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marc.joye@gemplus.com − http://www.geocities.com/MarcJoye/
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Abstract. We propose several new methods to protect the scalar multi-
plication on an elliptic curve against Differential Analysis. The basic idea
consists in transforming the curve through various random morphisms
to provide a non-deterministic execution of the algorithm.
The solutions we suggest complement and improve the state-of-the-art,
but also provide a practical toolbox of efficient countermeasures. These
should suit most of the needs for protecting implementations of crypto-
algorithms based on elliptic curves.
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1 Introduction

Since the introduction of the timing attacks [10] by Paul Kocher in 1996 and
subsequently of the Differential Power Analysis (DPA) [9], the so-called side-
channel attacks have become a major threat against tamper-resistant devices
like smart-cards, to the point where the immediate relevance of classical security
notions is somewhat questionable. Furthermore, numerous experiments show
that most of the time, perfunctory countermeasures do not suffice to thwart
those attacks.

In the case of public-key cryptosystems based on the discrete logarithm on
elliptic curves, the running time does not really represent a bottleneck for smart-
card applications, which are equipped with additional devices for fast computa-
tion in finite fields. Therefore, investigating the security of these applications,
less constrained by performance criteria, against side-channel attacks is very
relevant.

Compared to the previous works of [5] and [7], this paper systematically
develops the same idea: assuming that an elliptic curve cryptosystem executes
some operations in the group of a curve E, the whole algorithm is transposed
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to a curve φ(E), where φ is a random morphism. The rich algebraic structure of
elliptic curves enables numerous possible choices for such morphisms.

The rest of this paper is organized as follows. In the next section, we provide
a brief description of elliptic curves. We refer the reader to Appendix A for fur-
ther mathematical details. The general principles of differential analysis and how
this can reveal the secret keys of an elliptic curve cryptosystem are explained in
Section 3. Next, we provide two main classes of possible morphisms to random-
ize the basepoint. Finally, we present in Section 5 a new randomization of the
encoding of the multiplier in the case of Anomalous Binary Curves (ABC).

2 Elliptic Curves

Let K be a field. An elliptic curve over K is a pair (E,O) where E is a non-
singular curve of genus one over K with a point O ∈ E. It is well known that the
set of points (x, y) ∈ K×K verifying the (non-singular) Weierstraß equation

E/K : y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6 (ai ∈ K) (1)

together with O form an elliptic curve and that an elliptic curve can always be
expressed in such a form. The point O is called the point at infinity.

The set of points (x, y) satisfying Eq. (1) and O form an Abelian group
where O is the neutral element. This group is denoted by E(K) and the group
operation is denoted by +. The operation consisting in computing the multiple
of a point, Q = kP := P + · · · + P (k times), is called (elliptic curve) scalar
multiplication. We refer the unfamiliar reader to Appendix A for the required
background on this particular topic.

3 Differential Analysis

In his crypto ’96 paper [10] and thereafter in [9] with Jaffe and Jun, Kocher
launched a new class of attacks, the so-called side-channel attacks.

The basic idea of the side-channel attacks is that some side-channel infor-
mation (e.g., timing, power consumption, electromagnetic radiation) of a device
depends on the operations it performs. For instance, it is well known that the
modification of a memory state yields a different power consumption according
to the memory goes from one to zero, or the opposite.

By capturing this information, it may be possible to recover some secret keys
involved during the execution of a crypto-algorithm, at least in a careless imple-
mentation. When a single input is used in eliciting information, the process is
referred to as a Simple Analysis and when there are several inputs used together
with statistical tools, it is referred to as a Differential Analysis. In this paper, we
are concerned with the second type of attack, and in particular in the context
of elliptic curve cryptography.

For elliptic curve cryptosystems, this type of attack applies to the scalar
multiplication. Following [5], a simple countermeasure to defeat simple anal-
ysis attacks resides in replacing the standard double-and-add algorithm by a



Protections against Differential Analysis for Elliptic Curve Cryptography 379

double-and-add-always algorithm for computing Q = kP on an elliptic curve
(see also [7] for further countermeasures dedicated to ABC curves). However,
such an algorithm is still susceptible to a differential analysis attack. Let k =
(km−1, . . . , k0)2 be the binary expansion of multiplier k. Suppose that an at-
tacker already knows the highest bits, km−1, . . . , kj+1, of k. Then, he guesses that
the next bit kj is equal to one. He randomly chooses several points P1, . . . ,Pt

and computes Qr = (
∑m−1

i=j ki)Pr for 1 ≤ r ≤ t. Using a boolean selection
function g, he prepares two sets: the first set, Strue, contains the points Pr

such that g(Qr) = true and the second set, Sfalse, contains those such that
g(Qr) = false. Depending on the side-channel information monitored by the
attacker and the actual implementation, a selection function may, for example,
be the value of a given bit in the representation of Qr.

Let C(r) denote the side-channel information associated to the computation
of kPr by the cryptographic device (e.g., the power consumption). If the guess
kj = 1 is incorrect then the difference

〈C(r)〉 1≤r≤t
Pr∈Strue

− 〈C(r)〉 1≤r≤t
Pr∈Sfalse

will be ≈ 0 as the two sets appear as two random (i.e. uncorrelated) sets; oth-
erwise the guess is correct. Once kj is known, the remaining bits, kj−1, . . . , k0,
are recovered recursively, in the same way. We note that such attacks are not
restricted to binary methods and can be adapted to work with other scalar
multiplication methods, as well.

To thwart differential attacks, it is recommended to randomize the basepoint
P and the multiplier k in the computation of Q = kP . Several countermeasures
are already known. See [5] for general curves and [7] for ABC curves. The next
section proposes two techniques for randomizing the basepoint and Section 5
shows how to randomize the multiplier for an ABC curve.

4 Randomizing the Basepoint

4.1 Elliptic Curve Isomorphisms

We first recall some results on isomorphisms between elliptic curves. We say that
two elliptic curves over a field K defined by their Weierstraß equations E and
E′ are isomorphic over K (or K-isomorphic) if they are isomorphic as projective
varieties. It turns out that curve isomorphisms induce group morphisms. The
determination of isomorphisms between two given elliptic curves is solved in the
next two corollaries.

Corollary 1. Let K be a field with CharK 
= 2, 3. The elliptic curves given by
E/K : y2 = x3+ax+ b and E′

/K
: y2 = x3+a′x+ b′ are K-isomorphic if and only

if there exists u ∈ K
∗ such that u4a′ = a and u6b′ = b. Furthermore, we have

ϕ : E(K) →̃ E′(K),
{

O �→ O
(x, y) �→ (u−2x, u−3y) (2)
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and

ϕ−1 : E′(K) →̃ E(K),
{

O �→ O
(x, y) �→ (u2x, u3y) . (3)

Proof. With the notations of Proposition 2 (in appendix), we obtain r = s =
t = 0 and so u4a′

4 = a4 and u6a′
6 = a6 ⇐⇒ u4a′ = a and u6b′ = b for some

u ∈ K
∗. ��

Corollary 2. Let K be a field with CharK = 2. The (non-supersingular) elliptic
curves given by E/K : y2 + xy = x3 + ax2 + b and E′

/K
: y2 + xy = x3 + a′x2 + b′

are K-isomorphic if and only if there exists s ∈ K such that a′ = a+ s+ s2 and
b′ = b. Furthermore, we have

ϕ : E(K) →̃ E′(K),
{

O �→ O
(x, y) �→ (x, y + sx) (4)

and

ϕ−1 : E′(K) →̃ E(K),
{

O �→ O
(x, y) �→ (x, y + sx) . (5)

Proof. From Proposition 2, the relation ua′
1 = a1 + 2s gives u = 1. The third

and fourth relations give r = 0 and t = 0, respectively. Hence, from the second
relation we have a′

2 = a2 − s− s2 whereas the last one yields a′
6 = a6 ⇐⇒ a′ =

a+ s+ s2 and b′ = b. ��
We can thus randomize the scalar multiplication algorithm as follows. We

perform the scalar multiplication on a random isomorphic elliptic curve and
then we come back to the original elliptic curve. More formally, if ϕ is a ran-
dom isomorphism from E/K to E′

/K
, we propose to compute Q = kP in E(K)

according to
Q = ϕ−1(k(ϕ(P )

))
, (6)

or schematically,

P ∈ E(K)
mult. by k map−−−−−−−−−−−−−−−−−−−→ Q = kP ∈ E(K)

ϕ
�

�ϕ−1

P ′ ∈ E′(K)
mult. by k map−−−−−−−−−−−−−−−−−−−→ Q′ = kP ′ ∈ E′(K)

Corollaries 1 and 2 indicate that computing the image of a point through
an elliptic curve isomorphism can be done using only a few elementary field
operations. This yields a very efficient means to randomize the computation of
Q = kP .
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Algorithm 1 (Scalar Multiplication via Random Isomorphic Elliptic
Curves for CharK �= 2, 3).

Input: A point P = (x1, y1) ∈ E(K) with E/K : y2 = x3 + ax+ b.
An integer k.

Output: The point Q = kP .

1. Randomly choose an element u ∈ K
∗;

2. Form the point P ′ ← (u−2 x1, u
−3 y1);

3. Evaluate a′ ← u−4 a;
4. Compute Q′ ← kP ′ in E′(K) with E′

/K
: y2 = x3 + a′x+ b′;1

5. If (Q′ = O) then return Q = O and stop. Otherwise set Q′ ← (x′
3, y

′
3);

6. Return Q = (u2 x′
3, u

3 y′
3).

In [5, § 5.3], Coron suggests the randomization of projective coordinates in
order to blind the basepoint P : P = (x1, y1) is randomized into (t2x1 : t3y1 : t)
in Jacobian coordinates (or into (tx1 : ty1 : t) in homogeneous coordinates) for
some t ∈ K

∗. The advantage of the proposed countermeasure is that, in Step 2 of
Algorithm 1, we can represent P ′ as the projective point P ′ = (u−2x1 : u−3y1 :
1), that is, a point with its Z-coordinate equal to 1. This results in a faster scalar
multiplication algorithm. Using the values of Table 2, we precisely quantify the
number of (field) multiplications needed to compute Q = kP , considering in
each case the faster coordinate system. This is summarized in the next table.2

Table 1. Average number of (field) multiplications to compute Q = kP .

Random. proj. coord. ([5])
Algorithm 1

a �= −3 a = −3
Double-and-add 17 1

2 · |k|2 (Jm) 16 · |k|2 (J ) 15 · |k|2 (Jm)
Double-and-add-or-sub. 15 1

3 · |k|2 (Jm) 13 1
3 · |k|2 (J ) 12 2

3 · |k|2 (Jm)
Double-and-add-always 25 · |k|2 (J c) 23 · |k|2 (J c) 21 · |k|2 (J )

For fields of characteristic 2, random isomorphisms of elliptic curves cannot
be considered alone as a means to protect against differential analysis. The x-
coordinate of basepoint P remains invariant through isomorphism ϕ (cf. Eq. (4))
and so the resulting implementation may still be subject to a differential analysis
attack. However, it can be combined with other countermeasures to offer an
additional security level.

The next section presents a countermeasure that randomizes both the x-
and the y-coordinates of point P , whatever the characteristic of the field we are
working with.

1 Note that parameter b′ is not required by the scalar multiplication algorithm.
2 J , J c and Jm respectively refer to the Jacobian coordinates, Chudnovsky Jacobian
coordinates and the modified Jacobian coordinates (see Appendix A.1).
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4.2 Field Isomorphisms

Up to isomorphism, there is one and only one finite field L of characteristic p with
pn elements. Every such field may be viewed as the field generated (over Fp) by a
root of an irreducible monic polynomialΠ of degree n. Given Π(X), any element
of L can be represented as a polynomial in Fp[X]/(Π). If e ∈ L, we note ϑΠ(e)
its corresponding representation in Fp[X]/(Π). From another irreducible monic
polynomial Π ′(Y ) of degree n, we obtain another representation for the elements
e ∈ L, ϑΠ′(e) ∈ Fp[Y ]/(Π ′). The fields K := Fp[X]/(Π) and K

′ := Fp[Y ]/(Π ′)
being isomorphic, we let φ denote such an isomorphism from K to K

′. The map
φ extends to K×K with φ(x, y) = (φ(x), φ(y)). In particular, φ transforms the
equation of an elliptic curve over K into the equation of an elliptic curve over
K

′, i.e.,
E/K : y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6

is transformed into

E′
/K′ : y2 + φ(a1)xy + φ(a3)y = x3 + φ(a2)x2 + φ(a4)x+ φ(a6) .

Consequently, isomorphisms between fields can be used to randomize the rep-
resentation of the basepoint P . To compute Q = kP , we first choose randomly
a field K

′ isomorphic to K through isomorphism φ. Then, we compute Q as

Q = φ−1(k(φ(P )
))
. (7)

In other words, we represent P ∈ E(K) as a point P ′ ∈ E′(K′), next we compute
Q′ := kP ′ in E′(K′), and finally we go back to the original representation by
representing Q′ as a point Q ∈ E(K).

At first glance, it is unclear that this could lead to an countermeasure efficient
in a constrained environment. Indeed, to build a field K

′ isomorphic to K, a
natural way consists in determining an irreducible monic polynomial of degree
n, Π ′ ∈ Fp[Y ]. An isomorphism φ is then obtained by computing a root α of Π
in K

′:

φ : K →̃ K
′ : x �→

n−1∑
i=0

xi α
i , (8)

where x =
∑n−1

i=0 xiX
i ∈ K = Fp[X]/(Π). Likewise, the inverse map, from K

′

to K, requires to find a root β of Π ′ in K.
However, we can do much better when some permanent writable memory is

at disposal (e.g., the eeprom in a smart-card implementation). The general idea
is, given an isomorphism φ : K →̃ K

′ stored in eeprom, to determine from φ and
K

′ a new field K
′′ and a new isomorphism φ′ : K →̃ K

′′, and so on. This can be
done thanks to Proposition 1, which yields a recursive method for constructing
irreducible polynomials of same degree.

Proposition 1. Let T be a polynomial permutation3 of Fpn and let Π be an
irreducible polynomial in Fp[X] of degree n. Then polynomial Π ◦ T has at least
one irreducible factor of degree n, say Π ′, in Fp[X].
3 A polynomial T with coefficients in Fp is a polynomial permutation of Fpn if the map

x �→ T (x) permutes Fpn .
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Proof. Let α be a root of Π. As Π is irreducible, the orbit of α under the
action of the Frobenius is of cardinality n. T being a permutation, the image
of this orbit through T−1 is still of cardinality n. Since T is a polynomial with
coefficients in Fp, it commutes with the Frobenius, and thus the image of the orbit
of α through T−1 appears as the orbit of T−1(α). Consequently, the polynomial∏

i(X − (T−1(α))p
i

) is irreducible of degree n, and divides Π ◦ T . ��
Hence, if we choose a polynomial permutation T of small degree (e.g., 2 or 3),
we compute Π ◦ T and factor it with a specific algorithm to find Π ′. A further
generalization consists in storing a family of polynomial permutations S = {Ti}
in eeprom and to randomly choose T ∈ S when constructing Π ′.

We note Π the publicly known polynomial which defines the field K =
Fp[X]/(Π) used as the reference field. We assume that another polynomial Π(1)

defines the field K
(1) isomorphic to K. We also assume that two polynomials

α(1), β(1) ∈ Fp[X] of degree at most n verifying Eqs. (9) have initially been
stored in eeprom. These additional data must of course be kept secret. At the
jth execution of the scalar multiplication algorithm, the eeprom contains an
irreducible monic polynomial Π(j) ∈ Fp[X] of degree n, and two polynomials
α(j), β(j) ∈ Fp[X] such that

{
Π(β(j)) ≡ 0 (Π(j))
Π(j)(α(j)) ≡ 0 (Π)

. (9)

These relations simply say that α(j) and β(j) respectively define an isomorphism
φ(j) and its inverse from the field K to the field Fp[X]/(Π(j)) denoted by K

(j).
We are now ready to give the algorithm. We choose randomly T ∈ S and

determine an irreducible monic polynomial Π(j+1) of degree n in Fp[X] that
divides Π(j)◦T with a method that will be explained later. Then we set β(j+1) =
β(j) ◦T mod Π(j+1), α(j+1) = T−1(α(j)) mod Π, and we store α(j+1), β(j+1) and
Π(j+1) in eeprom. Here, T−1 denotes the permutation inverse of T . It is easy
to check that α(j+1), β(j+1) and Π(j+1) still verify Eqs. (9), and thus define
an isomorphism φ(j+1) and its inverse from K to Fp[X]/(Π(j)). It remains to
compute P ′ = φ(j+1)(P ) and the coefficients of E′. Finally, we compute kP ′ in
E′ and convert the resulting point by the inverse isomorphism to obtain Q = kP .
From the viewpoint of the running time, one of the advantages of this method
is to skip the root finding step.

We still have to show how to solve Step 2 in the above algorithm. We illustrate
the technique in the case K = F2[X]/(Π) withΠ of degree n and gcd(2n−1, 3) =
1 (this case includes the popular choice n = 163 for elliptic curve cryptosystems),
but we stress that the proposed technique is fully general and can be adapted
to the other cases, as well.

First, note that:

Lemma 1. If gcd(2n − 1, 3) = 1 then the elements of

S =
{
X3, 1 +X3, X +X2 +X3, 1 +X +X2 +X3} ⊂ F2[X]

permute F2n .
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Algorithm 2 (Scalar Multiplication via Random Isomorphic Fields).
Input: A point P = (x1, y1) ∈ E(K)

with
{

E/K : y2 + xy = x3 + ax2 + b if CharK = 2
E/K : y2 = x3 + ax+ b if CharK > 3 .

An integer k.
[eeprom: Polynomials α(j), β(j) and Π(j).]

Output: The point Q = kP .

1. Randomly choose T ∈ S;
2. Determine, in Fp[X], an irreducible monic polynomial Π(j+1) s.t.

Π(j+1) divides Π(j) ◦ T ;

3. Set β(j+1) ← β(j) ◦ T mod Π(j+1);
4. Set α(j+1) ← T −1(α(j)) mod Π;
5. Update the eeprom with α(j+1), β(j+1) and Π(j+1);
6. Form P ′ ← P ◦ β(j+1) mod Π(j+1);
7. Evaluate a′ ← a ◦ β(j+1) mod Π(j+1);
8. Compute Q′ ← kP ′ in E′(

Fp[X]/(Π(j+1))
)
;

9. If (Q′ = O) then return Q = O and stop. Otherwise set Q′ ← (x′
3, y

′
3);

10. Return Q = (x′
3, y

′
3) ◦ α(j+1) mod Π.

Proof. Let α be a primitive element of F
∗
2n (remember that F2n = F

∗
2n ∪ {0}).

Then 〈α3〉 generates a subgroup of order (2n−1)/ gcd(2n−1, 3) = 2n−1 and so
α3 is a primitive element or equivalently X3 permutes F2n . Suppose that there
exist α, β ∈ F2n s.t. α3 + 1 = β3 + 1 ⇐⇒ α3 = β3. This implies α = β since
X3 is a permutation polynomial. The remaining cases are proved similarly by
noting that α2 − β2 = (α− β)2. ��
Given a set S of permutation polynomials, write Q := Π(j) ◦ T for some T ∈ S
and Π irreducible of degree n. The fact that Q has degree 3n enables us to
specialize the classical factorization algorithms (see, e.g., [3, p. 125]):

1. Compute R = X2n −X mod Q;
2. Then, using Proposition 1, Π ′ = gcd(Q,R) is irreducible of degree n in

F2[X].

5 Randomizing the Multiplier on ABC Curves

The other side of countermeasures for elliptic curve cryptography is the intro-
duction of a random to blind the multiplier during the scalar multiplication. This
technique is useful to prevent Differential Analysis, but may also contribute to an
additional security level against Simple Analysis, as the multiplier is in general
secret.

The proposed method is specific to ABC curves (see Appendix A.2 for the
definitions) where the multiplier first goes through several encoding functions
before being used in the scalar multiplication loop itself. We take advantage of
the properties of this encoding to randomize the multiplier.
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Building on previous works by Koblitz [8] and Meier-Staffelbach [11], Solinas
presents in [14] a very efficient algorithm to compute Q = kP on an ABC
curve. Letting τ : (x, y) �→ (x2, y2) the Frobenius endomorphism, his algorithm
proceeds as follows.

1. Compute, in Z[τ ], κ← k mod (τn − 1);
2. Using [14, Algorithm 4], evaluate the τ -NAF of κ, κ =

∑
i ki τ

i;
3. Compute Q← kP as Q =

∑
i ki τ

i(P );
4. Return Q.

Our randomization method exploits the structure of Z[τ ] ⊆ End(E). Let
ρ ∈ Z[τ ]. If x ≡ y (mod ρ(τn − 1)) then x and y still act identically on the
curve. Consequently, instead of reducing the multiplier modulo τn−1 (cf. Step 1
in the previous algorithm), we can reduce it modulo ρ(τn − 1) where ρ is a
random element of Z[τ ]. The length of the τ -NAF produced is approximately
equal to n + log2N(ρ), which penalizes the scalar multiplication by log2N(ρ)
additional steps. This enables to control very easily the trade-off between the
running time and the expected security. Typically, for n = 163, we might impose
that N(ρ) ≈ 240, which roughly produces τ -NAF of 200 digits (in {−1, 0, 1})
instead of 160 with the deterministic method. The detailed algorithm is presented
below.

Algorithm 3 (Scalar Multiplication via Random Exponent Recoding
for ABC Curves).

Input: A point P = (x1, y1) ∈ E(F2n), an ABC curve.
An integer k.
A trade-off parameter l (typically, l = 40).

Output: The point Q = kP .

1. Randomly choose an element ρ ∈ Z[τ ] with N(ρ) < 2l;
2. Compute, in Z[τ ], κ′ ← k mod ρ(τn − 1);
3. Evaluate the τ -NAF of κ′, κ′ =

∑
i κ′

i τ i;
4. Compute Q←∑

i κ′
i τ i(P );

5. Return Q.

An interesting feature of this algorithm is that no additional routine needs
to be implemented. It only requires a slight modification of the deterministic
version. Furthermore, the random component ρ is spread over the full length
of the multiplier. This may be better than simply adding to the multiplier a
multiple of the order of the curve, as was suggested in [5, §. 5.1].

6 Conclusion

We proposed two new methods to blind the basepoint for an elliptic curve cryp-
tosystem. These methods come from the idea of transposing the computation
in another curve through a random morphism. In addition, we presented a new
technique to randomize the encoding of the multiplier in the case of anomalous
binary curves.
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A Mathematical Background

This appendix details the elliptic curve addition formulæ. It also reviews some
well-known techniques for computing Q = kP in an elliptic curve E(K). An
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excellent survey by Gordon, including the most recent developments, can be
found in [6].

In the sequel, we only consider the cases of a field K with CharK 
= 2, 3 and
CharK = 2. In these cases, the general Weierstraß equation (cf. Eq. (1)) can be
simplified considerably through an appropriate admissible change of variables.
This is explicited in the next proposition.

Proposition 2 ([12, Theorem 2.2]). The elliptic curves given by the Weier-
straß equations

E/K : y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6 and

E′
/K

: y2 + a′
1xy + a

′
3y = x

3 + a′
2x

2 + a′
4x+ a

′
6

are isomorphic over K if and only if there exists u ∈ K
∗ and r, s, t ∈ K such that

the change of variables

(x, y)← (u2x+ r, u3y + u2sx+ t)

transforms equation E into equation E′. Such a transformation is referred to as
an admissible change of variables. Furthermore,



ua′
1 = a1 + 2s ,

u2a′
2 = a2 − sa1 + 3r − s2 ,

u3a′
3 = a3 + ra1 + 2t ,

u4a′
4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st ,

u6a′
6 = a6 + ra4 − ta3 + r2a2 − rta1 + r3 − t2 .

A.1 Elliptic Curves over a Field K with CharK �= 2, 3
When the characteristic of field K is different from 2, 3, the Weierstraß equation
of an elliptic curve can be simplified to:

E/K : y2 = x3 + ax+ b (4a3 + 27b2 
= 0) . (10)

For any P ∈ E(K), we have P + O = O + P = P . Let P = (x1, y1) and
Q = (x2, y2) ∈ E(K). The inverse of P is −P = (x1,−y1). If Q = −P then
P + Q = O; otherwise the sum P + Q = (x3, y3) is given by

x3 = λ2 − x1 − x2 , y3 = λ(x1 − x3)− y1 (11)

with λ =



y2 − y1
x2 − x1 , if P 
= Q ,

3x21 + a
2y1

, if P = Q .

To avoid the division in the computation of λ, one usually works in projective
coordinates. There are basically two ways to project Eq. (10): (i) set x = X/Z
and y = Y/Z, that is, (X : Y : Z) are the homogeneous coordinates; or (ii) set
x = X/Z2 and y = Y/Z3, (X : Y : Z) are then referred to as the Jacobian
coordinates. Hence, to compute Q = kP on an elliptic curve, one first represents
point P = (x1, y1) as (X1 : Y1 : Z1), computes (X2 : Y2 : Z2) = k(X1 : Y1 : Z1),
and recovers Q = (x2, y2) from its projective form.
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Homogeneous coordinates. In homogeneous coordinates, (X : Y : Z) and
(tX : tY : tZ) (with t ∈ K

∗) are two equivalent representations of a same point.
The point at infinity O is represented by (0 : 1 : 0); it is the only point with
its Z-coordinate equal to 0. Putting x = X/Z and y = Y/Z in Eq. (12), the
Weierstraß equation of an elliptic curve becomes

E/K : Y 2Z = X3 + aXZ2 + bZ3 . (12)

The formula to double a point P = (X1 : Y1 : Z1) is 2P = (X3 : Y3 : Z3),
where

X3 = SH, Y3 =W (T −H)− 2M2 and Z3 = S3 (13)

withW = 3X2
1+aZ

2
1 , S = 2Y1Z1,M = Y1S, T = 2X1M andH =W 2−2T . This

requires 12 multiplications. Notice that if a = −3 thenW = 3(X1−Z1)(X1+Z1);
in that case, the number of multiplications decreases to 10. The sum R = (X3 :
Y3 : Z3) of two points P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) (with
P 
= ±Q) is given by

X3 =WX ′
3, 2Y3 = RV −MW 3 and Z3 = Z ′W 3 (14)

with U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, T = U1+U2,W = U1−U2,
M = S1 + S2, R = S1 − S2, Z ′ = Z1Z2, H = TW 2, X ′

3 = −H + Z ′R2 and
V = H − 2X ′

3. The addition of two points can thus be done with only 14
multiplications. If one of the two points has its Z-coordinate equal to 1 then the
number of multiplications decreases to 11.

Jacobian coordinates. The use of Jacobian coordinates is suggested in the
P1363 IEEE Standard [1] because it allows faster arithmetic [2]. In Jacobian
coordinates, also, the representation of points is not unique, (X : Y : Z) and
(t2X : t3Y : tZ) (with t ∈ K

∗) are equivalent representations. The Weierstraß
equation is given by

E/K : Y 2 = X3 + aXZ4 + bZ6 (15)

and the point at infinity is represented by (1 : 1 : 0).
The double of point P = (X1 : Y1 : Z1) is equal to 2P = (X3 : Y3 : Z3)

where

X3 =M2 − 2S, Y3 =M(S −X3)− T and Z3 = 2Y1Z1 (16)

with M = 3X2
1 + aZ4

1 , S = 4X1Y
2
1 and T = 8Y 4

1 . So doubling a point requires
10 multiplications. Here too, we see that the value a = −3 enables to reduce the
number of multiplications; in this case, it decreases to 8.

The sum R = (X3 : Y3 : Z3) of points P = (X1 : Y1 : Z1) and Q = (X2 : Y2 :
Z2) (with P 
= ±Q) is given by

X3 = R2 − TW 2, 2Y3 = RV −MW 3 and Z3 = Z1Z2W (17)
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Table 2. Number of multiplications in addition formulæ.

Addition Doubling
Z2 �= 1 Z2 = 1 a �= −3 a = −3

Homogeneous coord. 14 11 12 10
Jacobian coord. 16 11 10 8
Chudnovsky Jacobian coord. 14 11 11 9
Modified Jacobian coord. 19 14 8 8

with U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z3

2 , S2 = Y2Z3
1 , T = U1+U2,W = U1−U2,

M = S1 + S2, R = S1 − S2 and V = TW 2 − 2X3. An addition requires 16
multiplications. When one of the two points has its Z-coordinate equal to 1 then
an addition requires only 11 multiplications. A slightly different (but equally
efficient) formula for addition can be found in [13]. Using the same notations as
above, the sum R = (X3 : Y3 : Z3) is then given by

X3 = R2 − TW 2, Y3 = −RX3 + (RU1 − S1)W 2 and Z3 = Z1Z2W . (17’)

Mixed coordinates. In the general case, we have seen that Jacobian coordi-
nates offer a faster doubling but a slower addition than homogeneous coordinates
(see Table 2). Chudnovsky and Chudnovsky [2] proposed to internally represent
a point (X : Y : Z) in Jacobian coordinates as a 5-tuple (X,Y, Z, Z2, Z3). In
Chudnovsky Jacobian coordinates, the addition formula for P = (X1 : Y1 : Z1)
and Q = (X2 : Y2 : Z2), respectively represented as (X1, Y1, Z1, Z

2
1 , Z

3
1 ) and

(X2, Y2, Z2, Z
2
2 , Z

3
2 ), remains the same as given by Eq. (17). The advantage is

that the values of Z2
1 , Z

3
1 , Z

2
2 and Z3

2 being available, they do not have to be
computed; only Z2

3 and Z3
3 have to be be computed to represent the result

R = P + Q = (X3 : Y3 : Z3) as the 5-tuple (X3, Y3, Z3, Z
2
3 , Z

3
3 ). Therefore,

Chudnovsky Jacobian coordinates require (4 − 2) = 2 multiplications less than
ordinary Jacobian coordinates to add two points. On the other hand, the dou-
bling is more expensive: it requires (2−1) = 1 multiplication more for computing
R = 2P = (X3 : Y3 : Z3) since Z2

1 has not to be computed (see Eq. (16)) but
Z2
3 and Z3

3 have to.
The above strategy was optimized by Cohen, Miyaji and Ono [4] in order to

provide the fastest known doubling algorithm on a general elliptic curve. With
their coordinates, called modified Jacobian coordinates, a point (X : Y : Z) is
internally represented as a 4-tuple (X,Y, Z, aZ4). A point is doubled with only
8 multiplications whatever the value of parameter a. However, this fast doubling
is done at the expense of a slower addition: 19 multiplications are required to
add two points in the general case and 14 multiplications when one of the two
points has its Z-coordinate equal to 1.

A.2 Elliptic Curves over a Field K with CharK = 2

For fields of characteristic 2, the simplified Weierstraß equation depends on
whether the curve is supersingular or not. For cryptographic applications, we
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are only interested in non-supersingular curves. In that case, it can be shown
that an admissible change of variables yields the simplified Weierstraß equation

E/K : y2 + xy = x3 + ax2 + b (b 
= 0) . (18)

O being the neutral element, we have P+O = O+P = P for any P ∈ E(K).
Let P = (x1, y1) and Q = (x2, y2) ∈ E(K). The inverse of P is −P = (x1, x1 +
y1). If Q = −P then P + Q = O; otherwise the sum P + Q = (x3, y3) is
calculated as follows.
– If P 
= Q then

x3 = λ2 + λ+ x1 + x2 + a , y3 = λ(x1 + x3) + x3 + y1 (19)

with λ =
y1 + y2
x1 + x2

.

– If P = Q then

x3 = λ2 + λ+ a , y3 = x21 + (λ+ 1)x3 (20)

with λ = x1 +
y1
x1

.

An important subclass of elliptic curves has been introduced by Koblitz in [8]:
the Anomalous Binary Curves (or ABC curves in short), sometimes also referred
to as Koblitz curves. These are elliptic curves given by Eq. (18) with b = 1 and
a ∈ {0, 1}. For such curves, the Frobenius endomorphism, τ : (x, y) �→ (x2, y2),
satisfies the characteristic equation

u2 − (−1)1−a u+ 2 = 0 .

Koblitz suggests to speed the computation of Q = kP by noticing that
2P = (−1)1−aτ(P )−τ2(P ). He also suggests to write k as a Frobenius expansion
since scalar multiplication by k is an endomorphism and Z ⊆ Z[τ ] ⊆ End(E).
The ring Z[τ ] is an Euclidean domain with respect to the norm N(r + sτ) =
r2 + (−1)1−a rs + 2s2. Furthermore, as N(τ) = 2, every element r + sτ in Z[τ ]
can be written as a τ -adic non-adjacent form (τ -NAF, in short), that is,

r + sτ =
∑

i

ki τ
i with

{
ki ∈ {−1, 0, 1}
ki · ki+1 = 0 . (21)

As already remarked in [8], the drawback in this method is that the Frobenius
expansion (21) is roughly twice longer than the usual balanced binary expansion
and so, even if the evaluation of τ is very fast, it is not clear that the resulting
method is faster. The drawback was loopholed in [11,14] with the following
observation. We obviously have τn = 1 and thus Q = k′P with k′ = k mod (τn−
1). As N(τn − 1) = #Ea(F2n) ≈ 2n by Hasse’s Theorem, the τ -NAF expression
of k′, k′ =

∑
i k

′
i τ

i, would have a length approximatively equal to that of the
(usual) NAF expression of k. The non-adjacency property (i.e., k′

i · k′
i+1 = 0)

implies that, on average, only one third of the digits are nonzero [6]. Together
with the property that the evaluation of τP is very fast, this yields a very efficient
algorithm for computing Q = kP .
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