ = ∂F (P1)
∂U , χ = ∂F (P1)

∂V and ψ = ∂F (P1)
∂W . Then the tangent

at P1 intersects the curve at the third point [9, Eq. (16)] given by
(
F (0, ψ,−χ)

U1
2 :

F (−ψ, 0, ϕ)
V1

2 :
F (χ,−ϕ, 0)

W1
2

)
. (15)

Moreover, the secant joining P1 and P2 intersects the curve at the third
point [9, Eq. (16)] given by

(U1Θ − U2Υ : V1Θ − V2Υ : W1Θ −W2Υ ) , (16)

where Θ = U1
∂F (P2)

∂U + V1
∂F (P2)

∂V + W1
∂F (P2)

∂W and Υ = U2
∂F (P1)

∂U + V2
∂F (P1)

∂V +
W2

∂F (P1)
∂W .

B Samples

Here are two examples of cryptographic Hessian elliptic curves ED(Fp) defined
over the prime field Fp with p = 2160 − 2933 and p = 2224 − 210 − 1, respectively.
Both curves are adapted from [6] using Proposition 1. Note that since (0,−1)
is on the curve whatever the values of D and p and that this point has order
3, the order of an Hessian curve, #ED(Fp), is always a multiple of 3. Note also
that this specialized representation does not impact the security of the resulting
cryptographic applications.

B.1 160-Bit Prime

p = 2160 − 2933
D = 945639186043697550302587435415597619883075636292
#ED(Fp) = 3 · 5 · 157 · 620595175087432237029165529381611169224913337

B.2 224-Bit Prime

p = 2224 − 210 − 1
D = 25840187014857916932759133078916563544400020237401312879815735566345
#ED(Fp) = 3 · 23 · 39072386474131362021256543604376277771282351667\

3432244734573782061
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