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Abstract. Sliding Windows is a general technique for obtaining an ef-
ficient exponentiation scheme. Big Mac is a specific form of attack on a
cryptosystem in which bits of a secret key can be deduced independently,
or almost so, of the others. Here such an attack on an implementation
of the RSA cryptosystem is described. It assumes digit-by-digit compu-
tations are performed sequentially on a single k-bit multiplier and uses
information which leaks through differential power analysis (DPA). With
sufficiently powerful monitoring equipment, only a small number of expo-
nentiations, independent of the key length, is enough to reveal the secret
exponent from unknown plaintext inputs. Since the technique may work
for a single exponentiation, many blinding techniques currently under
consideration may be rendered useless. This is particularly relevant to
implementations with single processors where a digit multiplication can-
not be masked by other simultaneous processing. Moreover, the longer
the key length, the easier the attacks becomes.
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1 Introduction

Timing analysis and differential power analysis (DPA) techniques [8], [9], [2], [1]
show that RSA cryptosystems [13] suffer from implementation weaknesses rather
than lack of algorithmic strength. The secret signing or decryption exponent
d often seems easy to recover from a smart card or other dedicated embedded
system using DPA [8], [1], [3], [10], [4]. These attacks start by averaging a number
of power traces in order to remove dependencies other than the quantity being
sought and to reduce the effect of random noise. For the card described in [10]
which uses the standard square and multiply algorithm for exponentiation, this
immediately reveals the exponent because of the different shape of power traces
for squarings and multiplications.

The power-related property on which the current attack is based depends on
the fact that switching a gate consumes more power than not doing so. Generally,
these tiny effects are submerged in too many other data dependent variations
to be easily extracted. However, here we develop a novel way of combining sec-
tions of power traces which enhances the effect into a potentially very powerful
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technique. We show that different multiplicands can be distinguished. As a re-
sult, the so-called m-ary and sliding windows methods of exponentiation [6], [7]
become vulnerable as well as the square-and-multiply method.

A generally touted solution to this problem is to use different exponents with
a randomly generated component on each decryption. In particular, Kocher, [8]
§10, suggests using d+rφ(M) as the decryption key instead of d where M is the
modulus and r is a random number generated anew for each decryption. This
blinding certainly hides the exponent if averaging over a number of different
decryptions has to be performed in order to reduce noise to levels at which the
data dependencies are revealed. However, our simulations suggest that combining
different sections of the power trace for just a single exponentiation may be
sufficient to reveal the exponent, thereby negating the value of this type of
blinding. Without such blinding, the technique certainly reduces the sample set
that needs to be considered for DPA to be successful and implies that some sort
of blinding should be a requirement in relevant cryptographic standards.

A Big Mac Attack on a secret key d is a method which enables d to be revealed
bit by bit by nibbling at sections of d in any order. The implied independence
of the derivation of different bits means that the total data and processing time
required are only linear in the key length. This contrasts strongly with the math-
ematical strength of RSA, which is believed to be exponential in the key length.
A well known brand product is so generously large as to be impossible to have
a bite taken out of the whole at one go − like the method of attack, it must be
nibbled at and consumed by tackling individual layers one by one in any order.
Using DPA or other source of side-channel leakage, a similar arbitrary order
of considering bits can eventually reveal the whole key, as we demonstrate. An
example of another such attack, using timing information, was given in [16].

The context in which the attack may be mounted is a typical one for small
embedded systems such as smart cards. We just require that a single k-bit mul-
tiplier be used to perform the RSA exponentiations in a digit sequential fashion,
preferably with no other concurrent processing in progress.

2 Notation

An RSA cryptosystem (resp. signature scheme) over the integers [13] consists of
a modulus M = PQ, which is the product of two large primes, and two keys
d and e satisfying Ade ≡ A modM . Message blocks A satisfying 0 ≤ A < M
are encrypted (resp. verified) with C = Ae modM and decrypted (resp. signed)
using A = Cd modM . The key e is generally chosen small with few non-zero
bits (e.g. a Fermat prime, such as 3 or 17) so that encryption is relatively fast.
The key d must be picked to satisfy de ≡ 1 modφ(M) and therefore it usually
has length comparable to M . The owner of the cryptosystem publishes M and
e but keeps secret the factorization of M and the key d. Breaking the system
means discovering d and is equivalent to factoring M , which is computationally
infeasible for the size of primes used.
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The computation of Ad modM is characterised by two main processes: mod-
ular multiplication and exponentiation. Our main assumption is that the im-
plementation has a k-bit architecture and uses a single k×k-bit multiplier to
compute modular products (A×B) modM . So, except for the exponents d and
e, each number X has a representation of the form X =

∑n−1
i=0 xir

i where r = 2k

is the radix or base of the representation, the coefficients xi are its digits, and n
is the number of digits required. The precise form or range of these digits is not
important but we will see later that the larger n is, or the smaller k is, the more
likely the attack is to succeed. The method is easily adapted to cases where the
digit multiplier is not square.

2.1 Exponentiation

Exponentiation is often performed using the m-ary method [6] for which the
exponent uses a representation with base m (here assumed to be a power of 2):
d =

∑t−1
i=0 dim

i. The powers Ci modM (i = 1,2,...,m−1) are pre-computed and
allocated to table entries C(i). Then a partial product is repeatedly raised to the
power m by squaring and the pre-computed power of C corresponding to the
next digit of d multiplied in:

The m-ary (Modular) Exponentiation Algorithm

{ Pre-condition: d =
∑t−1

i=0 dim
i }

C(1) := C ;
For i := 2 to m-1 do

C(i) := C(i−1)×C mod M ;
P := C(dt−1) ;
For i := t-2 downto 0 do
Begin

P := Pm mod M ;
If di �= 0 then P := P×C(di) mod M ;

End ;
{ Post-condition: P = Cd modM }

The sliding window technique [7] is a straightforward generalisation of this
which makes more efficient use of the presence of zero bits in the exponent.
It employs a mixed basis representation of the exponent, using powers of 2
and m. Only the odd powers C(i) need to be pre-computed and stored. The
attack described here applies identically to this technique apart from the obvious
modifications as a result of slightly different pre-computations, so it suffices to
illustrate the ideas using the m-ary method.

Hardware power consumption depends critically on bus movement involved
in low level operations such as fetching instructions, reading from and writing
to memory, etc. Since the long integer multiplications take a large number of
cycles to perform and a large number of consecutive multiplications are executed,
attackers are usually able to establish correctly the boundaries in the power
traces between the operations in the algorithm above.
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2.2 Modular Multiplication

Each long integer multiplication or squaring consists of a large number of indi-
vidual digit-by-digit multiplications. Normally the modular reductions are inter-
leaved within the iterations of the multiplication:

Classical Modular Multiplication Algorithm:

{ Pre-condition: A =
∑n−1

i=0 air
i }

R := 0 ;
For i := n-1 downto 0 do
Begin

R := r×R + ai×B ;
qi := R div M ;
R := R - qi×M ;

End ;
{ Post-condition: R ≡ (A×B) modM }

Montgomery’s version of long integer modular multiplication [11] has a similar
structure, just reversing the order of processing the digits ai.

Both the classical algorithm above and Montgomery’s version are usually
implemented in a way which makes them behave identically as far as this attack
is concerned. The main variation worth highlighting is that for each long integer
multiplication of the exponentiation either input A or B may be chosen as the
pre-computed power of the initial ciphertext C. For convenience, we assume this
power of C is the first argument, namely A, in the above code. However, to avoid
unnecessary movement of data, the hardware must usually choose the same order
for every multiplication. Then it is easy for an attacker to try both possibilities
and select the one which provides the expected correlations.

3 Selecting & Averaging the Power Traces for Big Mac

The attack requires side channel leakage which has a dependency on the data
being processed by the multiplier. Apart from measuring power consumption
of the whole chip [4], the methods of Gandolfi et al. [5] could be directed to
measuring EMR from the multiplier itself.

Assume that discrete sampling of the cryptographic device provides a power
(or EMR) trace function tr : Z → R for the pre-computations and exponenti-
ation for a single decryption or signing. The definition of tr outside this com-
putation interval is irrelevant here. Suppose further that the regular sampling
provides a non-zero number of values for every digit multiplication. The more
frequent the sampling, the better the results obtained for this attack, especially
if a number of measurements can be made during each clock cycle. Typically,
the standard smart card clock runs at 3.57 MHz and the current is sampled
at 200 MHz, yielding a ratio of nearly 26 to 1. This current is recorded using
one or two bytes per measurement. As far as possible, such sampling should be
synchronised to take place at the same points of each clock cycle.
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Sommer [12] noted that certain points in the clock cycle have much greater
value for determining data dependencies than others. Initially, as gates are
switched along paths in the multiplier, the current will be higher and be depend-
ent on the activity. However, at the end of a clock cycle the combinational logic
should have stabilised, and it will have a much lower data dependent contribu-
tion. We are only interested in points with data dependent power consumption.
Assume that several such points have been identified in the clock cycle, and
we are able to take a weighted average of them in the trace so that, as far as
possible, the data dependent contribution to the power represents the number
of gates being switched and any measurement errors are averaged out. All other
points must be discarded from the trace, leaving only data dependent ones.

The main loop of the long integer modular multiplication algorithm contains
a repetition of k-bit multiply-accumulate digit operations of the form

rj + r×carry := rj−1 + ai×bj + carry (0 ≤ j < n)

which take place in a single cycle. It is only the sub-traces for these operations
that are used in the attack. The sections of the trace corresponding to these
can be identified easily because, by using the multiplier, they differ substantially
from sections corresponding to other operations.

Suppose we have already distinguished squares from multiplies and wish to
establish the value of the exponent digit, say ds, associated with the sth long
integer multiplication. Let trsij denote the function obtained by setting tr to
0 outside the sub-interval during which the attacker expects the digit product
ai×bj to be computed within the sth multiplication, and then translating that
subinterval to [iτ , (i+1)τ−1] where τ is the common number of sample points
for each such digit-by-digit multiply-accumulate. (After deleting irrelevant points
and averaging as necessary, we may well have reduced τ to 1.)

Assuming, as stated, that A is the input which is a pre-computed power of
C, define trsi = 1

n

∑n−1
j=0 trsij to be the function given by averaging the trsij

over all j. So trsi depends on the single digit ai of A but all the digits bj and
rj of essentially random numbers B and R, and some carries. This averaging
should produce a function trsi for which the random variable associated with the
value at any given point has contributions to the variance from its dependence
on B and from random noise, both of which are only 1

n times those for ai

and for equivalent positions in tr. Because the multiply-accumulate operation
uses k times as much hardware in ai- and bj-dependent computations than for
accumulating the carry and rj−1 digits, the contributions from rj−1 and the
carry are certainly lower, perhaps by k times, than that from B. Hence the
clearest correlation that trsi should exhibit will be with the value of ai.

This averaging of the traces over the digits of B replaces the usual DPA
averaging of traces over a number of different exponentiations. On the reasonable
assumption that B is sufficiently random and has a number of digits, the resulting
average trace will then have little dependence on B. (If the pre-computed power
is the B input, we sum over i instead of j to obtain a result which again depends
on a single digit of the pre-computed power of C.)
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Lastly, define trs : Z→ R by trs =
∑n−1

i=0 trsi. As trs is the concatenation of
the non-zero sections of the trsi, it has a non-zero definition on [0, nτ−1] whose
strongest data dependency is through the pre-computed argument A of the sth
multiplication, i.e. the power of C corresponding to the exponent digit ds. The
obvious question to ask is whether this dependency is strong enough to identify
ds since then the secret exponent d can be discovered.

4 Simulation

In order to investigate the feasibility of the attack, a simple k-bit multiplier was
simulated. It was built mostly from standard 3-to-2 full adders with a carry
propagator and had a variable size k. This was used to count gate switching in
the combinational logic only, with no account being taken of changes in registers
which might contribute to power use.

Data-dependent power usage is immediately apparent when gate counts are
partitioned into subsets according to the Hamming weight of the two inputs.
There is a very clear increase in the number of gate switchings as the Hamming
weight of either input is increased. Tables of these values displayed a difference of
a little over k gate changes between adjacent cells in the centre of the table, where
both Hamming weights are approximately k/2 and most input pairs are clus-
tered. Except for extreme Hamming weights, the table entries were almost linear
in each Hamming weight − sufficiently so to explain and justify the arguments
below. Moreover, the results were essentially symmetrical, i.e. the same num-
ber of gates were switched on average when the two inputs were interchanged.
This occurred under several configurations even though no attempt was made
to balance the number of gates switched.

For a variety of values of k, modulus bit lengths and exponent basesm, a num-
ber of random sets of powers {C(1), C(2), ..., C(m−1)} were generated. These were
used as input A of the modular multiplier and, to simulate the pre-comuptations,
multiplied by a random long integer B to create a trace tri associated with each
C(i). The trace consisted of a vector of gate switch counts for each digit of C(i).
These individual counts were the sum of the gate switch counts for each product
of the digit of C(i) by a digit of B. The traces then corresponded to the power
traces trs. With the component from B averaged, the trace tri for each C(i) cor-
responded closely to the vector of true average gate switch counts for the digits
of C(i). In particular, this meant the trace was reasonably characteristic of C(i)

and its elements were closely related to the Hamming weights of the digits.
To simulate exponentiation multiplications, another random long integer B′

was chosen, multiplied by a random member of {C(1), C(2), ..., C(m−1)}, and the
trace trB′ of gate switch counts created. Like trB , it was close to the true average
gate switch counts for whichever C(i) had been selected. The trace was matched
up with the traces tri of each C(i). Specifically, the Euclidean distance between
it and every tri was computed, and the closest chosen to predict i.

The attack simply requires this prediction to be correct. For many typical
values of k, n and m, the attack invariably succeeded. Table 1 gives the means
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Table 1. Gate Switch Statistics for 512-bit Modulus with m = 4.

Multiplier Size k = 64 k = 32 k = 24 k = 16 k = 8

Av to nearest 4973 2709 2538 2428 2245
SD to nearest 2582 1482 1334 1183 1024
Av to others 17981 24312 19834 23475 19793
SD to others 1232 513 408 481 217

and standard deviations for i) the distances between trB′ and the correct tri and
ii) trB′ and the incorrect tri. The difference between the two cases is startlingly
large. Table 2 shows low error frequencies even in the worst cases, namely for
the largest k and smallest n. If the number of bits in the modulus length is
fixed, then the average distance to the nearest trace increases as k increases so
that difference between nearest and non-nearest traces decreases. For fixed k,
increasing the size of the modulus provides more digits over which to average
and more elements in the vector, thereby improving the ability to determine the
multiplier correctly. As one would expect, increasing m just makes the nearest
trace closer and increases the variance in the distances to the rest.

Table 2. Gate Switch Statistics for 32-bit multiplier with m = 8.

Modulus Length 256 bits 384 bits 512 bits 768 bits 1024 bits

Av to nearest 1529 2366 3750 4501 6246
SD to nearest 885 1403 2386 2535 3612
Av to others 5890 11753 17896 32594 53070
SD to others 1108 2412 2279 4646 4581
%age errors 0.9284 0.1155 0.2819 0.0000 0.0000

Squares and random products were distinguishable from multiplications by a
C(i) because their traces were not close to any tri. Indeed, the statistics for each
were similar to the non-nearest table entries. Thus, all long integer multiplicative
operations, including squares, could normally be correctly distinguished in the
simulation and hence the secret key recovered.

5 Distances between Power Traces

Suppose trs1 and trs2 are a pair of power traces constructed as above for the
s1th and s2th multiplications of the exponentiation. As the traces are real-valued
functions on the integer subinterval [0, nτ−1], they represent points in Rnτ .
Define d to be the Euclidean metric on Rnτ and let d(s1, s2) be the distance
between the points defined by trs1 and trs2. One advantage of such a metric
is that places where the traces differ most contribute much more highly to the
distance between traces than places with the smallest differences. This should
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help to emphasise the contribution from parameter A, which is approximately
n times the contribution from other parameters. It is important to omit from
this metric the points without a noticable data-dependent contribution as they
reduce the visibility of the data dependence which needs to be observed.

For equal exponent digits ds1 = ds2 the corresponding multiplications share
the same first argument. Since there are no other strong data dependencies, the
value of d(s1, s2) should be small, corresponding purely to noise and variation
from the average of the digits appearing in the other arguments. For different
exponent digits ds1 �= ds2 the value of d(s1, s2) should be noticeably larger
because of the greater dependence on the first arguments, which are different.

According to the simulation, the data dependent contribution to power con-
sumption is roughly proportional to the Hamming weight of the arguments. So
we can expect the distance between two traces to be approximately related to
the distance between the vectors consisting of the Hamming weights of the digits
of the multipliers A. Since the Hamming weights of digits are distributed bino-
mially, it is easy to obtain statistics for the random variable associated with the
distance between two such vectors and see that it has very similar behaviour to
that observed in the simulation. Hence this gives an accurate guide to the effect
of changing any parameters and enables accurate error predictions to be made.
In particular, it justifies the observation that distances between pair of traces
cluster around two points, one of which is 0.

6 Identifying Equal Exponent Digits

Next we present an algorithm for partitioning the set T = {0, 1, 2, ..., t−1} of
exponent digit indices into subsets for which the corresponding digits of d are the
same. This partition, ℘, has to define m subsets, one for each (exponent) digit
value in base m. The subset containing the zero exponent digits should already
have been identified by using the ability to distinguish between (long integer)
squares and multiplies to observe which exponent digits have no corresponding
muliplication in the exponentiation algorithm. For the other digit subsets, the
association of each subset with a particular non-zero base-m digit is performed
in the next section.

The algorithm puts the indices either into a new subset of the partition, or
into the subset of indices which is “nearest” in an obvious sense: the distance
between a single point s and a non-empty set of points S is defined here as
d(s, S̄) where S̄ is the centroid of S, i.e. S̄ = |S|−1 ∑

s′∈S s
′.

For each pair of (non-zero) exponentiation digits with indices s1 and s2, ar-
range the distances d(s1, s2) into descending order, and set up m−1 buckets to
receive sets of indices, one for each exponent digit value. Then consider the pairs
(s1, s2) in order of decreasing distance between their two traces:

i) If both indices are in different buckets, then move to the next pair.
ii) If there is one unassociated index and an empty bucket then place that index
in the empty bucket and again move on to the next pair.
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iii) If neither index is associated with a bucket and there are (at least) two empty
buckets, put the indices into separate empty buckets, and move to the next pair.
iv) If both indices are in the same bucket, compute the distances of s1 and s2
from the set of indices in each bucket. If both are already in the nearest bucket,
move on to the next pair, but otherwise, move s1 and s2 into their nearest
buckets, moving the nearer one first and recomputing distances before moving
the second. Then move to the next pair.
v) If there is an unassociated index and no empty bucket, then put the new
index in a temporary extra bucket, compute the distances between every pair of
buckets and combine the pair of buckets which are the shortest distance apart
to restore the original number of buckets. Move to the next pair.
vi) If neither index is associated but there is only one empty bucket, compute
the distances from s1 and s2 to each non-empty bucket. If s1 is the nearer to its
nearest bucket, then put s1 into that bucket and s2 into the remaining empty
bucket. Otherwise, put s2 into its nearest bucket and s1 into the empty bucket.
Then move on to the next pair.
vii) If neither index is associated and there are no empty buckets, then perform
(v) for both s1 and s2 individually.

With perfect data, the algorithm should first treat all the pairs (s1, s2) which
correspond to different exponent digits and correctly put them into different
buckets or find that they are already in different buckets. Then, from some
point on, all pairs correspond to equal digits and so the indices should be found
in the same bucket. The algorithm does not place indices in the same bucket
until there are no empty buckets left. So it is likely for indices with the same
exponent digit to be initially spread over several buckets. These buckets then
need to be coalesced to provide empty buckets for unassociated indices. Process
(v) does this. Once there are no empty buckets left, then action (iv) is used to
ensure that the best assignments have been made previously.

With perfect information, each element of T can be assigned to one of the
partition subsets by calculating at most m−1 distances. So fewer than mt dis-
tances are required to establish the partition correctly if all distances are clearly
and correctly distinguished as small or not. Hence, with up to t(t−1)/2 pairs in
total, there is considerable extra information to improve and confirm the con-
struction of ℘ as it progresses. However, in case of error, all assignments can be
ranked using distances to buckets, and the most likely tried first for correctness.

7 Associating Digit Values with Exponent Positions

The partition ℘ yields (m−1)! possibilities for the key d, corresponding to
the possible associations1 of non-zero digits from 1 to m−1 with the m−1
1 We have not assumed any knowledge of the modulus M . However, as Adi Shamir
pointed out during the presentation, if M and e are known, then in this section one
can probably make the correct association by using the fact that the bits of the top
half of the exponent coincide with those of a small multiple of M .
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different non-zero equivalence classes for the induced equivalence relation on
T = {0, 1, 2, ..., t−1}. However, the pre-computation of the powers C(i) for
i = 1, 2, ..., m−1 means that we have a known multiplication involving C(i)

for each exponent digit except 0 and m−1, namely C(i+1) = C(i)×C modM in
the case of m-ary exponentiation and C(i+2) = C(i)×C(2) modM in the case of
sliding windows.

Following the algorithm of the previous section, each trace tri correspond-
ing to the pre-computational multiplication with first argument A = C(i) is
associated with its nearest bucket of exponent digit indices. This bucket is then
labelled “i” and should correspond to exponent digit i. Ideally, this should not
associate two labels with one bucket, and should leave one bucket unlabelled.
This last bucket is labelled with the remaining exponent digit, namely m−1.

If inconsistencies arise from this labelling, then it is easy to rank each possible
labelling using distances from each tri to each bucket. Each labelling can be tried
in turn until overall consistency in achieved. As the m-ary method uses significant
memory when used in an embedded cryptographic device, m is usually very
small. So all (m−1)! possibilities could be tested for correctness if necessary.

The trace-averaging process depends on the randomness of the B input and
its independence from the A input in order to obtain a result which characterises
the A input. During the pre-computations, both inputs are powers of the initial
text C and therefore not independent of each other. However, since 3 is generally
regarded as an acceptable encryption exponent, we can assume that the powers
C(i) are sufficiently independent of C when i contains an odd divisor. Then the
traces tri should be acceptable for every i which is not a power of 2. Assuming
also that problems with powers of 2 decrease as the power increases, only traces
for the exponent digits 1 and 2 might display dependency problems.

For digit 1, the power trace for C(2) = C×C modM depends on both argu-
ments. We present two solutions to this. First, one can expect to identify which
subtraces corresponding to the digit products a×a. They can be excluded from
the averaged trace to obtain a new trace which at each point depends on a sin-
gle digit of C and some other effectively independent, random digits. Such a
revised trace behaves like the other averaged trace functions. Alternatively, we
may assume m > 2 since if m = 2 there is nothing to decide: all the non-zero
exponent digits must be 1. Each product C(i+1) = C(i)×C modM involves C as
the second argument rather than the first. Thus, for any one of these multiplica-
tions, one can average the traces in a different way, this time summing over the
different first digits while the second is kept fixed, rather than vice versa. Then
for m > 2 the last such multiplication gives an alternative to the initial squaring
used in the first method for providing a trace for C. If m > 4 then the remarks
above about 3 as an encryption exponent establish that the two arguments are
effectively independent when the last multiplication is used for a trace for C.
However, if m = 4 then this multiplication is the product of C and C(2) and
there may be cause for concern. We remark on this potential problem next, but
otherwise it is reasonable to assume that a typical trace can be obtained for the
class of the exponent digit 1 from the pre-computation multiplications.
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The trace associated with digit 2 is derived from the product of C(2) and C.
Using the second alternative above, this may also be the source of the trace as-
sociated with digit 1. However, the dependence between these arguments should
be very weak since an essentially random multiple of M has been subtracted
from C2 to obtain C(2). So a usable trace should also be obtained for digit 2.

8 Big Mac

By omitting the cross-checking afforded by comparing multiplications of the
exponentiation, we obtain the Big Mac attack in which exponent digits are de-
termined independently, as in the simulation section. Each trace trs from a
multiplication in the exponentiation is compared with each trace tri from the
pre-computations and the nearest is selected to determine the exponent digit
at position s. When no pre-computation trace is close to trs then digit m−1
(for which there is no pre-computation trace) is assigned. All t exponent dig-
its can then be recovered in t times the time required for recovering one digit.
Moreover, apart from pre-computations, only the power trace for a single multi-
plication is used to recover a single exponent digit. So t times the data, i.e. the
whole exponentiation record, is required to recover all digits.

More precisely, suppose k and m are fixed and, as usual, t ≈ nk/ log2m.
We are interested in what happens when the bit length nk of the arguments is
varied. For each long integer multiplication the number of k-bit multiplications is
O(t2). But, for a common level of accuracy, all averaged traces could be compiled
from a fixed number of these digit-by-digit multiplications which is independent
of t. This would use only constant data per exponent digit and consequently
O(t) data for the whole attack. If the full quantity of data is used, the traces trs

become more accurate as t (or nk) increases. Furthermore, if every pair (s1, s2) is
considered, then more cross-checking is possible as t increases. Hence, the attack
becomes much more viable for larger keys!

9 Using a Set of Exponentiations

The method of attack described so far has been developed from the power trace
associated with a single exponentiation. It depended on a reasonable separation
between the powers of the initial input C when measured using the Euclidean
metric on the associated vectors of digit Hamming weights. If any powers of
C are too closely related the attack may fail to work. However, one could wait
patiently for an input C where the Hamming weights of the pre-computed powers
are sufficiently widely spread. For large n with small m, this should not take long.

To benefit from traces from a set of exponentiations, it is important not to
average the traces. Instead, if the exponent is the same in each case, the sub-
traces for each multiplication need to be concatenated to provide longer vectors
for comparison. Alternatively, an observation matrix can be constructed with a
row for each exponentiation and a column for each exponent digit index, and
containing the best estimate for the exponent digit. Repeated use of the same
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digits at the same exponentiation points then leads to corresponding correlations
between columns of this matrix. Standard statistical techniques should then
reveal the exponent.

10 Some Final Details

10.1 Separating Squares and Multiplies

Finally, we consider some detail which, for the sake of simplicity, was left out
of the above arguments. The first concerns differentiating squares from multi-
plies. The simulation section noted that squares behaved like multiplications
by C(m−1), having no nearest multiplier. Therefore using distances from pre-
multiplication traces to classify all long integer operations will place both these
types in the same bucket. Since each multiplication must be preceded and fol-
lowed by r squarings, the determination of which is which should be straight-
forward. Moreover, the multiplications by C(m−1) should all be close to each
other, whilst the squarings should not. Indeed, this also enables the case m = 2
to be cracked. Thus, if the attack separates the different multipliers, it certainly
also separates the squares.

10.2 Initial Exponent Digits

The next omission relates to the initial few multiplications of the exponentiation
after any pre-computation has taken place. The first value assigned to P in
the exponentiation algorithm of §2.1 corresponds to the first (non-zero) digit
of d and involves no multiplication. Hence the method here appears to yield
no information about it. Thus there may be m−1 times more possibilities for
d than estimated above, one for each choice of the first non-zero digit of d.
This is followed by r squarings. The first is of C(d1). However, a trace for C(d1)

can be extracted in the same way as described in §7 for obtaining a trace of
C from computing C(2). This should reveal d1 using the usual nearest bucket
method. Once the multiplications for P do start, the B argument of the modular
multiplication is generally no longer sufficiently closely related to influence the
power trace adversely. The attack will therefore work successfully from this point
on. The only noticeable exception is the first multiplication (as opposed to a
squaring) when m = 2 and the second digit of d is 1.

10.3 Zero Multiplier Digits

The last concern is if zero digits (base r) occur in the inputs to a modular
multiplication and optimization causes the associated digit multiplications to
be skipped. To avoid timing attacks, this should probably not occur. However,
with typical values such as r ≈ 232, n ≈ 25, m = 4 and t ≈ 28 for 1024-bit
keys, we have about mn = 27 digits among the pre-computed powers, and about
nt(m−1)/m = 1.5×212 digits among the arguments B of the multiplications
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during an exponentiation. So the chances of encountering a digit 0 are small
(≈ nt/r). In the unlikely event of a zero, the analysis should become much
easier. If the zero digit lies in a pre-computed power, timing analysis immediately
reveals which multiplications use that power. Otherwise the zero digit occurs in
the B argument of a multiplication and one simply defines trsi by averaging the
traces over the non-zero digits of B. At worst, another decryption trace might
be obtained to avoid the problem altogether.

10.4 Chinese Remainder Theorem

Implementations using the Chinese Remainder Theorem can be attacked in the
same way because having a single digit multiplier forces the two exponentiations
to be performed sequentially. The two exponents are then recovered one after
the other in the way described above, yielding the secret key.

11 Conclusion

An unknown plaintext DPA attack on a single RSA exponentiation has been
described where the implementation uses a single k-bit multiplier. This may well
prove successful, particularly against a RISC processor where no other operations
can be carried out to mask the multiplier’s use of power. The attack becomes
easier to perform accurately as the key length is increased because more useful
data is available. For fixed k and using all available data, the running time is
proportional to the key length cubed.

The attacker waits for a sufficiently helpful exponentiation, and then uses
a careful and novel selection and combination of sections from a single power
trace to recover secret decryption keys. If the same exponent is reused the attack
becomes easier. Blinding keys is no defence if the attack succeeds on a single
exponentiation. Then other methods are required. One solution might be to keep
a processor/co-processor architecture where the two processes mask each other.
Alternatively, a pipelined k-bit multiplier with several stages might be used,
or CRT performed with the exponentiations using two separate multipliers in
parallel. Yet another solution might be to use a systolic modular multiplier [15]
where many unrelated digit multiplications are computed in parallel.

Certainly one concludes that performing a single, digit-level operation at one
time, such as a multiplication, leads to a potentially unsafe implementation of
the RSA cryptosystem.
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