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Abstract. We have implemented a virtual machine (VM) for Java which
executes on a cluster. Our cluster VM completely hides the cluster from
the application, presenting a single system image (SSI) (i.e., the appli-
cation sees a traditional virtual machine). At the same time it leverages
the cluster to achieve improved performance for a range of applications.
We show how the flexibility and constraints of the Java Virtual Ma-
chine (JVM) Specification [7] impacted the design of our cluster VM.
We describe issues related to class loading and distribution-aware imple-
mentations of the bytecodes. We also point out the limits on providing a
solution for completely transparent distribution of multi-threaded Java
applications if one does not modify the VM or the core classes.

1 Introduction

The Java Virtual Machine (JVM) Specification [7] is both abstract (i.e, the im-
plementation is not constrained) and complete (i.e., all externally visible effects
are totally specified). We have taken advantage of these two properties in im-
plementing a virtual machine (VM) for Java which executes on a cluster. Our
cluster VM hides the cluster from the application, presenting a single system im-
age (SSI) (i.e., the application sees a traditional virtual machine); at the same
time it leverages the cluster to improve performance for a range of applications.

By implementing a single system image of a VM on a cluster, we have learned
a great deal about the limits of solutions for distribution that do not change the
VM. Specifically, a solution that allows arbitrary multi-threaded, legacy applica-
tions to transparently leverage a cluster can be mostly built on top of an existing
JVM; however, certain critical changes must be made to the JVM and the core
classes to achieve complete SSI and to achieve acceptable performance.

We previously have introduced our cluster virtual machine (VM) for Java1

and presented detailed performance results [2]. Here, we put particular emphasis
on class loading because it is difficult to ensure SSI for class loading on a cluster.
In this context we show why SSI cannot be achieved without VM modifications.
We also discuss the get and put bytecodes as an examples of the bytecodes which
need cluster-aware implementations. A longer version of the paper discusses the
remaining bytecodes [1].
1 Previously known as “cJVM”.
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This work is interesting not only in its own right but also for what it tells
us about the JVM specification. Our observations include: 1) without modifying
the VM, one cannot provide SSI for class loading in a distributed VM implemen-
tation, 2) the flexibility inherent in opaque object references makes it easy to
hide the cluster from an application and 3) symbolic evaluation, which is made
possible by the complete specification of the behavior of the bytecodes, is useful
for eliminating the overhead of distribution and not only for verification and
traditional compiler optimizations.

The next section summarizes the architecture of our cluster VM. We discuss
class loading in Section 3 and the byecodes in Section 4. We give performance
results and describe the state of our prototype in Section 5. After discussing
related work in Section 6, we present our conclusions and discuss future work.

2 Architecture

Our cluster virtual machine runs on a collection of independent computers con-
nected by a fast interconnect. A cluster VM process resides on each computer.
Each process contains a subset of the application’s threads and objects. When
taken as a whole, the set of processes constitutes the VM.

Figure 1 shows the basic architecture of our system. The top half of the
figure shows the application’s perspective; from this point of view, the cluster
is completely hidden and we present a complete single system image (SSI). The
lower half of the figure shows the implementation of our virtual machine. The
implementation is aware of the cluster.

The implementation distributes objects and threads. To allow access to an
object located on another node we use proxies. This applies to all objects includ-
ing class objects and threads. The master is the object’s authoritative copy and
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Fig. 1. Architecture of our cluster VM for Java
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in general exists where the object was initially created - the master node. Note,
the location of the master of an instance object is independent of the master
node for the instance’s class.

Every object has one master and possibly multiple proxies. We have devel-
oped smart proxies [2] which enable us to hide the master-proxy distinction
from the application. Smart proxies also support caching and other behaviors
beyond simply remoting an access to the master. Smart proxies work by allowing
multiple implementations of a method to be associated with a single class.

Object placement is determined at run time on a per-instance basis and is
driven by actual run-time usage. In addition to placing individual objects, we
also replicate both objects and individual fields (see [2]).

We distribute computation using two mechanisms. First, when a thread is
created, we decide, based upon a pluggable load balancing function, where the
thread should be created. Second, our default means of accessing a remote object
is method shipping, whereby we bring the thread to the master of the object it
is accessing. Note, as we describe in [2], we do not always use method shipping.

3 Class Loading

Class loading2 is complicated in a cluster-aware implementation of a virtual
machine. On the one hand, in a shared-nothing distributed implementation,
such as ours, for performance reasons the code for a given class needs to be
locally available on all nodes where it will be executed; remotely accessing the
code would add too great overhead. Replicating the code requires replicating the
internal data structures of the class such as method blocks, run-time constant
pool, etc. On the other hand, as we elaborate below, it violates SSI, and thus
is incorrect, to allow each node to independently load each class it needs to
execute. Our focus for class loading is on functional correctness, i.e., SSI, and
not performance; we assume that the cost will be amortized over a significant
period of usage.

Class loading consists of the steps shown in the leftmost column of Table 1.
While some of the these steps are idempotent, most are not. For those steps
which are not idempotent, executing the step on each node independently, i.e.,
more than once, violates SSI. The third column explains how each step impacts
the ability to achieve SSI in an implementation of a cluster VM.

The fact that application code can be involved in class loading, via an ap-
plication class loader, is one of the prime reasons that SSI for class loading is
impossible to achieve without VM modifications. For instance, the application
can be aware of how frequently it is called, and thus, can detect if it is called a
different number of times than on a traditional implementation.

The problems that can occur when each node loads classes independently
show the limitations in providing complete SSI using a framework implemented
in Java. Because all frameworks for distributed programming in Java [11,12,14]
2 We use the phrase “class loading” generically to refer to the three steps of loading,
linking and initializing.
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Table 1. Phases of class loading and their impact on SSI

Step Impact Explanation

find
external
rep-
resen-
tation
(load-
ing)

not idem-
potent

Since the external representation may change over time, load-
ing it independently on multiple nodes can lead to different
representations being loaded which would violate SSI. In addi-
tion, since this function is performed by the method loadClass

which can be overridden by the application, the application can
be aware of how many times the external representation is re-
quested.

create
internal
rep-
resen-
tation
(load-
ing)

idem-
potent

The internal representation depends only upon the exter-
nal representation. While this function is performed by
ClassLoader.defineClass which an application class loader
can override, the internal representation is created by the
(native) implementation provided by the VM as part of
java.lang.ClassLoader; thus, the application need not be
aware how many times an internal representation is created.

create
Class

object
(loading)

not idem-
potent

There must be a single master copy of the class object on one
node, with other nodes having proxies. The VM-provided imple-
mentation of ClassLoader.resolveClass performs this func-
tion.

verify
(linking)

idem-
potent

Verification depends only upon the internal representation. The
VM-provided implementation of ClassLoader.resolveClass

performs this function.

prepare
(linking)

not idem-
potent

Executing this step more than once could allow an application
to see the default value on one node after the application ini-
tialized the class and wrote a value on another node. The VM-
provided implementation of ClassLoader.resolveClass pro-
vides this function.

resolve
(linking)

idem-
potent

Given the same internal representations two nodes will reach
the same conclusion in resolving a symbolic constant pool entry.

initialize not idem-
potent

Executing <clinit> more than once violates SSI. It can break
memory coherence (e.g., an application seeing the result of the
class initialization on one node after it wrote a value on another
node), and the application can count how many times the class
initializer executed.

independently load a class on every node where it is used, they are inherently
limited in how close they can come to achieving a single system image.

If one is willing to work at the VM level, there are several ways to support SSI
for class loading. The approach we took is to use the mechanisms as implemented
in a JVM for a traditional platform, modifying the way these mechanisms are
invoked to address the issues from Table 1. One alternative is to completely
load the class on one node and then transfer the internal representation to the
other nodes. While we experimented with this alternative, it has two difficulties.
The first, purely technical issue, is that due to the complicated graph structures
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and inter-class references, it is hard to cleanly determine which data needs to be
replicated and how to copy this data. The second is that given the lazy nature of
some of the steps of class loading it is unclear when the class should be replicated.

The master node for a class C is the node which is the master for the class
loader LC which is to be used to load C; for system classes we use an arbitrary
fixed node as the master. In our approach, the master executes those aspects
of class loading which are not idempotent. All nodes that use the class execute
those aspects which are idempotent. Other than the master, a node loads a class
when it first needs the class, e.g., to create an instance (either master or proxy);
the master loads the class the first time it is needed by any node in the cluster.
The master is also the authoritative source for values of static fields; although,
we do make extensive use of caching (see [2]).

When the master node loads a class, it follows the same flow as a traditional
JVM implementation. The interesting scenario is when a node np, which will have
a proxy of class C needs to load C. In this case, np sends a message to node nm,
the master node for LC . nm will be the master for C. The message requests that,
unless the class is already loaded, nm call loadClass on LC to load the class.
This eventually leads to a call to defineClass on java.lang.ClassLoader;
defineClass is passed the binary image of the external representation for the
class. Node nm completes the processing of the message by returning the binary
image to np.3. Node np then calls the implementation of the defineClass from
java.lang.ClassLoader to create the internal representation on np.

We also modify defineClass to analyze the method’s bytecodes; this analysis
is used to construct the smart proxy implementations. We perform this analysis
on each node in our implementation; although depending upon the tradeoffs
between computation and communication, we could perform this analysis only
on the master and send the results to the proxies.

Once the internal representation is created, the class needs to be linked, i.e.,
verified, prepared and possibly resolved. The class’s master executes the normal
flow to verify the class. On a node containing a proxy, we have two options
depending upon relative costs. We can either verify the class (which is correct
but expensive) or send a message to the master requesting that it link (and
verify) the class. We are currently experimenting with local verification.

To support caching, we allocate memory in proxies of Class objects as well
as in the master.4 Thus, we prepare the static fields on all nodes. Preparation,
however, is not idempotent; we address this problem by being careful in how
we read and write static fields. In particular, a proxy node prior to reading a
local copy of static field will pull the value of the field from the master, after
either verifying that the master has been initialized or initializing the master if
necessary. Any writes to the static field are always performed at the master and
invalidate any cached copies of that field.
3 To allow returning the external representation even if the class was already loaded,
we persistently associate the external representation with the class object.

4 To be precise, to support caching we allocate memory in all proxies.
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We ensure that classes are initialized at most once by only running class
initializers on the class’s master node. We mark a proxy as initialized only after
its master has been initialized.

Resolution in our implementation occurs on-demand and not during the link-
age phase. Resolution is idempotent, since all nodes see a consistent view of the
internal representation of classes and since classes are initialized at most once.

Since all classes loaded by a given class loader have the same master node,
we have a potential bottleneck which can have two embodiments: accesses to
static fields and static method invocations. By default we ship accesses to a
proxy’s fields and invocations of its methods to the master; however, we avoid
these bottlenecks by providing heavy caching of static fields and executing static
methods directly on the proxy.

4 Bytecodes

In building a cluster virtual machine – a virtual machine which looks to the appli-
cation like a traditional JVM – a critical aspect is determining which bytecodes
need to have a cluster-aware implementation. For lack of space this section looks
only at put/get bytecodes showing how they are made cluster-aware and how
they can be optimized for performance. The interested reader is refered to [1] for
full discussion on other bytecodes such as object creation, method invocation,
exception throwing and handling and synchronization.

4.1 Accessibility

Our master-proxy model provides accessibility to objects independent of their
physical location. In more detail, the implementation of all gets and puts con-
tains a barrier which determines if the operation is being performed on a master
or a proxy as shown:

ObjectRef o = popStack();
if (cJVM_isMaster(o)) // barrier

<do normal flow>
else

<perform Remote Bytecode (RBC) >

As shown, if the operation is being performed on the master, the operation
proceeds as in a traditional implementation of the JVM. To handle operations
performed on a proxy, we have implemented a remote bytecode (RBC) mecha-
nism to send a message to the master node for the target object; a server thread,
which is part of our cluster VM implementation, handles this message.

4.2 Performance

The reason we changed the VM to support get and put operations on a cluster
was performance. As we described above, to support remote accesses, we need
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to determine if an instance is a master or a proxy. We cannot make this deter-
mination by using different classes for the master and proxy, or by adding a field
to flag the object as proxy, as the introspection APIs would make this visible
to the application, violating SSI. In our VM, we made this determination by
modifying the implementation of the handle, the mechanism used by the JVM
to reference the object. If we modify neither the VM nor the core classes, we
will need to access an auxiliary data structure to determine if the object is a
master or a proxy. It is fairly obvious that such overhead would be completely
unacceptable.

Furthermore, simply modifying the VM is insufficient to achieve good per-
formance. The algorithms described above have three performance aspects that
require further consideration. First, we need to ensure that execution of a re-
mote bytecode is rare. Second, we need to ensure that we do not pay too great
overhead for the barriers.5 Third, we need to reduce the cost of a RBC.

Given our use of method shipping, we only access a field of a proxy if an
application makes an unencapsulated access. Method shipping ensures that en-
capsulated accesses are executed against the master. Thus, well-structured code
should have only a small number of remote gets and puts.

To reduce the number of remote accesses further, we employ several caching
mechanisms. First, we cache all final fields. We also cache all static fields based
upon the empirical observation that these fields are rarely modified [2]. Finally,
we replicate fields which we heuristically determine to be effectively read-only,
i.e., we believe they will not be written in the given run of the program.

The use of barriers can be greatly reduced, at least for getfield and
putfield, given the observation that most accesses are encapsulated; [5] made
a similar observation. The target object of an encapsulated access is the this
reference which is specified to be stored in the zeroth local variable. Therefore,
for code executed against masters, if we prove that the access is targeted against
the zeroth local variable, we can eliminate the barrier.6

Proving that the target of getfield is this is fairly easy. Assuming no prior
astore 0, the target of the getfield is this in the following code snippets:

aload_0
getfield

or

aload_0
dup
getfield

These and other very simple pattern-based, static analyses account for any-
where from 64% to 80% of the occurrences of getfield as measured for our
5 As was observed in the field of garbage collection [6], read barriers can be pro-
hibitively expensive.

6 In implementation terms, one way to eliminate barriers is in a JIT which generates
different code depending upon whether a barrier is needed.
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Table 2. Description of Benchmarks

Program Description

pBOB A business logic kernel. Creates m threads which generate trans-
actions concurrently. m = 4 is used for measurements.

N-Body Simulates the motion of n particles due to gravitational forces,
over ts number of simulation time steps, using m threads. n =
640, m = 4 and ts = 10 are used for measurements

TSP Find, in parallel, the shortest route among n cities using m
threads. n = 14 and m = 4 are used for measurements
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Fig. 2. Speedup and Efficiency

benchmark applications (set Table 2) and around 75% of the getfields in the
Spec98JVM benchmarks [13]. Based upon dynamic data collected from an in-
strumented JVM, roughly 85% of the uses of getfield are for the this pointer.

5 Status

Our cluster VM for Java prototype runs on a cluster of IntelliStations running
Windows NT and connected via a Myrinet fast switch [10]. In our prototype
we have modified the interpreter loop of the Sun reference implementation of
JDK 1.2; we have implemented all of the features we described except for some
aspects of class loading and this elimination. Even though our prototype runs
on Windows NT, our code is not NT specific and can easily be ported to other
operating systems.

We have run several benchmarks as shown in Table 2.7 Figure 2 shows the
speedup and the efficiency for each of these benchmarks.
7 Detailed description of the benchmarks can be found in [2]
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6 Related Work

The tools and infrastructure supporting Java applications on a cluster range
from completely explicit solutions to implicit solutions similar to our VM. Ex-
plicit approaches [14,12,11,3] assume multiple JVMs, handling remote objects
and threads at the level of the Java frameworks. To varying degrees, these frame-
works do not support SSI, e.g., the reflection APIs can detect proxies, local and
remote method invocations have slightly different semantics, class loading does
not present a single system image, etc.

In contrast with the aforementioned frameworks, are approaches based upon
modified VMs. Those that we are aware of (other than ours) either build upon
underlying support to hide the cluster and/or extend the semantics of Java.

Hicks, et al., [5] support distributed Java applications by extending Java with
specialized operations to create remote objects. This work has a great deal of
similarity to our work. For example, they only run class initializers on one node
(although it is unclear how they load classes on other nodes); they use method
shipping and avoid barriers prior to method invocations through the use of mul-
tiple method tables; and they use barriers prior to get/put instructions except
for encapsulated accesses (although they do not make use of caching in proxies).
However, our goals were slightly different – they aimed to support distributed
applications written in extended Java whereas we aimed to push the limits of
transparently distributing unmodified, multi-threaded Java applications.

JESSICA [8] is a modified JVM focusing on thread migration for purposes
of load balancing. While it leveragess the semantics of the language to achieve
a single system image, performance in JESSICA is obtained from a low-level,
usage-neutral DSM system and not by leveraging the JVM semantics.

Hyperion [9] is an implementation of a JVM on top of an object-based,
distributed shared memory. It is based on an object shipping model in which a
copy of a remote object is brought to the accessing node. The accessing node
uses this local cached copy which is written back to the origin at synchronization
points. It should be contrasted to our use of method shipping enhanced by
caching provided by smart proxies.

7 Conclusion and Future Work

This paper has described how we have leveraged the flexibility of the JVM
specification to provide an efficient implementation of a VM on a cluster e.g.,
by the use of opaque object references as opposed to memory addresses and the
use of symbolic evaluation to eliminate barriers.

We have also described the extent to which it is required to modify the VM
or core classes to provide a solution for distributing an application with 100%
transparency. Our analysis showed that primarily due to the presence of appli-
cation class loaders, without modifying the VM, one cannot provide a SSI for
class loading. We described our approach for class loading based upon leveraging
the mechanisms from a non-distributed JVM implementation, but changing the
way these mechanisms are used to avoid problems of non-idempotence.
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Our approach to implementing a cluster VM for Java was invasive, changing
the implementation of the bytecodes and classloading. While such an approach
promises maximum performance (e.g., take advangate of semantics) it has down-
sides in terms of a propriety implementation of an entire VM, poor portability,
and the necessity for multiple implementations for both an interpreter loop and
a JIT. In this context, we are now considering an alternative approach that will
replace the implementation of bytecode with techniqes such as aggressive code
rewriting (e.g., as in JavaParty [11]), a Java utility class with native support to
access the cluster (e.g., as in [3,4]) or a compiler-based approach to access the
cluster directly (e.g., as in JaguarVIA [15]).
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