
An Improved Pseudo-random Generator
Based on Discrete Log

Rosario Gennaro

IBM T.J.Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598,
rosario@watson.ibm.com

Abstract. Under the assumption that solving the discrete logarithm
problem modulo an n-bit prime p is hard even when the exponent is a
small c-bit number, we construct a new and improved pseudo-random bit
generator. This new generator outputs n − c − 1 bits per exponentiation
with a c-bit exponent.
Using typical parameters, n = 1024 and c = 160, this yields roughly 860
pseudo-random bits per small exponentiations. Using an implementation
with quite small precomputation tables, this yields a rate of more than 20
bits per modular multiplication, thus much faster than the the squaring
(BBS) generator with similar parameters.

1 Introduction

Many (if not all) cryptographic algorithms rely on the availability of truly ran-
dom bits. However perfect randomness is a scarce resource. Fortunately for al-
most all cryptographic applications, it is sufficient to use pseudo-random bits,
i.e. sources of randomness that “look” sufficiently random to the adversary.
This notion can be made more formal. The concept of cryptographically

strong pseudo-random bit generators (PRBG) was introduced in papers by Blum
and Micali [4] and Yao [20]. Informally a PRBG is cryptographically strong if it
passes all polynomial-time statistical tests or, in other words, if the distribution
of sequences output by the generator cannot be distinguished from truly random
sequences by any polynomial-time judge.
Blum and Micali [4] presented the first cryptographically strong PRBG un-

der the assumption that modular exponentiation modulo a prime p is a one-way
function. This breakthrough result was followed by a series of papers that cul-
minated in [8] where it was shown that secure PRBGs exists if any one-way
function does.
To extract a single pseudo-random bit, the Blum-Micali generator requires a

full modular exponentiation in Z∗
p . This was improved by Long and Wigderson

[14] and Peralta [17], who showed that up to O(log log p) bits could be extracted
by a single iteration (i.e. a modular exponentiation) of the Blum-Micali genera-
tor. H̊astad et al. [10] show that if one considers discrete-log modulo a composite
then almost n/2 pseudo-random bits can be extracted per modular exponentia-
tion.

M. Bellare (Ed.): CRYPTO 2000, LNCS 1880, pp. 469–481, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

470 Rosario Gennaro

Better efficiency can be gained by looking at the quadratic residuosity prob-
lem in Z∗

N where N is a Blum integer (i.e. product of two primes of identical
size and both ≡ 3 mod 4.) Under this assumption, Blum et al. [3] construct a
secure PRBG for which each iteration consists of a single squaring in Z∗

N and
outputs a pseudo-random bit. Alexi et al. [2] showed that one can improve this to
O(log logN) bits and rely only the intractability of factoring as the underlying
assumption. Up to this date, this is the most efficient provably secure PRBG.
In [16] Patel and Sundaram propose a very interesting variation on the Blum-

Micali generator. They showed that if solving the discrete log problem modulo
an n-bit prime p is hard even when the exponent is small (say only c bits long
with c < n) then it is possible to extract up to n−c−1 bits from one iteration of
the Blum-Micali generator. However the iterated function of the generator itself
remains the same, which means that one gets n − c − 1 bits per full modular
exponentiations. Patel and Sundaram left open the question if it was possible
to modify their generator so that each iteration consisted of an exponentiation
with a small c-bit exponent. We answer their question in the affirmative.

Our Contribution. In this paper we show that it is possible to construct a
high-rate discrete-log based secure PRBG. Under the same assumption intro-
duced in [16] we present a generator that outputs n − c − 1 bits per iteration,
which consists of a single exponentiation with a c-bit exponent.
The basic idea of the new scheme is to show that if the function f : {0, 1}c −→

Z∗
p defined as f(x) = g

x mod p is is a one-way function then it also has also strong
pseudo-randomness properties over Z∗

p . In particular it is possible to think of it as
pseudo-random generator itself. By iterating the above function and outputting
the appropriate bits, we obtain an efficient pseudo-random bit generator.
Another attractive feature of this generator (which is shared by the Blum-

Micali and Patel-Sundaram generators as well) is that all the exponentiations
are computed over a fixed basis, and thus precomputation tables can be used to
speed them up.
Using typical parameters n = 1024 and c = 160 we obtain roughly 860

pseudo-random bits per 160-bit exponent exponentiations. Using the precompu-
tation scheme proposed in [13] one can show that such exponentiation will cost
on average roughly 40 multiplications, using a table of only 12 Kbytes. Thus we
obtain a rate of more than 21 pseudo-random bits per modular multiplication.
Different tradeoffs between memory and efficiency can be obtained.

2 Preliminaries

In this section we summarize notations, definitions and prior work which is
relevant to our result. In the following we denote with {0, 1}n the set of n-bit
strings. If x ∈ {0, 1}n then we write x = xnxn−1 . . . x1 where each xi ∈ {0, 1}. If
we think of x as an integer then we have x =

∑
i xi2i−1 (that is xn is the most

significant bit). With Rn we denote the uniform distribution over {0, 1}n.

An Improved Pseudo-random Generator Based on Discrete Log 471

2.1 Pseudo-random Number Generators

Let Xn, Yn be two arbitrary probability ensembles over {0, 1}n. In the following
we denote with x← Xn the selection of an element x in {0, 1}n according to the
distribution Xn.
We say that Xn and Yn have statistical distance bounded by ∆(n) if the

following holds:
∑

x∈{0,1}n

|ProbXn [x]− ProbYn [x]| ≤ ∆(n)

We say that Xn and Yn are statistically indistinguishable if for every polynomial
P (·) and for sufficiently large n we have that

∆(n) ≤ 1
P (n)

We say that Xn and Yn are computationally indistinguishable (a concept intro-
duced in [7]) if any polynomial time machine cannot distinguish between samples
drawn according to Xn or according to Yn. More formally:

Definition 1. Let Xn, Yn be two families of probability distributions over {0, 1}n.
Given a Turing machine D consider the following quantities

δD,Xn
= Prob[x← Xn ; D(x) = 1]

δD,Yn
= Prob[y ← Yn ; D(y) = 1]

We say that Xn and Yn are computationally indistinguishable if for every prob-
abilistic polynomial time D, for every polynomial P (·), and for sufficiently large
n we have that

|δD,Xn
− δD,Yn

| ≤ 1
P (n)

We now move to define pseudo-random number generators [4,20]. There are
several equivalent definitions, but the following one is sufficient for our purposes.
Consider a family of functions

Gn : {0, 1}kn −→ {0, 1}n

where kn < n. Gn induces a family of probability distributions (which we denote
with Gn) over {0, 1}n as follows

ProbGn [y] = Prob[y = Gn(s) ; s← Rkn]

Definition 2. We say that Gn is a cryptographically strong pseudo-random
bit generator if the function Gn can be computed in polynomial time and the
two families of probability distributions Rn and Gn are computationally indis-
tinguishable.

The input of a pseudo-random generator is usually called the seed.

472 Rosario Gennaro

2.2 Pseudo-randomness over Arbitrary Sets

Let An be a family of sets such that for each n we have 2n−1 ≤ |An| < 2n (i.e.
we need n bits to describe elements of An). We denote with Un the uniform
distribution over An . Also let kn be a sequence of numbers such that for each
n, kn < n. Consider a family of functions

AGn : {0, 1}kn −→ An

AGn induces a family of probability distributions (which we denote with AGn)
over An as follows

ProbAGn [y] = Prob[y = AGn(s) ; s← Rkn]

Definition 3. We say that AGn is a cryptographically strong pseudo-random
generator over An if the function AGn can be computed in polynomial time and
the two families of probability distributions Un and AGn are computationally
indistinguishable.

A secure pseudo-random generator over An is already useful for applications in
which one needs pseudo-random elements of that domain. Indeed no adversary
will be able to distinguish if y ∈ An was truly sampled at random or if it was
computed as AGn(s) starting from a much shorter seed s. An example of this is
to consider An to be Z∗

p for an n-bit prime number p. If our application requires
pseudo-random elements of Z∗

p then such a generator would be sufficient.
However as bit generators they may not be perfect, since if we look at the

bits of an encoding of the elements of An, then their distribution may be biased.
This however is not going to be a problem for us since we will use pseudo-random
generators over arbitrary sets as a tool in the proof of our main pseudo-random
bit generator.

2.3 The Discrete Logarithm Problem

Let p be a prime. We denote with n the binary length of p. It is well known that
Z∗

p = {x : 1 ≤ x ≤ p− 1} is a cyclic group under multiplication modp. Let g be
a generator of Z∗

p . Thus the function

f : Zp−1 −→ Z∗
p

f(x) = gx mod p

is a permutation. The inverse of f (called the discrete logarithm function) is
conjectured to be a function hard to compute (the cryptographic relevance of
this conjecture first appears in the seminal paper by Diffie and Hellman [5]
on public-key cryptography). The best known algorithm to compute discrete
logarithms is the so-called index calculus method [1] which however runs in time
sub-exponential in n.

An Improved Pseudo-random Generator Based on Discrete Log 473

In some applications (like the one we are going to describe in this paper)
it is important to speed up the computation of the function f(x) = gx. One
possible way to do this is to restrict its input to small values of x. Let c be a
integer which we can think as depending on n (c = c(n)). Assume now that we
are given y = gx mod p with x ≤ 2c. It appears to be reasonable to assume that
computing the discrete logarithm of y is still hard even if we know that x ≤ 2c.
Indeed the running time of the index-calculus method depends only on the size
n of the whole group. Depending on the size of c, different methods may actually
be more efficient. Indeed the so-called baby-step giant-step algorithm by Shanks
[12] or the rho algorithm by Pollard [18] can compute the discrete log of y in
O(2c/2) time.
Thus if we set c = ω(log n), there are no known polynomial time algorithms

that can compute the discrete log of y = gx mod p when x ≤ 2c. In [16] it is
explicitly assumed that no such efficient algorithm can exist. This is called the
Discrete Logarithm with Short c-Bit Exponents (c-DLSE) Assumption and we
will adopt it as the basis of our results as well.

Assumption 1 (c-DLSE [16]) Let PRIMES(n) be the set of n-bit primes
and let c be a quantity that grows faster than log n (i.e. c = ω(log n)). For every
probabilistic polynomial time Turing machine I, for every polynomial P (·) and
for sufficiently large n we have that

Pr

p← PRIMES(n);
x← Rc;
I(p, g, gx, c) = x

 ≤ 1

P (n)

This assumption is somewhat supported by a result by Schnorr [19] who proves
that no generic algorithm can compute c-bits discrete logarithms in less than
2c/2 generic steps. A generic algorithm is restricted to only perform group oper-
ations and cannot take advantage of specific properties of the encoding of group
elements.
In practice, given today’s computing power and discrete-log computing al-

gorithms, it seems to be sufficient to set n = 1024 and c = 160. This implies a
“security level” of 280 (intended as work needed in order to “break” 160-DLSE).

2.4 Hard Bits for Discrete Logarithm

The function f(x) = gx mod p is widely considered to be one-way (i.e. a function
easy to compute but not to invert). It is well known that even if f is a one-way
function, it does not hide all information about its preimages. For the specific
case of the discrete logarithm, it is well known that given y = gx mod p it is easy
to guess the least significant bit of x ∈ Zp−1 by testing to see if y is a quadratic
residue or not in Z∗

p (there is a polynomial-time test to determine that).
A Boolean predicate Π is said to be hard for a one-way function f if any

algorithm A that given y = f(x) guesses Π(x) with probability substantially
better than 1/2, can be used to build another algorithm A′ that on input y
computes x with non-negligible probability.

474 Rosario Gennaro

Blum and Micali in [4] prove that the predicate

Π : Zp−1 −→ {0, 1}

Π(x) = (x ≤ p− 1
2
)

is hard for the discrete logarithm function. Recently H̊astad and Näslund [9]
proved that every bit of the binary representation of x (except the least signifi-
cant one) is hard for the discrete log function.
In terms of simultaneous security of several bits, Long and Wigderson [14]

and Peralta [17] showed that there are O(log log p) predicates which are simul-
taneously hard for discrete log. Simultaneously hard means that the whole col-
lection of bits looks “random” even when given y = gx. A way to formalize this
(following [20]) is to say that it is not possible to guess the value of the jth

predicate even after seeing gx and the value of the previous j−1 predicates over
x. Formally: there exists O(log log p) Boolean predicates

Πi : Zp−1 −→ {0, 1} for i = 1, . . . , O(log log p)

such that for every 1 ≤ j ≤ O(log log p), if there exists a probabilistic polynomial-
time algorithm A and a polynomial P (·) such that

Prob[x← Zp−1 ; A(gx, Π1(x), . . . , Πj−1(x)) = Πj(x)] ≥ 12 +
1

P (n)

then there exists a probabilistic polynomial time algorithm A′ which on input
gx computes x with non-negligible probability.

2.5 The Patel-Sundaram Generator

Let p be a n-bit prime such that p ≡ 3 mod 4 and g a generator of Z∗
p . Denote

with c a quantity that grows faster than log n, i.e. c = ω(log n).
In [16] Patel and Sundaram prove that under the c-DLSE Assumption the

bits x2, x3, . . . , xn−c are simultaneously hard for the function f(x) = gx mod p.
More formally1:

Theorem 1 ([16]). For sufficiently large n, if p is a n-bit prime such that
p ≡ 3 mod 4 and if the c-DLSE Assumption holds, then for every j, 2 ≤ j ≤ n−c,
for every polynomial time Turing machine A, for every polynomial P (·) and for
sufficiently large n we have that

|Prob[x← Zp−1 ; A(gx, x2, . . . , xj−1) = xj]− 12 | ≤
1

P (n)

1 We point out that [16] requires that p be a safe prime, i.e. such that (p − 1)/2 is
also a prime; but a close look at their proof reveals that p ≡ 3 mod 4 suffices.

An Improved Pseudo-random Generator Based on Discrete Log 475

We refer the reader to [16] for a proof of this Theorem.
Theorem 1 immediately yields a secure PRBG. Start with x(0) ∈R Zp−1.

Set x(i) = gx(i−1)
mod p. Set also r(i) = x

(i)
2 , x

(i)
3 , . . . , x

(i)
n−c. The output of the

generator will be r(0), r(1), . . . , r(k) where k is the number of iterations.
Notice that this generator outputs n− c− 1 pseudo-random bits at the cost

of a modular exponentiation with a random n-bit exponent.

3 Our New Generator

We now show that under the DLSE Assumption it is possible to construct a
PRBG which is much faster than the Patel-Sundaram one. In order to do this
we first revisit the construction of Patel and Sundaram to show how one can
obtain a pseudo-random generator over Z∗

p × {0, 1}n−c−1.
Then we construct a function from Zp−1 to Z∗

p which induces a pseudo-
random distribution over Z∗

p . The proof of this fact is by reduction to the security
of the modified Patel-Sundaram generator. This function is not a generator yet,
since it does not stretch its input.
We finally show how to obtain a pseudo-random bit generator, by iterating

the above function and outputting the appropriate bits.

3.1 The Patel-Sundaram Generator Revisited

As usual let p be a n-bit prime, p ≡ 3 mod 4, and c = ω(log n). Consider the
following function (which we call PSG for Patel-Sundaramam Generator):

PSGn,c : Zp−1 −→ Z∗
p × {0, 1}n−c−1

PSGn,c(x) = (gx mod p, x2, . . . , xn−c)
That is, on input a random seed x ∈ Zp−1, the generator outputs gx and n−c−1
consecutive bits of x, starting from the second least significant.
An immediate consequence of the result in [16], is that under the c-DLSE

assumption PSGn,c is a secure pseudo-random generator over the set Z∗
p ×

{0, 1}n−c−1. More formally, if Un is the uniform distribution over Z∗
p , then the

distribution induced by PSGn,c over Z∗
p × {0, 1}n−c−1 is computationally indis-

tinguishable from the distribution Un ×Rn−c−1.
In other words, for any probabilistic polynomial time Turing machine D, we

can define

δD,URn = Prob[y ← Z∗
p ; r ← Rn−c−1 ; D(y, r) = 1]

δD,PSGn,c = Prob[x← Zp−1 ; D(PSGn,c(x)) = 1]
then for any polynomial P (·) and for sufficiently large n, we have that

|δD,URn − δD,PSGn,c | ≤
1

P (n)

In the next section we show our new generator and we prove that if it is not
secure that we can show the existence of a distinguisher D that contradicts the
above.

476 Rosario Gennaro

3.2 A Preliminary Lemma

We also assume that p is a n-bit prime, p ≡ 3 mod 4 and c = ω(log n). Let g be
a generator of Z∗

p and denote with ĝ = g
2n−c

mod p. Recall that if s is an integer
we denote with si the ith-bit in its binary representation.
The function we consider is the following.

RGn,c : Zp−1 −→ Z∗
p

RGn,c(s) = ĝ(s div 2n−c)gs1 mod p

That is we consider modular exponentiation in Z∗
p with base g, but only after

zeroing the bits in positions 2, . . . , n− c of the input s (these bits are basically
ignored).
The function RG induces a distribution over Z∗

p in the usual way. We denote
it with RGn,c the following probability distribution over Z∗

p

ProbRGn,c [y] = Prob[y = RGn,c(s) ; s← Zp−1]

The following Lemma states that the distribution RGn,c is computationally in-
distinguishable from the uniform distribution over Z∗

p if the c-DLSE assumption
holds.

Lemma 1. Let p be a n-bit prime, with p ≡ 3 mod 4 and let Un be the uniform
distribution over Z∗

p . If the c-DLSE Assumption holds, then the two distributions
Un and RGn,c are computationally indistinguishable (see Definition 1).

The proof of the Lemma goes by contradiction. We show that if RGn,c can be
distinguished from Un, then the modified Patel-Sundaram generator PSG is not
secure. We do this by showing that any efficient distinguisher between RGn,c

and the uniform distribution over Z∗
p can be transformed into a distinguisher for

PSGn,c. This will contradict Theorem 1 and ultimately the c-DLSE Assumption.

Sketch of Proof Assume for the sake of contradiction that there exists a
distinguisher D and a polynomial P (·) such that for infinitely many n’s we have
that

δD,Un − δD,RGn,c ≥
1

P (n)

where
δD,Un = Prob[x← Z∗

p ; D(p, g, x, c) = 1]
δD,RGn,c = Prob[s← Zp−1 ; D(p, g,RGn,c(s), c) = 1]

We show how to construct a distinguisher D̂ that “breaks” PSG.
In order to break PSGn,c we are given as input (p, g, y, r, c) with y ∈ Z∗

p

and r ∈ {0, 1}n−c−1 and we want to guess if it comes from the distribution
Un×Rn−c−1 or from the distribution PSGn,c of outputs of the generator PSGn,c.
The distinguisher D̂ will follow this algorithm:

An Improved Pseudo-random Generator Based on Discrete Log 477

1. Consider the integer z := r ◦ 0 where ◦ means concatenation. Set w :=
yg−z mod p;

2. Output D(p, g, w, c)
Why does this work? Assume that (y, r) was drawn according to PSGn,c(x) for
some random x ∈ Zp−1. Then w = gu where u = 2n−c(x div 2n−c)+x1 mod p−1.
That is, the discrete log of w in base g has the n−c−1 bits in position 2, . . . , n−c
equal to 0 (this is because r is identical to those n− c− 1 bits of the discrete log
of y by the assumption that (y, r) follows the PSGn,c distribution). Thus once
we set ĝ = g2

n−c

we get w = ĝx div 2n−c

gx1 mod p, i.e. w = RGn,c(x). Thus if
(y, r) is drawn according to PSGn then w follows the same distribution as RGn.
On the other hand if (y, r) was drawn with y randomly chosen in Z∗

p and r
randomly chosen in {0, 1}n−c−1, then all we know is that w is a random element
of Z∗

p .
Thus D̂ will guess the correct distribution with the same advantage as D

does. Which contradicts the security of the PSG generator. ��

3.3 The New Generator

It is now straightforward to construct the new generator. The algorithm receives
as a seed a random element s in Zp−1 and then it iterates the function RG on
it. The pseudo-random bits outputted by the generator are the bits ignored by
the function RG. The output of the function RG will serve as the new input for
the next iteration.
More in detail, the algorithm IRGn,c (for Iterated-RG generator) works as

follows. Start with x(0) ∈R Zp−1. Set x(i) = RGn,c(x(i−1)). Set also r(i) =
x
(i)
2 , x

(i)
3 , . . . , x

(i)
n−c. The output of the generator will be r

(0), r(1), . . . , r(k) where
k is the number of iterations (chosen such that k = poly(n) and k(n−c−1) > n).
Notice that this generator outputs n− c− 1 pseudo-random bits at the cost

of a modular exponentiation with a random c-bit exponent (i.e. the cost of the
computation of the function RG).

Theorem 2. Under the c-DLSE Assumption, IRGn,c is a secure pseudo-random
bit generator (see Definition 2).

Sketch of Proof We first notice that, for sufficiently large n, r(0) is an almost
uniformly distributed (n− c− 1)-bit string. This is because r(0) is composed of
the bits in position 2, 3, . . . , n − c of a random element of Zp−1 and thus their
bias is bounded by 2−c (i.e. the statistical distance between the distribution of
r(0) and the uniform distribution over {0, 1}n−c−1 is bounded by 2−c).
Now by virtue of Lemma 1 we know that all the values x(i) follow a distribu-

tion which is computationally indistinguishable from the uniform one on Z∗
p . By

the same argument as above it follows that all the r(i) must follow a distribution
which is computationally indistinguishable from Rn−c−1.

478 Rosario Gennaro

More formally, the proof follows a hybrid argument. If there is a distinguisher
D between the distribution induced by IRGn,c and the distribution Rk(n−c−1),
then for a specific index i we must have a distinguisher D1 between the distri-
bution followed by r(i) and the uniform distribution Rn−c−1. Now that implies
that it is possible to distinguish the distribution followed by x(i) and the uniform
distribution over Z∗

p (just take the bits in position 2, 3, . . . , n − c of the input
and pass them to D2). This contradicts Lemma 1 and ultimately the c-DLSE
Assumption. ��

4 Efficiency Analysis

Our new generator is very efficient. It outputs n− c− 1 pseudo-random bits at
the cost of a modular exponentiation with a random c-bit exponent, or roughly
1.5c modular multiplications in Z∗

p . Compare this with the Patel-Sundaram gen-
erator where the same number of pseudo-random bits would cost 1.5n modular
multiplications. Moreover the security of our scheme is tightly related to the se-
curity of the Patel-Sundaram one, since the reduction from our scheme to theirs
is quite immediate.
So far we have discussed security in asymptotic terms. If we want to instan-

tiate practical parameters we need to analyze more closely the concrete security
of the proposed scheme.
A close look at the proof of security in [16] shows the following. If we assume

that Theorem 1 fails, i.e. that for some j, 2 ≤ j ≤ n−c, there exists an algorithm
A which runs in time T (n), and a polynomial P (·) such that w.l.o.g.

Prob[x← Zp−1 ; A(gx, x2, . . . , xj−1) = xj] >
1
2
+

1
P (n)

then we have an algorithm IA to break c-DLSE which runs in time O((n −
c)cP 2(n)T (n)) if 2 ≤ j < n− c− logP (n) and in time O((n− c)cP 3(n)T (n)) if
n− c− logP (n) ≤ j ≤ n− c (the hidden constant is very small). This is a very
crude analysis of the efficiency of the reduction in [16] and it is quite possible to
improve on it (details in the final paper).
In order to be able to say that the PRBG is secure we need to make sure

that the complexity of this reduction is smaller than the time to break c-DLSE
with the best known algorithm (which we know today is 2c/2).

Comparison with the BBS generator. The BBS generator was introduced
by Blum et al. in [3] under the assumption that deciding quadratic residuosity
modulo a composite is hard. The generator works by repeatedly squaring modN
a random seed in Z∗

N where N is a Blum integer (N = PQ with P,Q both primes
of identical size and ≡ 3 mod 4.) At each iteration it outputs the least significant
bit of the current value. The rate of this generator is thus of 1 bit/squaring. In
[2], Alexi et al. showed that one can output up to k = O(log logN) bits per
iteration of the squaring generator (and this while also relaxing the underlying

An Improved Pseudo-random Generator Based on Discrete Log 479

assumption to the hardness of factoring). The actual number k of bits that can
be outputted depends on the concrete parameters adopted.
The [2] reduction is not very tight and it was recently improved by Fischlin

and Schnorr in [6]. The complexity of the reduction quoted there is

O(n log nP 2(n)T (n) + n2P 4(n) logn)

(here P (n), T (n) refers to a machine which guesses the next bit in one iteration
of the BBS generator in time T (n) and with advantage 1/P (n)).
If we want to output k bits per iteration, the complexity grows by a factor

of 22k and the reduction quickly becomes more expensive than known factoring
algorithms. Notice instead that the reduction in [16] (and thus in ours) depends
only linearly on the number of bits outputted.

Concrete Parameters. Let’s fix n = 1024 and c = 160. With these parame-
ters we can safely assume that the complexity of the best known algorithms to
break c-DLSE [1,12,17] is beyond the reach of today’s computing capabilities.
For moduli of size n = 1024, the results in [6] seem to indicate that in practice,

for n = 1024 we can output around 4 bits per iteration of the BBS generator,
if we want to rule out adversaries which run in time T = 1 MIPS-year (roughly
1013 instructions) and predict the next bit with advantage 1/100 (which is quite
high). This yields a rate of 4 bits per modular squaring.
Using the same indicative parameters suggested in [6], we can see that we can

safely output all n−c−1 ≈ 860 bits in one iteration of the Patel-Sundaram gen-
erator. Since the security of our scheme is basically the same as their generator
we can also output all 860 bits in our scheme as well.
Thus we obtain 860 bits at the cost of roughly 240 multiplications, which

yields a rate of about 3.5 bits per modular multiplication. Thus the basic imple-
mentation of our scheme has efficiency comparable to the BBS generator. In the
next section we show how to improve on this, by using precomputation tables.

4.1 Using Precomputed Tables

The most expensive part of the computation of our generator is to compute
ĝs mod p where s is a c-bit value.
We can take advantage of the fact that in our generator2 the modular ex-

ponentiations are all computed over the same basis ĝ. This feature allows us to
precompute powers of ĝ and store them in a table, and then use this values to
compute fastly ĝs for any s.
The simplest approach is to precompute a table T

T = {ĝ2i

mod p ; i = 0, . . . , c}

Now, one exponentiation with base ĝ and a random c-bit exponent can be com-
puted using only .5c multiplications on average. The cost is an increase to O(cn)
2 As well as in the Patel-Sundaram one, or in the Blum-Micali one

480 Rosario Gennaro

bits of required memory. With this simple improvement one iteration of our gen-
erator will require roughly 80 multiplications, which yields a rate of more that 10
pseudo-random bits per multiplication. The size of the table is about 20 Kbytes.
Lim and Lee [13] present more flexible trade-offs between memory and com-

putation time to compute exponentiations over a fixed basis. Their approach is
applicable to our scheme as well. In short, the [13] precomputation scheme is
governed by two parameters h, v. The storage requirement is (2h− 1)v elements
of the field. The number of multiplications required to exponentiate to a c-bit
exponent is

⌈
c
h

⌉
+

⌈
c

hv

⌉− 2 in the worst case.
Using the choice of parameters for 160-bit exponents suggested in [13] we

can get roughly 40 multiplications with a table of only 12 Kbytes. This yields
a rate of more than 21 pseudo-random bits per multiplication. A large memory
implementation (300 Kbytes) will yield a rate of roughly 43 pseudo-random bits
per multiplication.
In the final version of this paper we will present a more complete concrete

analysis of our new scheme.

5 Conclusions

In this paper we presented a secure pseudo-random bit generator whose efficiency
is comparable to the squaring (BBS) generator. The security of our scheme is
based on the assumption that solving discrete logarithms remains hard even
when the exponent is small. This assumption was first used by Patel and Sun-
daram in [16]. Our construction however is much faster than theirs since it only
uses exponentiations with small inputs.
An alternative way to look at our construction is the following. Under the

c-DLSE assumption the function f : {0, 1}c −→ Z∗
p defined as f(x) = gx is a

one-way function. Our results indicate that f has also strong pseudo-randomness
properties over Z∗

p . In particular it is possible to think of it as pseudo-random
generator itself. We are aware of only one other example in the literature of a
one-way function with this properties, in [11] based on the hardness of subset-
sum problems.
The DLSE Assumption is not as widely studied as the regular discrete log

assumption so it needs to be handled with care. However it seems a reasonable
assumption to make.
It would be nice to see if there are other cryptographic primitives that

could benefit in efficiency from the adoption of stronger (but not unreason-
able) number-theoretic assumptions. Examples of this are already present in the
literature (e.g. the efficient construction of pseudo-random functions based on
the Decisional Diffie-Hellman problem in [15].) It would be particularly inter-
esting to see a pseudo-random bit generator that beats the rate of the squaring
generator, even if at the cost of a stronger assumption on factoring or RSA.

An Improved Pseudo-random Generator Based on Discrete Log 481

Acknowledgments

This paper owes much to the suggestions and advices of Shai Halevi. Thanks
also to the other members of the CRYPTO committee for their suggestions and
to Dario Catalano for reading early drafts of the paper.

References

1. L. Adleman. A Subexponential Algorithm for the Discrete Logarithm Problem with
Applications to Cryptography. IEEE FOCS, pp.55-60, 1979.

2. W. Alexi, B. Chor, O. Goldreich and C. Schnorr. RSA and Rabin Functions:
Certain Parts are as Hard as the Whole. SIAM J. Computing, 17(2):194–209,
April 1988.

3. L. Blum, M. Blum and M. Shub. A Simple Unpredictable Pseudo-Random Number
Generator. SIAM J.Computing, 15(2):364–383, May 1986.

4. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM J.Computing, 13(4):850–864, November 1984.

5. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. Inf.
Theory, IT-22:644–654, November 1976.

6. R. Fischlin and C. Schnorr. Stronger Security Proofs for RSA and Rabin Bits.
J.Crypt., 13(2):221–244, Spring 2000.

7. S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, 28:270–299, 1988.
8. J. H̊astad, R. Impagliazzo, L. Levin and M. Luby. A Pseudo-Random Generator
from any One-Way Function. SIAM J.Computing, 28(4):1364-1396, 1999.

9. J. H̊astad and M. Näslund. The Security of Individual RSA Bits. IEEE FOCS,
pp.510–519, 1998.

10. J. H̊astad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo a Composite
Hides O(n) Bits. JCSS, 47:376-404, 1993.

11. R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provably as Secure
as Subset Sum. J.Crypt., 9(4):199–216, 1996.

12. D. Knuth. The Art of Computer Programming (vol.3): Sorting and Searching.
Addison-Wesley, 1973.

13. C.H. Lim and P.J. Lee. More Flexible Exponentiation with Precomputation.
CRYPTO’94, LNCS 839, pp.95–107.

14. D. Long and A. Wigderson. The Discrete Log Hides O(logn) Bits. SIAM
J.Computing, 17:363–372, 1988.

15. M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. IEEE FOCS, pp.458–467, 1997.

16. S. Patel and G. Sundaram. An Efficient Discrete Log Pseudo Random Generator.
CRYPTO’98, LNCS 1462, pp.304–317, 1998.

17. R. Peralta. Simultaneous Security of Bits in the Discrete Log. EUROCRYPT’85,
LNCS 219, pp.62–72, 1986.

18. J. Pollard. Monte-Carlo Methods for Index Computation (mod p). Mathematics
of Computation, 32(143):918–924, 1978.

19. C. Schnorr Security of Allmost ALL Discrete Log Bits. Electronic
Colloquium on Computational Complexity. Report TR98-033. Available at
http://www.eccc.uni-trier.de/eccc/.

20. A. Yao. Theory and Applications of Trapdoor Functions. IEEE FOCS, 1982.

	Introduction
	Preliminaries
	Pseudo-random Number Generators
	Pseudo-randomness over Arbitrary Sets
	The Discrete Logarithm Problem
	Hard Bits for Discrete Logarithm
	The Patel-Sundaram Generator

	Our New Generator
	The Patel-Sundaram Generator Revisited
	A Preliminary Lemma
	The New Generator

	Efficiency Analysis
	Using Precomputed Tables

	Conclusions

