NTRU in Constrained Devices

Daniel V. Bailey'?, Daniel Coffin?, Adam Elbirt>#, Joseph H. Silverman?®?,
and Adam D. Woodbury*2

L Computer Science Department, Brown University
2 NTRU Cryptosystems, Inc.
3 Mathematics Department, Brown University
4 Electrical and Computer Engineering Department, Worcester Polytechnic Institute

Abstract. The growing connectivity offered by constrained computing
devices signals a critical need for public-key cryptography in such envi-
ronments. By their nature, however, public-key systems have been dif-
ficult to implement in systems with limited computational power. The
NTRU public-key cryptosystem addresses this problem by offering bet-
ter computational performance than previous practical systems. The ef-
ficiency of NTRU is applied to a wide variety of constrained devices in
this paper, including the Palm Computing Platform, Advanced RISC
Machines ARM7TDMI, the Research in Motion pager, and finally, the
Xilinx Virtex 1000 family of FPGAs. On each of these platforms, NTRU
offers exceptional performance, enabling a new range of applications to
make use of the power of public-key cryptography.

1 Motivation

Since their introduction in the 1970s, the development of microprocessors and
public-key cryptosystems has been intervolved. Ever faster, cheaper, better mi-
croprocessors have allowed the use of public-key cryptosystems in a dizzying
array of applications.

One of the more popular of these is the use of desktop personal computers
to mediate the purchase of goods and services on the Internet. For years now,
desktop computers have offered adequate performance to make the arduous cal-
culations involved in traditional public-key cryptosystems invisible to the casual
user. This performance has resulted in the ubiquitous deployment of crypto-
enabled web browsers such as Microsoft’s Internet Explorer on desktop PCs.

Conversely, the need for public-key cryptography has led microprocessor ven-
dors to add functionality to their products. Desktop eCommerce led Intel to add
random-number generation and unique IDs to the Pentium/III processor. The
need for secure authentication in GSM cellular telephone applications has re-
sulted in 8-bit microcontrollers with custom hardware to accelerate modular
exponentiation.

The number of embedded systems that require cryptography is about to
explode. Just as the ubiquitous PC networking made possible by TCP/IP led
to public-key crypto libraries in desktop web browsers, wireless networking is

C.K. Kog, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 262-B72, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

NTRU in Constrained Devices 263

set to offer universal connectivity to a diverse array of computing devices. From
washing machines to cell phones, televisions to automobiles, wireless networking
standards such as Bluetooth and TEEE 802.11b will bring networking to devices
that previously stood alone. As we’ve seen on the desktop, with communications
comes the need for security, and so for public-key cryptosystems.

In contrast to their desktop-bound, powerful brethren, these embedded de-
vices offer severely constrained computing capacity. Power, memory, and CPU
cycles all must be judiciously conserved.

The computational efficiency of NTRU allows implementors to build ef-
ficient wirelessly-communicating embedded systems. Furthermore, algorithmic
improvements introduced in [4] augment the original construction to allow for
greater computational savings.

In this paper, we apply these results in the context of embedded systems.
We report on fast NTRU implementations for the Palm Computing Platform,
the Research in Motion pager, the Advanced RISC Machines ARM7TDMI, and
finally field-programmable gate arrays (FPGAs).

2 The NTRU Public-Key Cryptosystem

NTRU is a public-key cryptosystem based on the Shortest Vector Problem in
a lattice. Lattices find application in pure and applied mathematics, computer
science, physics, and cryptography. In particular, the SVP has been intensively
studied for more than one hundred years for its use in these and other areas of
mathematics and science. Theory and experimentation [2] suggest the SVP is
difficult in lattices of very high dimension. Such instances of the SVP form the
basis of NTRU.

2.1 Basic Setup

NTRU is best described using the ring of polynomials
R=Z[X]/(XN —1).

These are polynomials with integer coefficients

a(X)=ao+ a1 X +asX?+--+ an_1 XN-1

that are multiplied together using the extra rule X = 1. So the product
¢(X) =a(X) xb(X)

is given by

¢ = agby +arbg_1+ - +an_1bry1 = Xitj = k mod N a;bj.
In particular, if we write a(X),b(X), and ¢(X) as vectors
a=lag,a1, - ,an—1], b=[bo,b1,--- ,by_1], ¢=[co,c1, - ,cn_1],

then ¢ = a * b is the usual discrete convolution product of two vectors.
To quickly sum up the other relevant basic properties of NTRU:

264 D.V. Bailey et al.

1. NTRU uses three public parameters (N, p,q) with ged(p, q) = 1.

2. Typical parameter sets that yield security levels similar to 1024-bit RSA
and 4096-bit RSA respectively are (N,p,q) = (251,3,128) and (N,p,q) =
(503, 3,256).

3. Coefficients of polynomials are reduced modulo p and/or modulo g.

4. The inverse of a(X) mod ¢ is the polynomial A(X) € R satisfying a(X) *
A(X) =1mod gq.

The inverse (if it exists) is easily computed using the Extended Euclidean
Algorithm. Inverses are only needed for key generation.

2.2 Key Generation

Choose random polynomials F, g € R with small coefficients and set f = 1+ pF.
Compute the polynomial

h=gx*f'modgq.
The public key is h and the private key is f.

2.3 Encryption

The plaintext m is a polynomial with coefficients taken mod p. Choose a random
polynomial r with small coefficients. The ciphertext is

e =pr*h+mmod q.

2.4 Decryption

Compute

a=ex fmodgq,
choosing the coefficients of a to satisfy A < a; < A + q. The value of A is fixed
and is determined by a simple formula depending on the other parameters. Then
a mod p is equal to the plaintext m.

2.5 Why NTRU Works
The decryption process yields the polynomial
a=ex fmodq
= (pr+xh+m)* f mod g (since e = pr* h +m)
=prxg+mx* fmodgq (since hx f=gf —1xf=g)

The coefficients of r, g,m, and f are small, so the coefficients of
prxg+mx f

will lie in an interval of length less than g. Choosing the appropriate interval,
we recover
a=prxg+mx*f=prxg+mx(l+pF)

exactly, not merely modulo ¢. Then reduction modulo p yields a = m mod p.

NTRU in Constrained Devices 265

3 NTRU Algorithmic Optimizations

3.1 Choice of p

If the coefficients of the polynomial pr+g+m= f do not lie in an interval of length
at most ¢, then decryption will not work. Appropriate choices of parameters
reduce this to a very low probability, which may be reduced even further by the
following observation.

The discussion above assumes that p is an integer, where we recall that p
and ¢ must be relatively prime. However, as noted in [4], there is no particular
reason that p must be an integer. It could instead be a polynomial, provided the
ideals generated by p and ¢ are relatively prime in the ring R. Our first choice
for such a polynomial would naturally be a binomial X* + 1. Unfortunately, the
elements

XF+1and XY —1 and 128

are not relatively prime in Z[X].
The next natural candidate is p = X + 2. It is simple to verify the relative
primality of p and ¢ in this case:

XN 1 =XN 42N oV 1 = (XN +2V)—128-2N°7 1.

As noted in [T] and [4], operations modulo binomials are efficiently computed.
Thus p = X + 2 and ¢ = 128 form the basis for a very efficient implemention of
NTRU.

3.2 Polynomials of Low Hamming Weight

The most time consuming part of NTRU encryption is computation of the
product r(X) * h(X) mod g¢. Similarly, the most time consuming part of NTRU
decryption is computation of the product f(X) x e(X) mod ¢g. The polynomi-
als h(X) and e(X) have coefficients that are more or less randomly distributed
modulo ¢, while one normally takes r(X) and f(X) to have binary (i.e., 0 or 1)
or ternary (i.e., —1, 0, or 1) coefficients.

Suppose that 7(X) is a binary polynomial with d ones. Then computation
of the product r(X) * h(X) mod ¢ requires approximately dN operations, where
one operation is an addition and a remainder modulo g.

A common trick (see [7] for instance) is to choose a polynomial of low Ham-
ming weight. We extend this idea by taking a product of low Hamming weight
polynomials as suggested in [5]. To this end, we write 7(X) = r(X)ro(X),
where r; and 7y are binary polynomials with d; and ds ones respectively. Then
r(X) will have approximately didy ones, a few twos, and rarely a three. Rather
than computing 7(X) % h(X) mod q as (ry * ra) % h, it is far more efficient to
compute it as

r(X) * h(X) = ri(X) * (r2(X) = h(X)),

which requires only (d; + d2) N operations. Thus the computational complexity
is proportional to the sum of d; and ds.

266 D.V. Bailey et al.

On the other hand, the search space for the pair of polynomials (r1,72) has
size approximately (CJZ j) (é\; j), so is proportional to the product of the 7y
search space and the ro search space. In practice, there are meet-in-the-middle
approaches that reduce the size of the search space, see [5] for details and secu-
rity considerations. Further, the number of nonzero coefficients in 71 (X)r2(X) is
essentially the product d;ds. Thus one might say that using a product r = 179
requires computation proportional to the sum dy + do while giving security pro-
portional to the product dids. In rough terms, this explains why one obtains
significant performance gains without changing the level of security. In the com-
mon case of N = 251 and ¢ = 128, it is common to set r = ry * ro + 73, where
each of r1,r9,r3 is binary with 8 nonzero coefficients.

Given the above, multiplication involving the private key f(X) is aided by
writing

FX) =1+ px (f1(X) * f2(X) + f3(X)).

3.3 A Fast Convolution Algorithm in Software

Under the assumption that the coefficients of f1, f2, f3 are binary, we thus have
an efficient algorithm for ring multiplication in software. The central idea is that
rather than storing f or the individual f; polynomials as N-element arrays in
memory, it suffices to store those array offsets whose locations correspond to a
nonzero entry. Thus, a polynomial f;(X) = X191 + X178 ... 4 X 4 X2 would
be stored in memory as the array 191,178, ---,14,2. For convenience, arrays
representing the f;(X) polynomials are concatenated into a single array which
we denote b.

Recall that the coefficients ¢, of the product of b(X) and some general poly-
nomial a(X) have the form

cr = apby +a1bp—1 + - +an_1bpy1 = Z azb;.
itj =k mod N

The sparse nature of f;(X) causes most of these inner product terms to be
zero. So rather than employing a traditional polynomial multiplication algorithm
that expends a great deal of effort computing zero terms, we take a different
approach. Scanning the b array allows us to calculate only those inner product
terms which may be non-zero. A particular non-zero coefficient will appear in IV
inner product terms.

The algorithm begins by zero-initializing an array of coeflicients that will
hold the result ¢(X) = f;(X)a(X). For each entry of the b array we calculate
the N inner product terms corresponding to a non-zero coefficient in f;(X). Since
fi(X) is binary, each non-zero inner product term is simply a coefficient of a(X).
These terms are individually accumulated in their corresponding location in the
c array. Repeating this process for all non-zero coefficients calculates f;(X)a(X)
at a cost of d; N additions of log,(¢)-bit numbers.

With this procedure in hand, we may compute the overall f(X)a(X) multi-
plication with the following steps:

NTRU in Constrained Devices 267

L t(X) + a(X)f1()

2. o(X) (X fz() = a(X) * fr(X) * f2(X)

3. 6(X) « f (* a(X)

4. c(X)<—c;€—|—t;~C mod N = f3(X) xa(X) + f1(X) * fo2(X) x a(X)

Thus in the common practical case of N = 251 and ¢ = 128 with each of
f1, f2, f3 having eight nonzero coefficients, the convolution is computed with
251 x 8 x 3 = 6024 seven-bit additions and no multiplications. This algorithm is
thus ideally suited for the low-power, low-clockrate, narrow arithmetic architec-
tures found in constrained devices.

Pseudocode for this operation is found as Algorithm 1, where all array offsets
are to be taken modulo N for clarity in exposition.

Algorithm 1. Fast Convolution Algorithm

Require: b an array of di + d2 4+ ds nonzero coefficient locations representing the
polynomial f(X) =1+ px* (f1(X) * fo(X) + f3(X)), a the array a(X) = Ya;, N the
number of coefficients in f(X), a(X).

Ensure: c the array where ¢(X) = f(X)a(X)
for 0 < j < d; do {Compute t(X) < a(X) * f1(X)}

for0<k<N-1do
tetb; < Thtb; + ak
end for
end for
for d; < j < dz do {Compute ¢(X) + t(X) * f2(X)}
for0<k<N-1do
Chtb; < Chtb; Ttk
end for
end for
for 0 < k < N do {Zero out t}
tp < 0
end for
for d < j < d3 do {Compute t(X) + f3(X) *xa(X)}
for0<k<N-1do
teto; <= lrto; +an
end for
end for
for 0 <k <N —1do {c(X) + f3(X) xa(X) + fi(X) * fo(X) xa(X)}
Cr < ck + tr mod ¢
end for

For sake of comparison, we implemented Karatsuba-Ofman polynomial mul-
tiplication and Algorithm 1 on a variety of embedded systems. These results are
found in Table M

268 D.V. Bailey et al.

Table 1. Polynomial Multiplication Algorithm Comparison

Operation MC68EX328 Dragonball Intel 80386 37TMHz ARMT
(20 MHz Palm Vx) (20 MHz RIM 957)
Karatsuba 25 msec 178 msec 12.75 msec
Algorithm 1 3.2 msec 28 msec 1.62 msec

4 NTRU Embedded Reference Implementation

The NTRU Embedded Reference Implementation package is designed for use
in applications where both high performance and small footprint are important
considerations. The package contains the NTRU algorithm [3], the NTRU Signa-
ture Scheme (NSS) [6], a random number generation utility, and public domain
versions of the AES selected Rijndael symmetric cipher and the SHA-1 hash
function.

The software library is implemented in ANSI C and is easily ported while
maintaining high performance. Two important design choices include the use of
an internal memory management scheme and support for 8/16/32/64-bit envi-
ronments.

Internal Memory Management Scheme. Memory allocation on constrained
devices is typically a source of inefficiency and portability problems. While
some devices disallow the use of heap management functions (such as mal-
loc, realloc, and free), others significantly restrict the use of stack space.
Regardless of which operations are available, there is normally significant
CPU overhead associated with native memory management functions. For
efficiency and portability, the implementation establishes its own internal
memory management scheme. When an application initializes the imple-
mentation, a block of memory is created from either the stack or the heap
and used to satisfy the application’s dynamic memory management needs.
Thus, the implementation’s memory management is abstracted from the ap-
plication environment, improving portability, security and performance.

8/16/32/64-bit environments. One of the requirements of the software is to
support many different devices. Popular microprocessors have word lengths
ranging from 864 bits. To provide maximum flexibility, storage of public
and private key information as well as intermediate results is generally in
arrays of 8-bit types and all operations are 8 bits wide. While this provides a
flexible approach supporting operation on different size devices, it may not
be the most efficient approach on all devices. For example, on some devices
a 16- or 32-bit operation has the same cycle cost as a corresponding 8-bit
instruction. This fact can be exploited when tailoring NTRU for a specific
platform.

4.1 NTRU C Performance Results

The NTRU design decisions lead to a generic software base that can be run on
many different platforms. Outside of good software engineering practices, there

NTRU in Constrained Devices 269

are no platform specific C optimization tricks used in the reference implemen-
tation. Even without platform specific optimizations, the performance numbers,
as shown in Table[2, are impressive on a variety of popular processors for con-
strained devices. In these tables, msec is taken to mean milliseconds. In addition,
in this and all remaining sections of this paper, we report results for NTRU with
parameters (N,p, q) = (251, X + 2,128).

Table 2. NTRU Performance Results

Operation |MC68EX328 Dragonball Intel 80386 37TMHz ARMT
(20 MHz Palm Vx) ((20 MHz RIM 957)

Key Generation 1130 msec 858 msec 80.6 msec
Encryption 47 msec 39 msec 3.25 msec
Decryption 89 msec 72 msec 6.75 msec

4.2 NTRU Optimized for Palm Computing Platforms

The Motorola Dragonball microprocessor is widely used in Palm computing plat-
forms. While the Dragonball supports 8-, 16-, and 32-bit data operations, mem-
ory is organized into 16-bit words. Although the NTRU fast convolution al-
gorithm operates on 7-bit polynomial coefficients, each operand fetch actually
retrieves a full 16-bit word. Assuming the coefficients are organized in memory
along byte boundries, this leads to twice as many memory accesses as should be
needed. While an easy choice would be to read the full word and use the two
bytes separately, the task of extracting anything but the lowest byte in a register
is more expensive than simply fetching the next byte from memory.

Since Algorithm 1 is nothing more than repeated coefficient addition, the
arithmetic requirements on the Dragonball are minimal. The result is that most
of the time is spent fetching coefficients and storing their sum. A great deal of
optimization can be achieved simply by making these memory operations more
efficient. Extensive use of the Dragonball’s post-increment and pre-decrement
pointer operations makes the code much faster than using pointer offsets, the
approach taken by the C compiler.

Another performance-limiting factor is Algorithm 1’s use of circular array
indexing for fast modular reduction. Since the Dragonball has no native support
for circular arrays, we can simply place two copies of a in adjacent memory loca-
tions and reduce the burden of pointer arithmetic. Figure [[l graphically displays
the situation.

By taking the buffering idea one step further, we can exploit the 16-bit archi-
tecture of the Dragonball to perform two 7-bit coefficient additions in parallel.
To this end, we simply pack two 7-bit coefficients into a word and add. Any
overflow from the add operation can be removed by modular reduction via a
logical and with 0x7F7F. This effectively reduces each byte over ¢ = 128. The
main problem with this scheme is alignment of data on 16-bit boundaries. If the

270 D.V. Bailey et al.

offset j is odd, then the above scheme with two copies of a will suffice to perform
word additions instead of byte additions. If j is even however, none of the words
would be aligned to perform the addition. If we make a third copy of a, again
adjacent to the other two, we find that if j is odd, a + (N — j) is unaligned, but
a+ (2N — j) will be. This is shown in figure 2

The current assembly improvements can be seen in Table [3]

a ao‘al‘ag‘ag‘m as|ae|Qo|al|az|as|aa (15‘0,6
D D D DD DD

c Co|C1|C2|C3|C4|C5|Cs
LI
c ch|ch|ch|ch ||k |

Fig. 1. Bytewise buffered convolution example; b; =2, N =7

a |aop al‘a2 ag‘a4 a5‘a6 ao‘(h az‘a3 a4 |as Aelap a1|a2 asz|a4 as5|0e
3] S o |D

C Cp C1|C2 C3|C4 C5|Cs
/ /N B VSV Y]
C Cp C1|Co C3[Cyq C5 |Cq

Fig. 2. Wordwise buffered convolution example; b; =2, N =7

Table 3. NTRU Palm Assembly Language Performance Improvements

Operation [Palm C code|Palm Assembly/C code
Key Generation| 1130 msec 630 msec

Encryption 47 msec 33 msec

Decryption 89 msec 60 msec

5 NTRU in an FPGA

Due to its low complexity and parallel nature, the NTRU cryptosystem lends
itself exremely well to hardware implementation. The primary function in the
encryption algorithm is the convolution of the public key h(X), by the random
vector, 7(X), as described in Algorithm 1. The nature of the construction of
r leads to the observation that with overwhelming probability, each coefficient
of r is at most 15 (i.e., fits into at most 4 bits), with a limit on the number
of non-zero coefficients. This allows the use of repeated coefficient addition as
opposed to full coefficient multiplication to implement convolution.

The encryption engine operates in the following steps. First, the operands
h, r, and m must be loaded serially, 251 bits at a time. Once the operands

NTRU in Constrained Devices 271

are loaded, the engine begins bit-scanning each r coefficient. For each non-zero
coefficient, the engine adds h to the temporary result. This is repeated a number
of times corresponding to the value of the current r coeflicient. Once this is
complete, or if the coefficient is zero, h is rotated left by one coefficent (7 bits)
to perform the modular reduction of the result over zV. The next r coefficient
is then scanned, repeating the above process until all r’s have been processed.
Finally, the engine adds the polynomial m to the result of the convolution and
outputs this value as the encrypted message. Because of the expansive nature of
encryption, the encrypted message is output serially. Note that h is retained in
the encryption engine, and thus successive encryptions only require the loading
of r and m, which takes 5 clock cycles.
For the provided implementation, the following tools were used:

— Synthesis: Synplicity’s Synplify version 6.1.3.

— Place and Route: Xilinx’s Design Manager version 2.1i_sp6.

— Simulation:Viewlogic’s Powerview version 6.1 FusionHDL version 1.4 and
Viewlogic’s Workview Office version 7.53 Speedwave version 6.202.

For the provided implementation, the Xilinx Virtex 1000EFG860 FPGA was
chosen as the target device. The package type chosen provides sufficient I/O (656
IOBs) and logic resources to satisfy the design requirements. Further information
regarding the Virtex E family may be found in [§]. Note that the VHDL imple-
mentation is fully portable to ASIC technology, since no FPGA vendor-specific
constructs were used in the provided implementation.

Table 4. FPGA Implementation Results

Encryption Cycles 259
Clock Period 19.975 ns
Clock Frequency 50.063 MHz
Encryption Time 5.174 us
Encryption Throughput 48.52 Mbps
Slices Used 6373
Logic Resource Utilization 51%
Approximate Gate Count 60,000
Approximate Register Gate Count| 40,000
I/O Used 506
I/0O Utilization 7%

6 Conclusions

In this paper we have provided practical implementation results for NTRU run-
ning on a number of embedded systems including microcontrollers and FPGAs.
In addition, we have provided a new fast convolution algorithm which eliminates
the need for explicit multiplication in encryption and decryption.

272 D.V. Bailey et al.

References

1.

2.

D. V. Bailey and C. Paar. Efficient arithmetic in finite field extensions with appli-
cation in elliptic curve cryptography. Journal of Cryptology, to appear.

D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In Advances in Cryp-
tography — EUROCRYPT ’97, pages 52-61. Springer-Verlag, 1997. LNCS 1233.

. J. Hoffstein, J. Pipher, and J. Silverman. NTRU: A new high speed public key cryp-

tosystem. In J. Buhler, editor, Lecture Notes in Computer Science 1423: Algorithmic
Number Theory (ANTS III), pages 267-288. Springer-Verlag, Berlin, 1998.

J. Hoffstein and J. Silverman. Optimizations for NTRU. In Proceedings of
Public-Key Cryptography and Computational Number Theory. de Gruyter, Warsaw,
September 2000.

J. Hoffstein and J. Silverman. Small hamming weight products in cryptography.
preprint, September 2000.

J. S. J. Hoffstein, J. Pipher. NSS: An NTRU lattice-based signature scheme. In
Advances in Cryptography — EUROCRYPT 2001. Springer-Verlag, 2001. to appear.
A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Pub-
lishers, Boston, 1993.

Xilinx Inc. Virtex 2.5V Field Programmable Gate Arrays, 1998.

	1 Motivation
	2 The NTRU Public-Key Cryptosystem
	2.1 Basic Setup
	2.2 Key Generation
	2.3 Encryption
	2.4 Decryption
	2.5 Why NTRU Works

	3 NTRU Algorithmic Optimizations
	3.1 Choice of p
	3.2 Polynomials of Low Hamming Weight
	3.3 A Fast Convolution Algorithm in Software

	4 NTRU Embedded Reference Implementation
	4.1 NTRU C Performance Results
	4.2 NTRU Optimized for Palm Computing Platforms

	5 NTRU in an FPGA
	6 Conclusions
	References

