Cache Models for Iterative Compilation

Peter M. W. Knijnenburg!, Toru Kisuki', and Kyle Gallivan?

! LIACS, Leiden University, the Netherlands
{peterk,kisuki}@liacs.nl
2 Department of Computer Science, Florida State University, USA
gallivan@cs.fsu.edu

Abstract. Initerative compilation we search for the best program trans-
formations by profiling many variants and selecting the one with the
shortest execution time. Since this approach is extremely time consum-
ing, we discuss in this paper how to incorporate static models. We show
that a highly accurate model as a filter to profiling can reduce the num-
ber of executions by 50%. We also show that using a simple model to
rank transformations and profiling only those with highest ranking can
reduce the number of executions even further, in case we have a lim-
ited number of profiles at our disposal. We conclude that a production
compiler might perform best using the last approach.

1 Introduction

An important task of a compiler is to transform a source program into an efficient
variant for a specific target platform. Traditionally, compilers use static, simpli-
fied machine models and hardwired strategies to determine the order in which
to apply certain transformations and their parameter values, such as tile sizes or
unroll factors. However, actual machines and their back end compilers have so
complex an organization that this approach will likely not deliver optimal code.
In order to solve this problem, we have proposed iterative compilation where
many variants of the source program are generated and the best one is selected
by actually profiling these variants on the target hardware [7]. This framework
is essentially target neutral since it consists of a driver module that navigates
through the optimization space and a source to source restructurer that allows
the specification of the transformations it employs. The native compiler is used
as back end compiler and it is treated together with the platform as a black box.
We have shown [7] that this approach outperform existing static approaches sig-
nificantly, albeit at the price of being extremely time consuming. In this paper,
we propose to use static models that cover part of the behavior of the target plat-
form, to estimate the effect of transformations and to exclude transformations
that are likely to produce poor results. We distinguish two approaches.

Execution driven The driver searches through the optimization space and the
model is used to filter out bad candidate transformations during the search.
Only if the model predicts that a transformation may be better than the
best one found so far, profiling of the transformed program will take place.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 254-261, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Cache Models for Iterative Compilation 255

Model driven The models are used to rank a collection of transformations be-
fore any profiling takes place. Only the transformations with highest ranking
are profiled. The transformation that gives rise to the shortest execution time
is chosen.

We restrict attention to two well-known program transformations: loop tiling
[5,8] and unroll-and-jam [4]. Both transformations are targeted towards cache
exploitation. Unroll-and-jam, moreover, duplicates the loop body to expose more
instructions to the hardware that can be executed in parallel. These two trans-
formations, therefore, are highly interdependent and their compound result gives
rise to a highly irregular optimization space [3]. Since the dominant effect of the
transformations is their effect on cache behavior, static cache models are the
prime models of interest.

Recently, there have been approaches where the compiler searches the trans-
formation space using static models [4,13]. These approaches, however, do not
use profile information. Also, there have been several approaches to feedback
directed optimization, in which run time information is exploited to alter a pro-
gram [10]. We can distinguish between on-line and off-line approaches. On-line
approaches optimize at runtime or during the lifetime of a program [1,6,11]. Off-
line approaches include architectural tuning systems for BLAS [2,12] or DSP
kernels [9]. For embedded systems an off-line approach is best suited since high
compilation times can be amortized across the number of systems shipped.

This paper is organized as follows. In Section 2 we discuss the cache models
used, the iterative search algorithms and the benchmarks and platforms. In
Section 3 we discuss the performance of iterative compilation with cache models
and give a detailed analysis of the levels of optimization that can be reached
with a limited number of program executions. In section 4 we discuss the results
obtained in this paper and we draw some concluding remarks in section 5.

2 Experiment

Cache Models First, as an upperbound for the present approach, we use a full
level 1 cache simulator to compute hit rates. This model is too expensive to be
used in practice but we include it since it is more accurate than any other static
model. We interpret results obtained for the simulator as upperbound results
with which we can compare other models. Second, as a realistic case, we use a
simple model proposed by Coleman and McKinley [5] that uses an approximation
of the working set WS and selects the tile size giving rise to the largest working
set that still fits in the cache. In order for models to be effective, we assume that
they are far less costly to evaluate than profiling the program.

256 Peter M. W. Knijnenburg et al.

Execution driven search We consider the following two strategies.

— EXEC-CS A new point next is selected and evaluated if the cache hit rate
H (next) is within a factor « of the current best cache hit rate H(current).
By experimentation, we found that a slack factor a = 99.9% is optimal. The
search algorithm will stop after N combinations are executed.

current = initial transformation
REPEAT
next = next transformation
IF H(next) > o X H(current)
THEN ezecute(next)
IF ezec_time(next) < exec_time(current)
THEN current — next

— EXEC-CM is based on the Coleman/McKinley model [5]. C'S denotes the
cache size and WS is the working set of one tile. This strategy selects on
an lower and upper bound for the working set, so that only programs with
a large working set are profiled. By experimentation, we found that optimal

values are 5 = 40% and v = 50%.

current = initial transformation
REPEAT
next = next transformation
IF WS(next) > B x CS &&
WS(next) <~ x CS
THEN ezecute(next)
IF ezec_time(next) < exec_time(current)
THEN current = next

Model driven search We consider the following three strategies.

— MOD-CS1 First, we calculate the cache hit rate of a large collection of tile
sizes and unrolling factors using the cache simulator. The N combinations
with the highest hit rates are executed.

calculate cache hit rates
rank transformations on hit rate
current = best transformation

REPEAT
next = next best transformation
execute(next)

IF ezec_time(next) < exec_time(current)
THEN current = next

— MOD-CS2 We consider each unroll factor from 1 to 20 and compute the
cache hit rate for a large set of tile sizes and that unroll factor. Then, for
each unroll factor, the N/20 combinations with highest hit rate are selected
and executed.

Cache Models for Iterative Compilation 257

calculate cache hit rates
FOREACH Unroll Factor
rank transformations using hit rate
current = initial transformation
FOREACH Unroll Factor
next = next best for this unroll factor
execute(next)
IF exzec_time(next) < exec_time(current)
THEN current = next

— MOD-CM In this strategy, we select for each unroll factor the largest tile
size such that the working set WS is within v% of the cache size C'S. N/20
combinations with largest tile size are selected for each unroll factor.

current = initial transformation
FOREACH Unroll Factor
next = next largest tile size
s.t. WS(next) <y x CS
execute(next)
IF ezec_time(next) < exec_time(current)
THEN current = next

Benchmarks and Platforms The benchmarks considered are the most im-
portant and compute intensive kernels from multimedia applications. We use all
6 possible loop permutations of matrix-matrix multiplication on 3 data input
sizes of 256, 300 and 301. We use the 2 loop orders in matrix-vector multiplica-
tion on data input sizes 2048, 2300 and 2301. We use 6 loop orders in Forward
Discrete Cosine Transform (FDCT), one of the most important routines from
the low level bit stream video encoder H263. We also use the 6 variations of the
second main computation loop from FDCT that consists of a multiplication of a
transposed matrix. We use data input sizes of 256, 300 and 301. Finally, we use a
Finite Impulse Response filter (FIR), one of the most important DSP operations,
with data sizes of 8192, 8300 and 8301. We executed on the following platforms:
Pentium II, Pentium III, HP-PA 712, UltraSparc I. We used the native Fortran
compiler or g77, with full optimization on. Loop tiling uses tile sizes of 1 to 100,
and loop unrolling uses unroll factors of 1 to 20. We allow a maximum of 400
program executions.

3 Results

In this section we discuss the results we obtained for iterative compilation in-
corporating cache models. For practical purposes, it is important to restrict the
number of program executions to be small. To analyze the efficiency of itera-
tive compilation for this case, we use a trade-off graph [7]. This graph contains
a number of equi-optimization curves indicating the percentage of benchmarks
that reach a certain percentage of the maximal speedup as a function of the

number of program executions. The trade-off graph for the algorithm that only

258 Peter M. W. Knijnenburg et al.

uses profiles and no models and that is studied in [7], is depicted in Figure 1(a).
We call this algorithm the Execution-Only Algorithm (EO) and it is used as
the base case with which to compare the other algorithms. From this graph we
can deduce, for example, that after 100 executions, 48% of the benchmarks were
fully optimized and thus reached 100% of the maximal speedup. Likewise, af-
ter 50 executions, 77% of the benchmarks reached at least 90% of the maximal
speedup. After 20 executions, almost every benchmark reached at least 60% of
this speedup.

Execution driven search Inspecting Figures 1(a) and 1(b), we see that EXEC-
CS only needs about half as many executions as the Execution-Only Algorithm
and still obtains the same trade-off. For example, we can see that the levels
of optimization obtained after 25 program executions is about the same as the
levels of optimization obtained by EO after 50 executions, and likewise after 50
executions it is the same as EO obtains after 100 executions. Comparing the
trade-off graph for EXEC-CM in Figure 1(c) to the trade-off graph for EXEC-
CS in Figure 1(b), we see that for 10 to 30 program executions both strategies
perform equally well and improve the Execution-Only Algorithm substantially.
For more than 30 executions, EXEC-CS is superior to EXEC-CM.

Model driven search From Figure 1(d) it follows that for up to 10 executions,
the strategy MOD-CS1 is as effective as EXEC-CS. For more executions, EXEC-
CS is superior. This shows that a cache model that assumes that all memory
references go through the cache is not an adequate model for real platforms.
Moreover, the left-most point in the trade-off graph for EXEC-CS1 corresponds
to a strategy where we only use static model information, as is customarily done
in traditional compilers. It follows that such a strategy is not able to reach levels
of optimization that iterative compilation can.

In the strategies MOD-CS2 and MOD-CM we execute programs in batches
of 20 (one for each unroll factor). From Figure 1(e) it follows that MOD-CS2
performs equally well for 20 executions as EXEC-CS. It is inferior to EXEC-CS
for more executions. At the same time, it is superior to MOD-CS1 for every
number of execution that we would allow.

Finally, Figure 1(f) shows that MOD-CM is superior to EXEC-CS for 20
executions and reaches about the same levels of optimization for 40 executions.
Comparing the trade-off graphs from Figures 1(b) and 1(f), we see that after
20 executions using the MOD-CM strategy, we reach the same level of opti-
mization as EXEC-CS does after 30 to 40 executions. Comparing Figure 1(f) to
Figure 1(a), we see that these levels of optimization are reached in the Execution-
Only approach after about 70 executions. MOD-CM is also superior to EXEC-
CS1 and EXEC-CS2 for up to 80 executions. Only if we would allow 100 execu-
tions, these latter strategies prove to be better than MOD-CM. This shows that,
although it is only a crude approximation of the exact hit rate, the working set
size constraint is highly effective.

Cache Models for Iterative Compilation

100.00 —

90.00

Percentage of Benchmarks

30.00 —
20.00 —

10.00 —

0.00

& W o I ®

e £ 2 2 g2

2 2 2 2 @2

s & & & 3
T

—100% of EQ _|
- 95% of EQ

20 40
Number of Executions

(a) Execution-Only

100.00~

90.00 —

80.00 —

Percentage of Benchmarks

7000~ !

£
60.00 —
50.00 |-
40001 |

30.00 - |

—100% of EO

20.00 95% of EO |
90% of EQ
HEER
—-===-- 60% of EO
0.00 |- i
| | | | | |
0 20 40 60 80 100
Number of Executions
(c) EXEC-CM
T T T T T
100.00
90.00
, 80.00 } i
E 7000 | i
< -
5 Iy
£ 60.00 4
5
&
£ 50.00 il
g
5
& 4000 ® 60%O0fEO _|
o 70 % of EO
= 80% of EO
30.00 — A 90% of EO
4 95% of EO
o 100% of EO
20.00) |) -

40 60 80
Number of Executions

(e) MOD-CS2

100

100.00

90.00

80.00

2
S
2
S

S 60.00

50.00

< 40.00

Percentage of Benchmarks

w
S
2
S

20.00

10.00

0.00 —

| L | L
20 40 60 80 100

Number of Executions
(b) EXEC-CS

100.00 [T
90.00

80.00

& w o 3
S 2 2 g
2 2 2 2
s 3 3 2

Percentage of Benchmarks

w
e
2
=

—100% of EO _|
20.00 -'95% of EO
10.00 —
0.00 1, | | | | |]
0 20 40 60 80 100
Number of Executions
(d) MOD-CS1
T T T T T
100.00|_g---------- PO @ e P, -]
a
. - » - L]
90.00 | A
el
LA
AT LA
2 80.00 | L —
£ kT
= A -
g 70.00 | —
2 ® 60 % of EO
= o 70 % of EO
P m 80% of EO
& 60.00 A 90%of EO |
g A 95% of EO
o
E 50.00 | o 100% of EO B
40.00 |- —
30.00 || | | | =
20 40 60 80 100
Number of Executions
(f) MOD-CM

Fig. 1. Trade-off graphs

259

260 Peter M. W. Knijnenburg et al.

4 Discussion

In this paper we have discussed the inclusion of static cache models in iterative
compilation where the best optimization is found by using model information
and actual execution times.

First, profiling a number of programs with highest hit rates according to the
simulator (strategy MOD-CS1) is actually the worst strategy. This shows that a
static L1 cache simulator ignores many issues that are crucial for performance.
It also follows that a strategy that only uses static knowledge obtained from a
highly accurate cache model will be outperformed by iterative strategies that
also use profiling information.

Second, using an Execution driven approach, accurate cache models improve
the Execution-Only Algorithm substantially by reducing the number of execu-
tions by 50%. More accurate knowledge of the back end compiler and the target
platform, and a tight feedback between source level restructurer and code gen-
erator is required. Obviously, this connection makes the implementation of an
iterative compilation strategy more complex. Next, we have also shown that less
accurate models, like the working set size constraint, can be almost as effective
as a full cache simulator if only a limited number of up to 30 program executions
is allowed. This number seems reasonable in a production compiler where large
numbers of profiles would be too time consuming.

Third, comparing the Execution driven and Model driven approaches, we
have shown that for up to 20 profiles the Model driven approach can be supe-
rior. In fact, 20 profiles using the MOD-CM strategy gives the same levels of
optimization as the EXEC-CS strategy does after 30 to 40 profiles and as the
Execution-Only Algorithm does after about 70 executions, giving an improve-
ment of MOD-CM over EO of 70%. If we would allow more profiles, Execution
driven selection is superior. Summing up, we can produce the following ordering
of the search algorithms in terms of their efficiency after 20 and 40 executions.

20 execs. MOD-CM = EXEC-CS ~ DMOD-CS2 = EXEC-CM =
MOD-CS1

40 execs. EXEC-CS > MOD-CM > EXEC-CM > MOD-CS2 =
MOD-CS1

Next, we see that Model driven search is particularly effective for a small budget
of executions and, in particular, MOD-CM is a good strategy performing almost
as well as EXEC-CS. Since we expect that in a production compiler simple
models like this working set size constraint will be preferable to highly complex
models and that such a compiler would have a small budget for profiling, this
result indicates that in this situation a Model driven search procedure can be
preferable. Hence we believe that a good approach to implementing iterative
compilation in a production compiler will consists of ranking transformations
using simple models and profiling up to 20 candidates.

Cache Models for Iterative Compilation 261

5 Conclusion

In this paper we have discussed the inclusion of cache models in iterative compi-
lation where we search for the best optimization. We have considered Execution
driven and Model driven search strategies, based on two types of model. First,
we have shown that a highly accurate model alone and using no profiling is not
capable of producing levels of optimization as high as iterative compilation can.
Second, we have shown that Execution driven search using accurate models is
capable of reducing the number of required program executions by 50% and still
obtain the same levels of optimization as Execution-Only iterative compilation
does for any given budget of profiling. Third, we have shown that Model driven
search using a simple model can improve Execution-Only iterative compilation
by 70% in case there is a small budget of profiles. We conclude that, for a pro-
duction compiler that would likely prefer simple models and few profiles, Model
driven iterative compilation can be highly effective.

References

1. J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad. Fast,
effective dynamic compilation. In Proc. PLDI, pages 149-159, 1996. 255

2. J. Bilmes, K. Asanovi¢, C. W. Chin, and J. Demmel. Optimizing matrix multiply
using PHiPAC: A portable, high-performance, ANSI C coding methodology. In
Proc. 1CS, pages 340-347, 1997. 255

3. F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, and E. Rohou.
Iterative compilation in a non-linear optimisation space. In Proc. Workshop on
Profile and Feedback Directed Compilation, 1998. 255

4. S. Carr. Combining optimization for cache and instruction level parallelism. In
Proc. PACT, pages 238-247, 1996. 255

5. S. Coleman and K. S. McKinley. Tile size selection using cache organization and
data layout. In Proc. PLDI, pages 279-290, 1995. 255, 256

6. P. Diniz and M. Rinard. Dynamic feedback: An effective technique for adaptive
computing. In Proc. PLDI, pages 71-84, 1997. 255

7. T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’'Boyle. Combined selection of tile
sizes and unroll factors using iterative compilation. In Proc. PACT, pages 237246,
2000. 254, 257, 258

8. M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and opti-
mizations of blocked algorithms. In Proc. ASPLOS, pages 63-74, 1991. 255

9. B. Singer and M. Veloso. Learning to predict performance from formula modeling
and training data. In Proc. Conf. on Machine Learning, 2000. 255

10. M. D. Smith. Overcoming the challenges to feedback-directed optimization. In
Proc. Dynamo, 2000. 255

11. M. J. Voss and R. Eigenmann. ADAPT: Automated de-coupled adaptive program
transformation. In Proc. ICPP, 2000. 255

12. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In
Proc. Alliance, 1998. 255

13. M. E. Wolf, D. E. Maydan, and D.-K. Chen. Combining loop transformations
considering caches and scheduling. Int’l. J. of Parallel Programming, 26(4):479—
503, 1998. 255

	Cache Models for Iterative Compilation
	Introduction
	Experiment
	Cache Models
	Execution driven search
	Model driven search

	Benchmarks and Platforms
	Results
	Execution driven search
	Model driven search
	Discussion
	Conclusion

