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Abstract. In this article, we introduce a partial evaluator for a concur-
rent functional language with synchronous communications over chan-
nels, dynamic process and channel creations, and the ability to commu-
nicate channel names. Partial evaluation executes at compile-time the
communications of a program for which the emitter, the receptor and
the message contents are statically known. The partial evaluator and
the static analyses used to guide it were implemented and we show the
results of the specialization of concurrent programs for particular execu-
tion contexts, corresponding to different assumptions on the network or
on the messages.
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1 Introduction

Partial evaluation is a technique used to execute a program for which only one
part of the data is known [10]. The static instructions, depending on the known
data, are executed, while the dynamic instructions, depending at least partly on
unknown data, are frozen. We obtain a residual or specialized program, made
of the pieces of code which could not be executed and of the results of those
parts of the computation that could be executed. In order to determine the
parts of a program which can be executed because they solely depend on known
data, partial evaluators (PE) usually use the results of a static analysis called
binding-time analysis (BTA) [3,10].

In this article, we are interested in partial evaluation of a concurrent language
with synchronous communications over channels, dynamic process creation and
the ability to communicate channel names and functions. Sequential parts of the
programs are written in a functional style. For this kind of programs, partial
evaluation allows the static execution of those communications for which the
emitter, the receptor and the contents of the message are known [6,9,11]. We
obtain a residual program with fewer communications than the original one. For
instance, partial evaluation has been used to scale up a commercial version of

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 504–514, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Partial Evaluation of Concurrent Programs 505

the RPC protocol, yielding up to 3.75 times faster code [14]. However, since
no specific techniques were used to specialize the communication primitives, the
partial evaluation was done by means of run-time specialization techniques which
could have been avoided by using an adequate method for partial evaluation of
the communications.

We introduce a partial evaluator, denoted Pev which uses the result of a
BTA and of a control flow analysis (CFA) [16,19] in two different ways. The
analyses are used, first, to determine the functions possibly called at a given
application point and, second, to determine the possible synchronizations of the
program, i.e. the possible matching pairs of emitters and receptors. The CFA
of [13], the BTA and the partial evaluator were implemented and we describe
some experiments. We show how to specialize, by partial evaluation, concurrent
programs with respect to particular execution contexts, considering for instance
static knowledge on the topology of the network, or assumptions on the behavior
of the network, or assumptions on the data transmitted. In all cases, we show that
Pev reduces away all communications that rely only on the knowledge available
and outputs residual programs with less communications than the original ones.

Even though partial evaluation techniques have been widely studied for se-
quential languages, partial evaluation of concurrent programs has received little
attention. However, concurrency introduces new concepts in programming lan-
guages for which specific methods must be developed. Hosoya et al. have pro-
posed an on-line PE for a concurrent language close to the one treated in this
article [9]. On-line PE do not use the results of a BTA in order to improve their
accuracy. Marinescu and Goldberg have proposed a PE for a CSP-like language
with static channels [11]. The authors have proposed a PE for the π-calculus
as well as sufficient conditions on the annotations to ensure the correctness of
the residual program wrt. the original one [6,12]. Solberg et al. and Bodei et al.
have proposed control flow analyses (CFA) which can be used to improve the
precision of the BTA [2,20]. Improvements are proposed in [12,13].

This article is organized as follows. Section 2 gives the principles of the bind-
ing time analysis used to annotate the programs provided to the partial evalu-
ator. Section 3 introduces the partial evaluator Pev and Section 4 presents and
discusses the specialization obtained with Pev on some examples of concurrent
programs.

2 Program Analysis

A partial evaluator uses the annotations attached to an input program p to de-
termine how to specialize it. These annotations are the result of static analyses
of p. Among these, a binding-time analysis of p determines which instructions de-
pend on the static data and can be executed by the PE. For concurrent languages
with explicit communications, the BTA has to determine which communications
are static, i.e. occur on channels known at partial evaluation-time and transmit
static data. Static communications are executed at partial evaluation-time while
dynamic ones are left unchanged in the residual program output by the PE.
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In order to produce a precise annotation of the program, the BTA itself
uses the annotations given by an analysis of the topology of the communications
which indicates the pairs of possibly matching emitters and receptors. In our im-
plementation, the topology is computed by the control flow analysis described
in [13]. This CFA builds a reduced product automaton, which is polynomial in
size and describes an approximation of all possible interleavings of the program.
This automaton is used to approximate the possible communications, indepen-
dently of their relative ordering. Indeed, the exact position of a matching pair
within the execution trace is not relevant in our context.

The BTA we use is formally defined in [12]. Concerning the sequential part
of the language, it is a usual BTA based on the one introduced by Bondorf
and Jorgensen [3], for instance. Concerning concurrency primitives, it uses the
topological information provided by the CFA previously presented and discussed.
In the following, we illustrate its specific features using some examples.

As indicated above, the precision of the BTA depends on the one of the
topology provided by the CFA. Let us consider a program with two processes
which realize first a static and next a dynamic communication on the same
channel γ. The results produced by our BTA for this program are given in
Equation (1), in which underlined operations are dynamic.

let p1 = fork

0
@let s1 = send γ S in

let s2 = send γ D in

...

1
A in

0
@ let r1 = receive γ in

let r2 = receive γ in

...

1
A (1)

We observe that only the second communication is annotated as being dynamic.
This is due to the fact that the topological information allows, in this case, to
determine the exact pairs of emitters and receptors [13]. A less precise BTA,
for instance based on the topological information provided by the analysis used
in [20], would annotate both communications as being dynamic since γ is at least
once used to communicate a dynamic value.

A second aspect concerns the emission and reception primitives for which
the channel and the contents of the message (for receptions) are static, but
which cannot synchronize because there is no matching communication in the
program. For instance, let us consider an emission send e0 e1 with e0 and e1

static. Such a communication point is annotated static by the analysis, leading
the partial evaluator into a blocking state. This is however correct, since the
original program would block in exactly the same way during a usual execution.
This problem is in fact comparable to the problem of static infinite loops in
partial evaluation of sequential programs.

Next, certain communications with static parameters must nevertheless be
annotated as being dynamic, due to the context. This happens for instance in the
program of Equation (2), in which a reception may synchronize with two different
emissions, depending on a dynamic condition. In this case, the execution of the
communication must be delayed, because the control is not known.

let p1 = fork

�
if cond then send γ 0
else send γ 1

�
in receive γ (2)
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The creation of a new process is handled in a way similar to communications.
A fork is static as long as it does not occur within a dynamic context (for
example the conditional of Equation 2, or a dynamic loop). In this case, the
process creation is frozen and all communications occurring in the code of the
new process become dynamic.

3 Partial Evaluation

The language used by our PE is an untyped subset of Concurrent ML [1,18]
based on the language λcv defined by Reppy in [17]. However, the technique de-
scribed here does not depend on the functional nature of the language but only
on the underlying model of communication that Concurrent ML supports. The
choice of an untyped functional language is motivated by the fact that it makes
self-application of the PE possible and allows to automatically generate, using
the Futamura’s projections [5], a compiler generator, as shown in [12]. λcv is a
language with dynamic process and channel creations and synchronous communi-
cations over channels. Channel names created by the instruction channel() and
functions are ground values which may be communicated. The basic syntax of
Concurrent ML is defined by the first two lines of the grammar given in Equation
(3). The third and fourth lines are introduced later.

e ::= c | x | fun x => e0 | rec f x => e0 | e0 @ e1 | if e0 e1 e2

| channel() | fork e0 | send e0 e1 | receive e0

| c | fun x => e0 | rec f x => e0 | e0 @ e1 | if e0 e1 e2

| channel() | fork e0 | send e0 e1 | receive e0 | lift e

(3)

The language contains conditionals and the operator rec for recursive functions.
channel() denotes a function call which creates and returns a new channel
name k, different from all the existing ones. fork e0 creates a new process which
computes e0. send e0 e1 is the emission of the value of e1 on the channel resulting
from the evaluation of e0. e0 and e1 respectively are the subject and the object of
the communication. receive e0 is the reception of a value on the channel name
described by e0 (the subject of the reception). Values are in the domains of basic
types, channel names, or functions.

The input programs provided to the PE are annotated in order to indicate
which expressions can be executed at partial evaluation-time. The annotations
are computed by the BTA and extend the syntax of terms, yielding a two-
level language [7,15] described by the full grammar of Equation (3). Underlined
expressions are dynamic (of the second stage) while the other are static (of the
first stage). lift c translates a first order static constant into a dynamic one.

The partial evaluation of a two-level expression e is defined by P [[e]]ρ where ρ
is an environment containing global variables (of first and higher order) shared
by all the processes. When the PE, denoted CPev finds a free variable in the
program being partially evaluated, it looks for its value in ρ, which can be seen
as a global memory shared by all the processes and which is used to define all
auxiliary functions called by CPev.

When CPev finds an instruction fork e in the program being treated, it
creates a new process in which e is applied to a copy CPev’ of CPev. The programs
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P [[c]]ρ = c
P [[x]]ρ = ρ(x)

P [[fun x => e]]ρ = λv.P [[e{x← v}]]ρ
P [[rec f x => e]]ρ = λv.P [[e{x← v}{f ← rec f x => e}]]ρ
P [[(e0 @ e1)]]ρ = (P [[e0]]ρ) (P [[e1]]ρ)
P [[if e0 e1 e2]]ρ = if(P [[e0]]ρ)(P [[e1]]ρ)(P [[e2]]ρ)
P [[lift c]]ρ = build-const(c)

P [[channel()]]ρ = channel()
P [[fork e0]]ρ = fork (P [[e0]]ρ)

P [[receive e0]]ρ = receive (P [[e0]]ρ)
P [[send e0 e1]]ρ = send (P [[e0]]ρ) (P [[e1]]ρ)

P [[c]]ρ = build-const(c)
P [[fun x => e]]ρ = let nvar = newvar() in

build-fun(nvar,P [[e{x← nvar}]]ρ)
P [[rec f x => e]]ρ = build-rec(f, x,P [[e]]ρ)
P [[(e0 @ e1)]]ρ = build-app(P [[e0]]ρ,P [[e1]]ρ)
P [[if e0 e1 e2]]ρ = build-if(P [[e0]]ρ,P [[e1]]ρ,P [[e2]]ρ)
P [[channel()]]ρ = build-chan()
P [[fork e0]]ρ = build-fork(P [[e0]]ρ)

P [[receive e0]]ρ = build-rcv(P [[e0]]ρ)
P [[send e0 e1]]ρ = build-send(P [[e0]]ρ,P [[e1]]ρ)

Fig. 1. Evaluation rules of the partial evaluator

CPev and CPev’ are the same and call the same auxiliary functions. On the
contrary, when a function fun x => e is applied, the effective parameter is directly
substituted for x in e and ρ is left unchanged. This approach allows us to avoid
the problems related to name clashes in different processes, as well as problems
related to the closure of functions which have been communicated.

Note that we only define one kind of variables. In order to ensure that CPev
behaves correctly when an unknown variable x is found, we extend the environ-
ment ρ by ρ(x) = �x�, where �x� denotes the piece of code corresponding to the
variable x. Doing so, CPev builds a residual piece of code for each variable for
which the value is unknown at partial evaluation time.

In Figure 1, we describe the behavior of CPev. Functions written in small caps
correspond to operations of the meta-language which are used to implement
CPev. Actually, this language is the first-level language corresponding to the
first two lines of the grammar of Equation (3). It enables self-application of
the PE and makes CPev compatible with the Futamura’s projections [5], as
shown in [12]. The rules used to evaluate sequential expressions are usual, see
for instance [8]. P [[channel()]]ρ creates a new channel name. The evaluation of
P [[fork e]]ρ creates a new process which evaluates P [[e]]ρ in ρ. When a reception
P [[receive e]]ρ is found, e is evaluated in ρ, yielding a result α and, next, the
communication receive α is done. Similarly, for an emission �send e0 e1�,
the expressions e0 and e1 are evaluated and the results are used to realize the
communication.
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Server

Proc 1 Proc 2

1 2

3

p1 : let query = send γ1 request1 in

let α1 = receive γ1 in

send α1 data

p2 : let query = send γ2 request2 in

let α2 = receive γ2 in

receive α2

server : let c1 = receive γ1 in

let c2 = receive γ2 in

let α = channel() in

let foo = send γ1 α
in send γ2 α

Fig. 2. Creation of a communication link between two processes, via a server

For second-level expressions, the sub-expressions are partially evaluated and
a residual term is built. The functions of the form build-fun are auxiliary
functions used to build the residual terms. They are defined in the environment
ρ. In the next Section, we show how concurrent programs are partially evaluated
by CPev.

4 Experimental Results

Partial evaluation of concurrent programs allows one to execute at compile-time
the static communications of a distributed application. Here we describe some
experiments realized with our implementation of CPev.

Our first example is given by the program of Figure 2, in which two pro-
cesses p1 and p2 create a communication link between themselves by consulting
a server called s. p1 and p2 are linked to the server by channels γ1 and γ2. The
channel name used for the communications between p1 and p2 is provided by
the server and is named α1 in p1 and α2 in p2.

We show how the specialization of this application for a particular network,
i.e. in the case where the channels γ1 and γ2 are statically known and in which
the server is able to know at compile-time the communication link that must be
used for the communications between p1 and p2. The data exchanged between
the processes p1 and p2 are assumed to be unknown at partial evaluation time.

We model this application by the program on the next page, in which the
communication channels between the server s and the processes p1 and p2, as
well as the contents of the message, are provided as input parameters.

Since the variable data is assumed dynamic, the actual communication be-
tween p1 and p2 cannot be achieved at partial evaluation-time. This is indicated
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in the above program by the symbol preceeding the related communication
primitives. These annotations can be obtained by the BTA introduced in [12].

define p1-p2 = fun g1 g2 data ->

let p1 = fork (let query = send g1 p2Id in

let a1 = receive g1 in

_send a1 data)

in (* p2 *) (let query = send g2 p1Id in

let a2 = receive g2 in

_receive a2) ;

We specialize this program in a context where the channels γ1 and γ2 are
known and where the server is able to compute the communication link to be
used for the communications between p1 and p2. So, γ1 and γ2 are known names
and the program is encoded to be understood by the partial evaluator. In ad-
dition, we indicate that the variable data is unknown. Concurrently with the
partial evaluation of the program describing the processes p1 and p2, we run the
program corresponding to the server in order to allow the execution of the static
communications. This corresponds to the following commands (rewritten for a
better understanding).

> define ch1 = channel() ;

> define ch2 = channel() ;

> define p1-p2-encoded = encode p1-p2 with g1=ch1, g2=ch2, data=? ;

> run {let server = (fork (let c1 = receive ch1 in

let c2 = receive ch2 in

let p1p2Ch = channel() in

let foo1 = send ch1 p1p2Ch

in send ch2 p1p2Ch))

in CPev @ p1-p2-encoded} ;

During specialization, the processes p1 and p2 are created and the commu-
nications with the server are executed. So, the effective channel name used as
a communication link between p1 and p2, say #ch, is inserted in the code of
these processes. We obtain the encoding of two residual processes, related to the
specialized versions of p1 and p2 as shown hereafter.

{ send #ch data } | { receive #ch }

Our second example is given by the program of Figure 3, which describes
a system composed of two processes exchanging a message sliced into packets.
We assume the packets have a constant size and that their number depends on
the size of the message. The process p1 first sends to the process p2 the size of
the message (assumed, for the sake of simplicity, to be equal to the number of
packets) and, next, builds and sends the packets. The process p2 receives the
size of the message, realizes as many packet receptions as needed, and rebuilds
the message. We specialize this program for the particular case in which the
size of the message is known at partial evaluation time, but not the contents of
the message. For example, this happens in larger systems when the message is
defined by a reference on a memory zone declared by a malloc-like primitive.
The related annotations of the program are given in Figure 3 a). If we assume
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a)
p1 : let foo = send γ size

in (rec f m s →
if s=1 then

send (lift γ) (head @ m)
else

let foo = send (lift γ)
(head @ m)

in f @ (tail @ m) (s-1)
) @ msg size

p2 : let size = receive γ
in (rec g s →

if s=1 then

receive (lift γ)
else

let h= receive (lift γ)
in append @ h (g @ (s-1))

) @ size

b)
p1 : let symb1 = send γ (head @ msg)

in send γ (tail @ msg)
p2 : let symb2 = receive γ

in append @ symb2 (receive γ)

Fig. 3. Slicing of messages into packets of known size and unknown contents.
a) Annotated version of the program. b) Residual program obtained by partial
evaluation with size= 2

that the size of the message is 2, then Figure 3 b) shows the residual program
produced by our partial evaluator. The first communication concerning the size
of the message was executed and the loops were unrolled. Our last example is
given by the program of Figure 4 a) which describes a system with two processes
exchanging a message. When the message is received, a checksum is done. If the
test fails, which corresponds to a transmission error, a message is sent to the
emitter in order to indicate that the message must be sent again. Otherwise an
acknowledgment is sent to the emitter. We specialize this system for a particular
network which is assumed to be error free or to handle errors at some lower

a)

p1 : rec emitter γ →
let foo = send (lift γ) data in

let ack = receive γ in

if (error @ ack) then
emitter @ γ

else

lift ()

p2 : rec receiver γ →
let msg = receive (lift γ) in
let check = checksum @ msg in

let foo = send γ check in

if (error @ check) then
receiver @ γ

else

lift ()

b)
p1 : let symb1 = send γ data

in ()
p2 : let symb2 = receive γ

in ()

Fig. 4. Partial evaluation of a communication protocol with error detection. a)
Annotated version of the program. b) Residual program obtained assuming that
the network is error free
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layer of the transfer protocol. Thus, we assume that the checksum function
always indicates that the received message is correct. As shown is Figure 4 b),
we obtain by partial evaluation a new program in which the communications
related to the acknowledgments are removed.

5 Conclusion

In this article, we introduced a partial evaluator for programs written in a con-
current functional language and we presented and discussed the results obtained
for various small concurrent example programs.

The partial evaluator uses informations about the topology of the communi-
cations of the concurrent program. These informations are established using a
sophisticated control flow analysis. The quality of the CFA is crucial, since its
precision is directly related to the one of the BTA. The CFA we used is described
in [13].

Partial evaluation of concurrent systems allows the specialization of applica-
tions for particular execution contexts, as shown in the examples of Section 3,
i.e. assuming static knowledge of the network topology, or assuming some knowl-
edge on the message sizes or contents. Concerning this latter example, we showed
how to specialize a communication protocol by slicing messages into packets. The
specialization was for a fixed size of message. This approach was first introduced
by Muller et al. who used a partial evaluator to specialize the RPC protocol
(Remote Procedure Call) w.r.t. the kind of data transmitted [14]. However, due
to the fact that the partial evaluator used in [14] only reduced sequential pro-
grams, Muller et al. could not statically execute some communications and had
to use run-time specialization techniques instead [4]. Partial evaluation of the
communications, as proposed in this article, allows us to statically realize similar
specializations without using any additional techniques or knowledge.

Finally, note that our partial evaluator is compatible with Futamura’s pro-
jections [5] and automatic compiler generation by self-application of the partial
evaluator. The compiler generator related to Pev was obtained in [12], where it
is described in detail.
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