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Abstract. In this paper the block cipher RC6 is analysed. RC6 is sub-
mitted as a candidate for the Advanced Encryption Standard, and is one
of five finalists. It has 128-bit blocks and supports keys of 128, 192 and
256 bits, and is an iterated 20-round block cipher. Here it is shown that
versions of RC6 with 128-bit blocks can be distinguished from a random
permutation with up to 15 rounds; for some weak keys up to 17 rounds.
Moreover, with an increased effort key-recovery attacks faster than ex-
haustive key search can be mounted on RC6 with up to 12 rounds for
128 bit keys, on 14 rounds for 192 bit keys and on 15 rounds for 256 bit
keys.
Keywords. Cryptanalysis. Block Cipher. Advanced Encryption Stan-
dard. RC6.

1 Introduction

RC6 is a candidate block cipher submitted to NIST for consideration as the
Advanced Encryption Standard (AES). RC6 (see [12]) is an evolutionary deve-
lopment of RC5. Like RC5, RC6 makes essential use of data-dependent rotations.
New features of RC6 include the use of four working registers instead of two,
and the inclusion of integer multiplication as an additional primitive operation.
RC6 is a parameterized family of encryption algorithms, where RC6-w/r/b is
the version with word size w in bits, with r rounds and with an encryption key
of b bytes.

The AES submission is the version with w = 32, r = 20, and RC6 is a
shorthand notation for this version, whereby the key length can be b = 16, 24,
and 32 bytes, respectively. In [4,5] the security of RC6 has been evaluated with
respect to differential and linear cryptanalysis. It was concluded that RC6 is
secure with respect to differential cryptanalysis for 12 or more rounds. For linear
cryptanalysis, some variants are considered in [4]. It was found that a two-round
iterative linear approximation leads to the most effective basic linear attack
applicable up to 13 rounds. However, no specific method for key-recovery was
given. Furthermore, in [4] some potential enhancements of linear attacks using
multiple approximations and linear hulls are sketched, and it is estimated that
16 rounds of RC6 can be attacked using about 2119 known plaintexts. These
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Input: Plaintext stored in four w-bit registers A, B, C, D
Number r of rounds
w-bit round keys S[0], ..., S[2r + 3]

Output: Ciphertext stored in A, B, C, D

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do
{

t = (B × (2B + 1)) << lg w
u = (D × (2D + 1)) << lg w
A = ((A ⊕ t) << u) + S[2i]
C = ((C ⊕ u) << t) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)

}
A = A + S[2r + 2]
C = C + S[2r + 3]

Fig. 1. Encryption with RC6-w/r/b.

additional considerations on linear cryptanalysis were used to set a suitable
number of rounds for RC6 to be r = 20.

In this paper we investigate two-round iterations which are quite different
from those considered in [4]. Instead of tracing bitwise linear approximations,
we consider input-output dependencies by fixing the least significant five bits
in the first and third words of the input block. The correlations of the corre-
sponding two 5-bit integer values at the output are caused by specific rotation
amounts in the data dependent rotations and can be effectively measured by χ2

tests. As confirmed by extensive experiments, this leads to an efficient statistical
analysis which considerably improves over the basic linear attack. Estimates of
the complexity of our analysis imply that reduced round versions of RC6 with
up to 15 rounds are not random.

The linear attacks in [4] deal with correlations between input and output
bits, but they do not involve key bits, whereas our statistical analysis can be
used to develop a method to find all round subkeys.

This attack is faster than an exhautive key search for the 128-bit version of
RC6 with up to 12 rounds, and for the 192-bit and 256-bit versions of RC6 with
up to 14 and 15 rounds.

After completion of the first report of this work [9], our attention was drawn
to an earlier result by Baudron et al in [1] where an attack similar to ours is
outlined. (See also [6].) These results have since been written up in [2].

In the following we briefly recall the description of RC6, see Figure 1.
For a detailed description we refer to [12]. The user-key has length b bytes

and the 4w-bit plaintext block is loaded into words A, B, C, D. These four w-bit
words also contain the ciphertext at the end. The key-schedule (see [12]) expands
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the user-key into subkeys S[0], S[1], ..., S[2r + 3]. In our considerations we shall
not make use of the detailed description of the key-schedule, but we assume the
subkeys to be uniformly random. To describe the encryption algorithm the follo-
wing notation is used: (A, B, C, D) = (B, C, D, A) means the parallel assignment
of values on the right to registers on the left. Moreover, a × b denotes integer
multiplication modulo 2w, a << lg w means fixed rotation of the w-bit word a
by lg w, the base-two logarithm of w, and a << b denotes rotation of a to the
left by the amount given by the least significant lg w bits of b.
This paper is organized as follows: In section 2 we review χ2 tests as a useful tool
to detect nonuniformness in probability distributions. In Section 3 the relations-
hip between small rotation amounts and correlation in RC6 is investigated and
a class of weak keys is identified. In Section 4 distinguishing and key-recovery
attacks are developed, and in Section 5 we draw some conclusions.

2 χ2 Tests

In this section we recall how to distinguish a random source with unknown
probability distribution pX from a random source with uniform distribution pU .
A common tool for this task is the χ2 test, which is briefly recalled together
with some useful facts (see e.g., [7], [8], [10], [13]). We shall later use χ2 tests to
detect correlation between specific input and output subblocks of r-round RC6.

Let X = X0, X1, ..., Xn−1 be independent and identically distributed random
variables taking values in the set {a0, a1, ..., am−1} with unknown probability
distribution. Then the χ2 test is used to decide if an observation X0, X1, ..., Xn−1
is consistent with the hypothesis Pr{X = aj} = p(j) for 0 ≤ j < m, where
pX = {p(j)} is a (discrete) probability distribution on a set of m elements. Let
Naj

(X) denote the number of times the observation X takes on the value aj .
Then obviously

∑
i Naj (X) = n. The χ2 statistic is the random variable defined

by

χ2 =
m∑

j=1

(Naj (X) − np(j))2/np(j) (1)

For the uniform distribution pU , the χ2 statistic is just m/n
∑

i(Naj (X)−n/m)2.
In a χ2 test, the observed χ2 statistic is compared to χ2

a,m−1, the threshold for
the χ2 test with m − 1 degrees of freedom and with significance level a. In our
investigation of RC6, we shall specifically need the threshold values for 1023
degrees of freedom, as shown in Tables 1 and 2. For example, the entry 1131 for
0.99 in Table 1 says that the expression m/n

∑
i(Naj (X) − n/m)2 for large n

will exceed 1131 only in 1% of the time, provided the underlying distribution of
the observation X is indeed uniform.
For practical experiments the question arises how large the size n of the observa-
tion should be in order to detect that a distribution pX is nonuniform. In order
to estimate n, consider the bias of a probability distribution pX defined by the
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Table 1. Selected threshold values of the χ2 distribution with 1023 degrees of freedom.

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999 0.9999

χ2 1022 1033 1046 1060 1081 1098 1131 1168 1200

Table 2. Selected threshold values of the χ2 distribution with 1023 degrees of freedom.

Level 1 − 2−16 1 − 2−24 1 − 2−32 1 − 2−48 1 − 2−64

χ2 1222 1280 1330 1414 1474

distance measure
||pX − pU || =

∑

j

(pX(j) − pU (j))2 (2)

From [7] we quote the expected value of the χ2 statistic (1) of a distribution pX ,
as well as some useful conclusions:

EXχ2 = nm||pX − pU || + m − m||pX || (3)

For the case of the uniform distribution this implies EUχ2 = m− 1. Moreover it
follows that for n = c/||pX −pU || the expected value is EXχ2 = cm+m−m||pX ||.
Since in practical cases often ||pX || ≈ ||pU ||, this simplifies to EXχ2 ≈ (c+1)m−
1. Thus EXχ2 differs from EUχ2 significantly, if c = Ω(1). As a conclusion, the
size n = c/||pX − pU || of the observation suffices to distinguish a source with
distribution pX from a source with uniform distribution. Clearly, the constant c
needs to be larger for higher significance level a.

3 Correlations in RC6

In [4], under the title of Type I Approximations, a two-round linear approxi-
mation has been studied which is based on small rotation amounts in the data
dependent rotations. This linear approximation is described by (A·et)⊕(C ·es) =
(A′′ · eu) ⊕ (C ′′ · ev). Here A and C are the first and third words of some inter-
mediate data, A′′ and C ′′ are the first and third words of the intermediate data
after a further two rounds of encryption in RC6, and et denotes the 32-bit word
with a single one in the tth least significant bit position. It has been noticed that
for t = s = u = v = 0 the case where both rotation amounts are zero in the first
of the two rounds leads to a bias of 2−11. This is derived by using the piling-up
lemma and the fact that the second and fourth words remain unchanged in the
second round. If t, s, u, v are nonzero but less than 5, there is a smaller bias,
which depends on the values of t, s, u, v. Note that no key bits are involved in
the approximation.

In our approach we do not consider the XOR of single bits in the first and
third words. Instead we fix each of the least significant five bits in words A and
C of the input and investigate the statistics of the 10-bit integer obtained by
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concatenating each of the least significant five bits in words A′′ and C ′′ every
two rounds later. This is motivated by the fact that the least significant five bits
in A and C altogether are not changed by the xor and data dependent rotation if
both rotation amounts are zero. More generally, we can expect a bias for amounts
smaller than five. As we shall demonstrate, this leads to much stronger biases
which can be iterated over many rounds, just as linear approximations. In this
way we can consider small rotation amounts as a single event, in which amounts
near zero from the negative, like 30 or 31, prove to be useful as well.

3.1 Small Rotation Amounts

To see the effect of small rotation amounts on the values of the least significant
five bits in the first and third words in RC6, we implemented the following tests
with 4 rounds:

Let us denote by (a, b) the two amounts in the data dependent rotations in
the first round. To measure the effect on the distribution of the target bits, we
forced the values of a and b by taking appropriate plaintexts and we computed
the χ2-value of the 10-bit integers after 4 rounds. For each experiment we took
218 texts to get a big χ2-value to clearly measure the effect.

Table 3. Statistical effect of small rotation amounts

a, b χ2

0,0 2775

0,31 2107

0,1 1998

31,31 1715

1,1 1643

0,30 1633

0,2 1572

30,31 1388

1,2 1326

0,3 1306

0,4 1145

0,5 1053

By the symmetry in the design of RC6, it can be expected that (a, b) gives the
same χ2-value as (b, a).

We observe that the χ2-values for all pairs (a, b) with |a| < 5 and |b| < 5
are significantly higher than the expected value 1023 for uniform 10-bit integers.
Note that these tests suggest that we get similar χ2-values for constant values of
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the “distance” |a − 32| + |b − 32| (mod32): The pairs (0,31) and (0,1) both have
distance 1 and similar χ2-values, and the pairs (1,1),(0,2), (31,31), and (0,30) all
have distance 2 and have similar χ2-values.

Let us take a closer look at how the above observations lead to a nonuniform
distribution. Assume that the least significant five bits of plaintext words A and
C are fixed, e.g., to zero bits. Let us denote by X the concatenation of the
least significant five bits of the ciphertext words A and C after two rounds of
encryption. In this example, for illustration, we will ignore the addition of the
subkeys in the output transformation, and also we will assume that the least
significant five bits of both round keys S[2] and S[3] are zero. Denote by t5 and
u5 the least significant five bits of t and u, see Figure 1. Then in the first round,
if t5 = u5 = 0, then X will be zero. Since the function f is a permutation,
t5 and u5 will be zero with a probability of 2−5 each. If we assume that for
|t5| ≥ 5 and |u5| ≥ 5, the values of X are distributed uniformly at random, the
probability that X is zero is at least 2−10+(23/32·1/32)2 ' 2−10+2−10.95. With
rotations t5 = 1, u5 = 0, X will take the possible values (in bits) 0000b00001,
where ‘b’ is a random bit. With rotations t5 = 0, u5 = 1, X will take the possible
values (in bits) 000010000b. Thus, X = 0000100001 with probabilty at least
2 · 2−11 + (23/32 · 1/32)2. Note that both these estimates are lower bounds.
E.g., in the case where t5 = u5 = 4, X will take the possible values (in bits)
0b1b2b3b40b5b6b7b8, and in the case where t5 = 1, u5 = 16, X will take the
possible values (in bits) b1b2b3b4b50000b6, where the bis are random bits. Thus,
X can take both the values 0000000000 and 0000100001 also in these cases.

It has been clearly demonstrated that the distribution of X is nonuniform.
Note that although it was assumed that the involved subkey bits were zero, it
follows easily that the nonuniformity remains when these key bits are randomly
chosen.

3.2 χ2 Statistic of RC6

Here, we investigate the nonrandomness of r-round versions of RC6. This analysis
is based on systematic experiments on increasing numbers of rounds of RC6 with
varying word length w. Our method is used to demonstrate that detecting and
quantifying nonrandomness is experimentally feasible up to 6 rounds of RC6.

For this purpose, the least significant lg w bits in words A and C of the input
are fixed to zero. Depending on the experiment and the number of rounds, the
remaining input bits are either chosen randomly, or more of the remaining input
bits are suitably fixed so that one (or both) of the data dependent rotations are
zero. In our tests, we persue the χ2 statistic of the integer of size twice lg w bits
as obtained by concatenating the least significant lg w bits in words A′′ and C ′′

every two rounds later.
In the experiments, we consider versions of RC6 with word size w = 8, 16

and 32 bits, respectively (w = 32 corresponding to the AES candidate RC6).
It is instructive to see that the general behaviour of the χ2 test for increasing
numbers of rounds in all three cases is very similar. To judge the outcome of
these χ2 tests note that for the word sizes w as considered, 6-bit, 8-bit and 10-bit
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integers are tested at the output. Hence the numbers of freedom are 63, 255 and
1023 respectively, and these numbers coincide with the expected value of the χ2

statistic, provided the distribution to be tested is uniform.
Subsequently we discuss the results of implemented tests in more detail,

where the keys are chosen at random.

32-bit RC6. First consider a version of RC6 with block length of 32 bit. This
corresponds to the case w = 8, which is shown in Table 4. For r = 2 and r = 4
rounds more than one entry is given. The first entry shows a number of texts,
measured in powers of two, which is necessary to detect that the mean of the
χ2 values over 20 tests is higher than the expected value 63 if the distribution
would be random. The other entries show a significant increase of this mean if
the number of plaintexts is doubled, thus a strong deviation from the uniform
distribution. For 28, 217 and 226 texts and correspondingly for 2, 4 and 6 rounds,
the χ2 values are approximately the same. Thus we have to increase the number
of plaintexts by the same factor 29 for every two more rounds to get a comparable
statistical deviation as measured by the χ2 test. For this small version of RC6
we cannot go beyond 6 rounds, as we have to fix 6 input bits, and for 6 rounds
we already need 226 random texts.

Table 4. RC6 with 32-bit blocks and r rounds. Expected χ2 for a random function is
63.

r #Texts χ2 #Tests

2 28 77 20

2 29 107 20

4 216 68 20

4 217 73 20

4 218 83 20

6 226 78 20

64-bit RC6. Next consider the version of RC6 with word size w = 16, i.e. RC6
with 64-bit blocks. The results are shown in Table 5. Here the expected value
of the χ2 statistic is 255. Again a substantial increase is observed in the mean
for χ2-values if the number of texts is doubled. We notice that passing from 2
to 4 to 6 rounds, the averaged χ2-values increase slightly if the corresponding
number of plaintexts is increased by a constant factor of 213.

128-bit RC6. Consider now r-round versions of RC6 with word size 32 bits,
i.e. with round function as in the AES proposal. Table 6 shows the results of
implemented tests for r = 2 and r = 4 rounds. Recall that for 10-bit integers
the expected value of the χ2 statistic is 1023, and according to Table 1 the 95%
significance level is 1098 and the 99% significance level is 1131. Thus all tests as
reported in Table 6 are very unlikely to be produced by uniformly distributed
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Table 5. RC6 with 64-bit blocks and r rounds. Expected χ2 for a random function is
255.

r #Texts χ2 #Tests

2 210 283 100

2 211 308 100

2 212 364 100

4 223 286 100

4 224 318 100

6 236 298 10

10-bit integers. In fact for 4 rounds and 233 texts almost twice the expected value
for a uniform distribution is achieved.

Table 6. RC6 with 128-bit blocks and r rounds. Expected χ2 for a random function
is 1023.

r #Texts χ2 #Tests

2 213 1096 20

2 214 1196 20

2 215 1332 20

2 216 1649 20

2 217 2208 20

4 229 1096 20

4 230 1163 20

4 231 1314 20

4 232 1527 20

4 233 2054 20

Table 7 shows the results of tests with up to 6 rounds but with one or both data
dependent rotations in the first round to be fixed to zero. The last entry is the
result of a test run on eight processors of a Cray Origin 2000 computer. Both,
the experiments in Table 6 and in Table 7 demonstrate that for up to 6 rounds
each additional two rounds require roughly 216 times as many texts to get about
the same χ2-value on average. The first two entries of Table 7 again show an
increase of the χ2-values if the number of texts is doubled.
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Table 7. RC6 with 128-bit blocks and r rounds. Expected χ2 for a random function
is 1023.

r #Texts χ2 #Tests Comments

4 222 1124 20 zero rotation in 1. round at word D

4 223 1228 20 zero rotation in 1. round at word D

6 238 1106 1 zero rotation in 1. round at word D

3.3 A Possible Analytical Explanation

In this subsection we make an attempt to analytically predict the complexities
of the χ2 tests on RC6.

In the following, let X be the random variable representing the 10 bits as
considered in the ciphertexts after 2 rounds of encryption with RC6 in the tests
from the preceding section. Also, let Y and Z be the random variables represen-
ting these 10 bits in the ciphertexts after 4 respectively 6 rounds of encryption.
It follows from the description of RC6, that the 10 bits in the ciphertexts after
six rounds are not the exclusive-or of 10 biased bits from the first two rounds
and 10 biased bits from the next two rounds. This is due to the fact that the
data-dependent rotations in RC6 are performed after the exclusive-or with the
data from the previous rounds. Thus, a parallel to the Piling-Up Lemma used
by Matsui [11] does not seem to be applicable.

With the test results of the preceding section and the estimate from Sec. 2,
that with n = c/||pX − pU || texts one can expect a χ2-value of (c + 1)m, it is
possible to compute estimates of ||pX − pU ||, ||pY − pU ||, and ||pZ − pU ||.

64-bit RC6. The results of the tests in Table 5 yield the following estimates
for the distances:
||pX − pU || = 2−13.25, ||pY − pU || = 2−26.03, ||pZ − pU || = 2−38.57. Thus,
this is a clear indication that ||pY − pU || > ||pX − pU ||2, and that ||pZ − pU || >
||pX − pU || · ||pY − pU ||.

This gives perhaps more convincing evidence, that passing from s to s + 2
rounds in the tests of the preceding section, requires an increase in the texts
needed of a factor of a little less than 213.

128-bit RC6. The results of the tests in Table 6 with a χ2-value greater
than 1300 yield the following estimates for the distances:
2−16.79 ≤ ||pX − pU || ≤ 2−16.71, 2−33.02 ≤ ||pY − pU || ≤ 2−32.81. Again with a
clear indication that ||pY − pU || > ||pX − pU ||2.

This confirms the estimate from the preceding section that passing from s to
s + 2 rounds in the χ2-tests, requires an increase in the texts needed of a factor
of a little more than 216. Later, we will use the factor 216.2.

3.4 Weak Keys

The test results from the previous sections were given as an average over tests
using randomly chosen keys. There was some deviation of the single results, e.g.,
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the χ2-values of the tests for RC6 with 128-bit blocks and 4 rounds using 233

texts varied from 1731 to 2595 with an average of 2044. Thus, for some keys the
deviation is bigger than expected, for other keys it is lower than expected. In
this section we report on some weak keys, which perform better than the average
key. In Sec. 3.1 it was explained why there is a nonuniform distribution of the
10 target bits, and why for two rounds the involved key bits have no influence
on the nonuniformity of the target bits in the χ2-tests. However, when iterating
the tests to several rounds, the modular additions of round-key bits introduce
carry bits which affect the nonuniformity. For 4 rounds, the key bits that may
affect the nonuniformity are the five least significant bits of the round keys S[2]
and S[3]. When these bits are set to zeros, the χ2-value increases. Similarly, for
6 rounds the least significant five bits of the subkeys 2,3,6, and 7 may influence
the nonuniformity.

This is illustrated by a series of tests, the results of which are shown in
Table 8.

Table 8. RC6 with 128-bit blocks and r rounds for weak keys.

r #Texts χ2 #Tests Comments

4 230 1398 20 1 in 210 keys

6 230 1093 10 zero rotation in 1.round at B and D

6 230 1368 10 same, for 1 in 220 keys

For 4 rounds the “distance” to a uniform distribution is about 2−31.5 which
is more than a factor of two higher than for the results averaged over all keys.
For 6 rounds the distance to the uniform distribution is about 2−33.87 for the
second test of Table 8, and about 2−31.57 for the third test using weak keys.
Thus, a factor of more than 4.

4 Attacks on RC6

4.1 Distinguishing Attacks

It is possible to exploit the findings in the previous sections to distinguish RC6
with a certain number of rounds from a permutation randomly chosen from the
set of all permutations. In the previous sections we fixed bits in the first and third
plaintext words. As we shall see in the next section this makes good sense when
implementing key-recovery attacks. In a distinguishing attack it is advantageous
to fix the least significant five bits in the second and fourth words instead. It
follows that after one round of encryption the least significant five bits in the
first and third words of the ciphertext are constant. Table 9 lists the result of
tests implemented for RC6 with 128-bit blocks with 3 and 5 rounds. It follows
that 213.8 texts are sufficient to distinguish the 3-round encryption permutation
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from a randomly chosen permutation in 90% of the cases. We estimate that for
RC6 with 3 + 2r rounds similar results will hold using 213.8+r×16.2 texts, which
is confirmed by tests implemented on RC6 with 5 rounds.

Note that the χ2 numbers of Table 9 for 3 rounds are slightly lower than
the numbers of Table 6 for 2 rounds. This stems from the fact that in the latter
tests, the least significant five bits of the first and third words of the plaintexts
were fixed to zeros. In a distinguising attack, one gets the first round “for free”,
by fixing totally 10 bits of the second and fourth words. However, as these
words are added modular 232 to subkeys in the input transformation, the least
significant five bits of the first and third words in the inputs to the second round
are nonzero, but constant, and there is an effect of carry bits by the addition of
subkeys after the second-round approximation.

We estimate that for keys where the least significant five bits of each of the
two subkeys in every second round are zeros, the attack improves with more
than a factor of two for each 2 rounds. This leads to the estimate that for one
in 280 keys, 17 rounds of RC6 with 128-bit blocks can be distinguished from a
randomly chosen permutation.

Table 9. Complexities for distinguishing RC6 with 128-bit blocks and r rounds from
a random function.

r #Texts χ2 Comments

3 213 1079 Implemented, average 20 tests

3 213.8 1100 Implemented, average 20 tests

3 214 1141 Implemented, average 20 tests

5 229 1054 Implemented, average 20 tests

5 230 1099 Implemented, average 20 tests

7 246.2 Estimated.

9 262.4 Estimated.

11 278.6 Estimated.

13 294.8 Estimated.

15 2111.0 Estimated.

17 ≤ 2118 Estimated. For 1 in every 280 keys.

4.2 Key-Recovery

As confirmed by several experiments, the χ2-value is significantly higher if inputs
are suitably fixed so that one (or both) of the data dependent rotations in the
first round of RC6 are zero. Clearly, the choice of the right input depends on
knowledge of the subkey S[0] (or S[1], respecively). We now describe how the
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considerations and experimental results of previous sections can be exploited for
key recovery. Thereby we restrict to 128-bit RC6 with word size 32 bits.

In the following we will assume that to get similar values in a χ2-test on s+2
rounds compared to s rounds requires a factor of 216.2 additional plaintexts.
Recall that we always fix the least significant five bits in words A and C. In
addition suppose we fix inputs so that the data dependent rotation is zero in
the first round at word D. Then with a factor of about 28.1 less plaintexts we
achieve a similar χ2-value as for random inputs at word D (e.g. compare row 7
in Table 6 with the first row in Table 7). For symmetry reasons, the same holds
if inputs at word B are fixed.

With regard to inputs at word D (or B), some comments related to the
multiplication in RC6 are in order. The data dependent rotation amounts are
determined by the five leading bits of the output of the permutation as given
by the multiplication D × (2D + 1) (see Figure 1). The permutation function
restricted to these five output bits is therefore balanced. Rather than fixing
inputs we can restrict to inputs leading to these five bits being zero, resulting in
more freedom for choosing plaintexts. For efficiency we can prepare a table T of
the 227 inputs to the permutation giving zero rotation. Thus for the correct key
S[1] we can choose 227 different inputs at word D, all leading to zero rotation
in the right half of the first round. (Alternatively, we can enlarge the table, and
also accept inputs giving rotation amount 1 or -1, which still lead to increased
χ2-values.) To test a fixed trial key S[1] we thus can roughly choose amongst
2113 plaintexts at random.

The attack goes as follows, choose plaintexts such that the least significant
five bits of the first and third words are zeros. Prepare an array with 210 entries
for each value of the subkey S[1]. For each plaintext use the table T as prepared,
to determine the values of S[1] which lead to a zero rotation at word D. For
each such value, update each array by incrementing the entry corresponding
to the value obtained from the 10 target bits of the ciphertext. Each array is
used to find the probability distribution of the 10 target bits. Repeat the attack
sufficiently many times, until one array has a significantly higher value in the
χ2-test.

For an estimate of the complexity to recover subkey S[1], consider r-round
versions of RC6 with r even. For each trial key S[1] we perform a χ2 test with

213 × (216.2)
r−2
2 × 2−8.1 (4)

plaintexts as described. Then for the correct choice of S[1] the χ2-value is expec-
ted to be around 1100, that is, significantly higher than 1023. For each key which
produces an expected χ2-value, repeat the attack with additional plaintexts.

To rule out all false values of the key, we increase the number of texts by
up to a factor of 23. Enlarging the amount of plaintexts by this factor has the
effect of a substantial increase of the χ2-value, as observed in our experiments
(see the tables in Section 3). Thus, to single out the correct key out of suggested
key values we would need about 216 × (216.2)

r−2
2 × 2−8.1 texts. And since only
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one in every 25 texts gives the desired zero rotation at word D, the total number
of plaintexts needed is

25 × 216 × (216.2)
r−2
2 × 2−8.1 = 2r×8.1−3.3.

The amount of work is estimated as follows. For each plaintext in the attack,
we update the counters of at most 227 keys. If we assume that after the first two
iterations of the attack, the number of remaining keys are reduced by a factor
of 4 or more, we obtain a complexity of

227+r×8.1−5.3 = 221.7+r×8.1,

where one unit is the time to update one entry of one array of size 210 of totally
232 arrays.

After S[1] is correctly found, subkey S[0] can be determined with a reduced
amount of texts and work. Knowing S[0] and S[1], the data dependent rotations
in the first round can be fixed to zero without effort. Thus the χ2 tests can
now be applied by controlling inputs to the second round. This enables finding
subkeys S[2] and S[3] in much the same way as we did for S[0] and S[1]. After
this we peel of the first round and proceed to determine the other subkeys.

This attack is faster than an exhaustive key search for the 128-bit key version
of RC6 with up to 12 rounds, and for the 192-bit and 256-bit versions of RC6
with up to 14 rounds. Table 10 lists the complexity for 12, and 14 rounds of
RC6. For 16 rounds the number of texts needed is 2126.3 and thus exceeds the
number of available texts of 2118.

For key sizes 192 bits and 256 bits the computational effort for searching
subkeys can be larger. Thus for a 192-bit key we can do a simultaneous search
over S[0] and S[1], thereby improving the χ2 statistic by two rounds. In addition,
we increase the factor 23 to 24 in order to single out the correct pair S[0],
S[1] among the remaining pairs. Here only one in every 210 plaintexts give zero
rotations at words B and D. The number of plaintexts needed for this version
of the attack is

210 × 217 × (216.2)
r−2
2 −1 = 2r×8.1−5.4,

and the time complexity is

254+r×8.1−7.4 = 246.6+r×8.1,

where one unit is the time to update one entry of one array of size 210 of totally
264 arrays. Table 10 lists the complexities of this attack for 14 rounds of RC6.
The number of texts needed in the attack on 16 rounds is about 2124 and thus
still exceeds 2118. However, as reported earlier there are keys for which the
complexities improve. We estimate that the attack is possible for at least one in
260 keys with the complexity as stated in the table.

Finally, for the 256-bit key version of RC6 it is possible to further extend the
attack. In a 15-round version, one can search over the keys S[0], S[1], S[32], and
S[33]. The latter two keys are used to decrypt the ciphertexts one round. In the
updating of the probability-arrays, one only uses ciphertexts for which there are
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Table 10. Complexities for key-recovery attacks on RC6 with 128-bit blocks and r
rounds. One unit in “Work” is the time to increment one counter. The χ2 value is the
expected value for the correct key.

r #Texts Work χ2 Memory Comment

12 294 2119 1500 242

14 2110 2135 1500 242

14 2108 2160 2000 274

16 2118 2171 2000 274 1 in 260 keys

15 2119 2215 > 2000 2138

zero rotations in the last round. The number of texts needed is approximately
210 times that of 14 rounds, and the time complexity increases with a factor of
about 254. To rule out all false values of the keys, we estimate that the number
of plaintexts needed increases by yet a factor of 2.

Note that in the above attacks the number of available texts is bounded by
2118, since we need to fix 10 bits of each plaintext. The probability distributions
for each such fixed 10-bit value will be different, but their distance to the uniform
distribution can be expected to be similar. As an extension of the above attacks
consider the following. Run the attack with x texts for one fixed value of the 10
bits in the plaintexts. Record the χ2-value for each key in the attack, and rank
the keys. Reset the arrays. Repeat the attack x texts for another fixed value of
the 10 bits. Record again the χ2-value for each key in the attack, and rank the
keys. Repeat this a number of times. If the χ2-values for the correctly guessed
keys will be larger than for random values, one can expect that the correct
key will be high in the rankings, and it can be detected after sufficiently many
iterations. Thus this variant would make available all 2128 texts. We conjecture
that this attack is applicable to 15 rounds of RC6 with a complexity as given in
the last entry of Table 10.

We leave it as an open question whether the attack and its variants can be
used to attack RC6 with 16 or more rounds.

Finally, note that the reported attacks are chosen plaintext attacks. However,
it follows that the basic attack reported earlier can be easily transformed into
a known plaintext attack with an increase in the needed texts of a factor of at
most 210, leaving the total time complexity unaltered.

5 Conclusion

In this paper we have presented an attack on RC6 which is based on a strong
relationship between the effects of data dependent rotations in the round function
and statistical input-output dependencies.

Estimates which are based on systematic experimental results show that
versions of RC6 with up to 15 rounds can be distinguished from a random per-
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mutation. A class of weak keys has been identified for which this nonrandomness
is estimated to persist up to 17 rounds. Finally, we have derived a method for
key-recovery for RC6 with up to 15 rounds which is faster than exhautive key
search. We do not know whether our analysis can be used to attack RC6 with
16 or more rounds.

We remark that similar attacks are applicable to reduced-round versions of
RC5. However, it seems such attacks are not better than existing (differential)
attacks on RC5 [3].
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