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Abstract. We show that for various choices of the parameters in the
SL2(IF2n) hashing scheme, suggested by Tillich and Zémor, messages
can be modified without changing the hash value. Moreover, examples
of hash functions “with a trapdoor” within this family are given. Due to
these weaknesses one should impose at least certain restrictions on the
allowed parameter values when using the SL2(IF2n) hashing scheme for
cryptographic purposes.

1 Introduction

At CRYPTO ’94 Tillich and Zémor [11] have proposed a class of hash functions
based on the group SL2 (IF2n), the group of 2 × 2-matrices with determinant 1
over IF2n . The hash functions are parameterized by the degree n and the defining
polynomial f(X) of IF2n . The hash value H(m) ∈ SL2 (IF2n) of some message m
is a 2 × 2-matrix.

At ASIACRYPT ’94 a first “attack” on this hash function was proposed by
Charnes and Pieprzyk [3]. They showed that the hash function is weak for some
particular choices of the defining polynomial f(X). However, for any chosen hash
function it is easy to check if it is resistant against this attack—the order of the
generators of SL2 (IF2n) has to be large. This can easily be calculated. Moreover,
Abdukhalikov and Kim [1] have shown that an arbitrary choice of f(X) results
in a scheme vulnerable to Charnes’ and Pieprzyk’s attack only with a probability
of approximately 10−27.

Some additional structure of the group SL2 (IF2n) was used by Geiselmann [5]
to reduce the problem of finding collisions to the calculation of discrete log-
arithms in IF2n or IF2 2n (which is feasible for the proposed values of n ∈
{130, . . . , 170}). The drawback of this “attack” is the extremely long message
required for such a collision. (E. g., the collision given in [5] for n = 21 has a
length of about 237 000 bits.).

The main advantage of the SL2 (IF2n) hashing scheme to other schemes is
the algebraic background that yields some proven properties about distribu-
tion, shortest length of collisions [11,15,16], and allows a parallelization of the
calculation: it holds H(m1|m2) = H(m1) · H(m2), where m1|m2 denotes the
concatenation of the two messages m1, m2. This parallelization property is very
helpful in some applications so that Quisquater and Joye have suggested to use
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this hash function for the authentication of video sequences [10], despite the
weaknesses already known (more information on parallelizable hash functions
can be found in [2,4]).

In this paper we describe some weaknesses in the SL2(IF2n) hashing scheme
that also affect the generalization of this scheme to arbitrary finite fields sug-
gested in [1]: as shown in [11], any collision in the SL2(IF2n) hashing scheme
involves at least one bitstring of length � ≥ n. Hence it is infeasible to search
directly for a collision among the more than 2n bitstrings of length � ≥ n. But
using some structural properties of the group SL2(IFpn) we show that for several
choices of the parameters it is possible to find short bitstrings that hash to an
element of small order in SL2(IFpn). Repeating such a bitstring several times, a
message can be modified without changing its hash value. In the case where ade-
quate subfields of IFpn exist, this approach works quite efficiently. Cases where n
is prime are left to be resistant to this kind of attack. However, we show that—
independent of n being prime or not—for all suggested values 130 ≤ n ≤ 170 in
the SL2(IF2n) hashing scheme one can find a defining polynomial of IF2n with a
prescribed collision.

2 Preliminaries

2.1 The SL2(IF2n) Hashing Scheme

By IFpn we denote the finite field with pn elements. The hash function H(m) of
Tillich and Zémor [11] is based on the group SL2 (IF2n):

Definition 1. Let A := ( α 1
1 0 ), B :=

(
α α+1
1 1

)
be elements of SL2 (IF2n), the

group of 2× 2-matrices with determinant 1 over IF2n . Here α ∈ IF2n is a root of
a generating polynomial f(X) of the field IF2n 	 IF2[X]/f(X).

Then, according to [11], the hash value H(b1 . . . br) ∈ IF 2×2
2n of a binary

stream b1 . . . br is defined as the product M1 · . . . · Mr with

Mi :=
{

A if bi = 0 ;
B if bi = 1 .

The straightforward generalization of this hashing scheme is to switch to
IFpn , i. e., replacing SL2(IF2n) by SL2(IFpn), the group of 2 × 2-matrices with
determinant 1 over IFpn , generated by A =

(
α −1
1 0

)
and B =

(
α α−1
1 1

)
(see

Proposition 2).

2.2 Some Properties of SL2(IFpn)

As stated before, we use some properties of the group SL2(IFpn) to find collisions
of relatively short length. First we recall the structure of the projective special
linear group PSL2(IFpn) which will prove useful for analyzing SL2(IFpn). Denot-
ing the cyclic group with r elements by Cr we have (see, e. g., [7, Kapitel II,
Satz 8.5])
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Proposition 1. Any non-identity element of PSL2(IFpn) is either contained in
an elementary abelian p-Sylow group Cn

p
∼= P, in a cyclic subgroup C(pn−1)/k

∼=
U, or in a cyclic subgroup C(pn+1)/k

∼= S, where k = gcd(p − 1, 2). Thus the
group can be written as a disjoint union of sets

G := PSL2(IFpn) = E � P � U � S

where the sets E, P, U , and S are defined by the disjoint unions

E := E = {id} U :=
⊎

g∈G(Ug \ E)

P :=
⊎

g∈G(Pg \ E) S :=
⊎

g∈G(Sg \ E) .

(Here Hg := {g−1hg : h ∈ H} is the conjugate of H with respect to g.)

This yields immediately the structure of the group SL2(IFpn):

Corollary 1. As matrix, any element of SL2(IFpn) can be written as ±M where
M ∈ E ∪ P ∪ U ∪ S.
Proof. By definition, PSL2(IFpn) = SL2(IFpn)/(SL2(IFpn) ∩ Z) where Z = {a ·
I2 : a ∈ IF×

pn} as matrix group (with I2 denoting the 2 × 2 identity matrix).
For p = 2, SL2(IFpn) ∩ Z = E and hence SL2(IFpn) ∼= PSL2(IFpn). For p > 2,
SL2(IFpn) ∩ Z = {±I2} ∼= C2. So we may conclude that SL2(IFpn) ∼= C2 ×
PSL2(IFpn). ��

Further properties of the group SL2(IFpn) are summarized as follows:

Remark 1. For any subfield IFpm ≤ IFpn of IFpn , SL2(IFpm) and all its conjugates
are subgroups of SL2(IFpn).

Remark 2. The group SL2(IFpn) has pn(pn + 1)(pn − 1) elements. There are
p2n − 1 elements of order p (cf. [7, Kapitel II, Satz 8.2]). Furthermore for all
factors f of (pn − 1)/ gcd(p − 1, 2) and (pn +1)/ gcd(p − 1, 2) there are elements
of order f . In particular, for p = 2 there are elements of order 3.

Lemma 1. The group SL2(IF2n) has 22n + (−2)n elements of order 3.

Proof. Let M =
(

a b
c d

) ∈ SL2(IF2n) be of order 3. Then M3 = I2 and M �= I2,
hence the characteristic polynomial fM (X) = X2 + (a + d)X + (ad + bc) of M
equals X2 +X +1. The number of common solutions of the equations a+ d = 1
and ad+ bc = 1 is computed as follows: for b = 0, c is unconstrained, and a and
d are specified by a + d = 1 and a2 + a + 1 = 0. The latter equation has two
solutions iff n is even. For b �= 0, a can take any value, and c and d are given by
d = a + 1 and c = (a2 + a + 1)/b. ��

Finally, we present relations between bitstrings and their hash value.
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Proposition 2. Let IFpn = IFp(α). Then, as a matrix group, SL2(IFpn) is gen-
erated by

A =
(

α −1
1 0

)
and B =

(
α α − 1
1 1

)
.

Furthermore, the hash value of a bitstring m = b1 . . . b� of length � is of the
form Mb�

(where b� is the last bit of m) with

M0 =
(

c�(α) c�−1(α)
d�−1(α) c�−2(α)

)
and M1 =

(
c�(α) d�(α)

c�−1(α) d�−1(α)

)
.

Here ci, di ∈ IFp[X] are polynomials of degree i.
If M ∈ SL2(IFpn) is the hash value of a bitstring m of length � < n, the

representation in the form Mi is unique and the bitstring m can be obtained by
successively stripping the factors.

Proof. (cf. also [11, proof of Lemma 3.5]) For a proof that A and B generate
SL2(IFpn) see, e. g., [1]. Defining the degree of the zero polynomial to be −1, the
statement is true for H(0) = A = M0 and H(1) = B = M1, i. e., bitstrings of
length 1.

Assuming that H(m|0) is of the form M0, the hash value H(m|00) = H(m|0)·
A is computed as

(
c�(α) c�−1(α)

d�−1(α) c�−2(α)

)
· A =

(
α · c�(α) + c�−1(α) −c�(α)

α · d�−1(α) + c�−2(α) −d�−1(α)

)
,

i. e., H(m|00) is of the form M0 where the degrees of all polynomials are increased
by one. Analogously, we can show that H(m|10) is of the form M0 and that
H(m|01) and H(m|11) are of the form M1.

Note that the minimal polynomial fα(X) ∈ IFp[X] of α over IFp has degree
n. Hence, in polynomial representation of IFpn , no reduction occurs when � < n
and the representation is unique. Furthermore, by inspection of the degrees of
the polynomials, it is easy to decide if a given matrix M is of the form M0 or
M1. This yields the final bit b� of a bitstring m = m′|b� hashing to M . Using
the identities H(m′) = H(m′|0) · A−1 and H(m′) = H(m′|1) · B−1, we can strip
off one factor and proceed similarly to determine the bitstring m′. ��

3 Finding Elements of Small Order

If we know a bitstring that hashes to the identity matrix then this bitstring can
be inserted into a given message at arbitrary positions without changing the
hash value of that message. For practical purposes we are of course particularly
interested in short bitstrings that hash to the identity matrix. In order to find
such bitstrings we want to exploit Proposition 1 and Remark 2 which imply that
in case of (pn − 1)/ gcd(p − 1, 2) or (pn + 1)/ gcd(p − 1, 2) having several small
factors, the group SL2(IFpn) contains various elements of small order: instead
of looking for arbitrary bitstrings hashing to the identity matrix I2 we try to
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find very short bitstrings (say less than 50 bits) which hash to a matrix of small
order (say less than 300).

One family of matrices which are promising candidates for being of small
order is formed by the elements M ∈ SL2(IFpn) whose coefficients are contained
in a proper subfield IFpm � IFpn already, because according to Proposition 1 the
order of such a matrix is bounded by pm + 1. Moreover, as the orders of similar
matrices coincide, we are also interested in matrices M ∈ SL2(IFpn) that are
similar to some M ′ ∈ SL2(IFpm) with IFpm � IFpn (i. e. M = N−1 · M ′ · N for
some non-singular matrix N with coefficients in an extension field of IFpm). By
means of the trace operation (which computes the sum of the diagonal entries
of a matrix) we can give the following characterization:

Proposition 3. Let M ∈ SL2(IFpn) and IFpm ≤ IFpn . Then

M is similar to a matrix M ′ ∈ SL2(IFpm) ⇐⇒ Trace(M) ∈ IFpm .

Proof. =⇒: Trivial.
⇐=: If the minimal polynomial of M is linear then M = ±I2 ∈ SL2(IFp) ≤
SL2(IFpm). So we assume w. l. o. g. that the minimal polynomial m(X) of M is
quadratic, i. e., m(X) = X2 −Trace(M) ·X +1 ∈ IFpn [X]. Let λ1, λ2 be the (not
necessarily distinct) eigenvalues of M . Then the Jordan normal form of M (as a
matrix in the general linear group GL2(IFpn(λ1, λ2))) is either

(
λ1 1
0 λ1

)
or

(
λ1 0
0 λ2

)
.

In the former case we have λ1 = λ2 and det(M) = 1 implies λ1 = ±1, i. e.,
the Jordan normal form of M is contained in SL2(IFp) ≤ SL2(IFpm). In the
latter case M has two different eigenvalues and is similar to the matrix

(
λ1 0
0 λ2

)
,

which is also similar to M ′ :=
(

Trace(M) −1
1 0

) ∈ SL2(IFpm), as the characteristic
polynomials of M and M ′ coincide. ��

Corollary 2. For M ∈ SL2(IFpn) with Trace(M) ∈ IFpm ≤ IFpn we have
ord(M) ≤ pm + 1.

Proof. Immediate from Proposition 1 and Proposition 3. ��
So if the trace θ of a matrix M ∈ SL2(IFpn) generates only a small subfield

IFp(θ) � IFpn then M is of small order. Of course, it is not sufficient to know
a matrix M ∈ SL2(IFpn) of small order—we also need a short bitstring which
hashes to M . Subsequently we want to verify that for certain choices of IFpn

such matrices and corresponding bitstrings can indeed be found.

3.1 Elements of Small Order, Functional Decomposition,
and Intermediate Fields

Let Fpn = IFp[X]/f(X) where f(X) ∈ IFp[X] is an irreducible polynomial with
a root α. Moreover, assume that f(X) can be expressed as a functional com-
position f(X) = (g ◦ h)(X) = g(h(X)) with (non-linear) “composition factors”
g(X), h(X) ∈ IFp[X]—such decompositions can be found efficiently (for more
information about the problem of computing functional decompositions of poly-
nomials cf., e. g., [6,13,14]):
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Proposition 4. (see [8, Theorem 9]) An irreducible polynomial of degree n over
IFp can be tested for the existence of a nontrivial decomposition g ◦ h in NC

(parallel time logO(1) np on (np)O(1) processors). If such a decomposition exists,
the coefficients of g and h can be computed in NC.

If the trace of a matrix M ∈ SL2(IFpn) equals h(α), then we know that the
extension IFp(Trace(M))/IFp is of degree deg(g(Y ))—note that irreducibility
of f(X) implies irreducibility of g(Y ). So according to Corollary 2 we have
ord(M) ≤ pdeg(g(Y )) + 1. Consequently, if M can be expressed as a product in
the generators A, B ∈ SL2(IFp(α)) with � factors, then we obtain a bitstring of
length ≤ � · (pdeg(g(Y )) + 1) hashing to the identity I2 ∈ SL2(IF2(α)).

So the idea for exploiting a decomposition f(X) = (g ◦ h)(X) ∈ IFp[X] is to
construct a bitstring that hashes to a matrix with trace h(α). As for practical
purposes we are only interested in short bitstrings, we restrict ourselves to bit-
strings of length ≤ n (for the SL2(IF2n) hashing scheme suggested in [11] we have
130 ≤ n ≤ 170). In order to obtain a matrix with trace h(α), Proposition 2 sug-
gests to choose the length of our bitstring equal to deg(h(X)), and if deg(h(X))
is not too large we can simply use an exhaustive search over all 2deg(h(X)) bit-
strings of length deg(h(X)) to check whether a product of this length with the
required trace exists.

3.2 Application to the SL2(IF2n) Hashing Scheme of Tillich and
Zémor

To justify the relevance of the above discussion we apply these ideas to the
SL2(IF2n) hashing scheme suggested in [11] (i. e., we choose 130 ≤ n ≤ 170).
As irreducible trinomials are of particular interest when implementing an IF2n

arithmetic in hardware, we first give an example of a decomposable irreducible
trinomial:

Example 1. For the representation IF2147 ∼= IF2(α) with α being a root of X147+
X98 + 1 = (Y 3 + Y 2 + 1) ◦ (X49) ∈ IF2[X] the orders of A and B compute to
ord(A) = 2147 − 1, ord(B) = 2147 + 1, and the bitstring

1111101111111000100011111001010010101000111110110
(of length 49) hashes to a matrix with trace α49 and order 7. So we obtain
a bitstring of length 7 · 49 = 343 that hashes to the identity.

Some more examples based on decomposable polynomials are listed in Table 2
in the appendix. Here we continue with an example in characteristic 3 which
demonstrates that using characteristic 2 is not vital:

Example 2. For the representation IF390 ∼= IF3(α) with α being a root of
X90+X78+X75 −X69+X66 −X63+X57+X56+X55+X54 −X53 −X48+X45 −

X44−X43−X40−X39+X38+X35+X34−X32+X30+X26+X25−X23+X22−X21+
X20 +X19 +X18 +X16 +1 = (Y 6 − Y 4 + Y 2 +1) ◦ (X15 − X11 − X10 +X8) ∈ IF3[X]

the orders of A and B are ord(A) = (390 − 1)/4, ord(B) = (390 − 1)/52,
and the bitstring 000101111111100 (of length 15) hashes to a matrix with trace
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α15 −α11 −α10+α8 and order 56. So we obtain a bitstring of length 15 ·56 = 840
that hashes to the identity.

All of the examples mentioned make use of the existence of a nontrivial in-
termediate field IFp[Y ]/g(Y ) of the extension IFp ≤ IFp[X]/f(X) where f(X) =
(g ◦ h)(X). But even in the case when f(X) is indecomposable, there may exist
short bitstrings where the trace of the hash value lies in a small intermediate
field:

Example 3. The polynomial
f(X) = X140 +X139 +X137 +X135 +X133 +X132 +X127 +X122 +X120 +X119 +

X116 +X114 +X113 +X112 +X111 +X106 +X104 +X101 +X100 +X94 +X93 +X91 +
X90 +X88 +X87 +X84 +X83 +X82 +X80 +X79 +X73 +X71 +X69 +X67 +X65 +
X63 +X62 +X60 +X59 +X57 +X56 +X55 +X53 +X52 +X51 +X49 +X47 +X46 +
X45 +X43 +X40 +X39 +X38 +X37 +X35 +X34 +X33 +X32 +X31 +X30 +X28 +
X27 + X25 + X23 + X17 + X16 + X15 + X8 + X7 + X6 + X4 + X + 1

is indecomposable. For IF2140 ∼= IF2(α) with α a root of f(X) we have
ord(A) = ord(B) = 2140 + 1, and the bitstring m := 1111111110101110 hashes
to a matrix H(m) with Trace(H(m)) ∈ IF210 and ord(H(m)) = 25.

To prevent the above attack we may choose IFpn ∼= IFp[X]/f(X) in such a way
that n is prime. Then f does not permit a nontrivial functional decomposition,
and there are no nontrivial intermediate fields of IFpn/IFp. Moreover, in order to
make the search for elements of small order not unnecessarily easy, we may also
try to fix n in such a way that the orders (pn∓1)/ gcd(p−1, 2) of the cyclic groups
U, S (cf. Proposition 1) do not have many small factors. Ideally, for p = 2 we
have the following conditions fulfilled: n is prime and (2n −1) ·(2n+1) = 3 ·p1 ·p2
for some prime numbers p1, p2.

Using a computer algebra system like MAGMA one easily checks that for
IFpn = IF2n with 120 ≤ n ≤ 180 the only possible choice for satisfying these
conditions is n = 127; in particular none of the parameter values 130 ≤ n ≤ 170
suggested in [11] meets these requirements. Furthermore, the next section shows
that independent of the degree of the extension IFpn/IFp one should be careful
about who is allowed to fix the actual representation of IFpn as IFp[X]/f(X)
used for hashing.

4 Deriving “Hash Functions with a Trapdoor”

In [16, Section 5.3] it is pointed out that for the SL2(IFp) hashing scheme dis-
cussed in [16] “ . . . some care should be taken in the choice of the prime number
p, because finding simultaneously two texts and a prime number p such that
those two texts collide for the hash function associated to p, is substantially
easier than finding a collision for a given p . . . ”

In the sequel we shall discuss a related problem with the SL2(IF2n) hashing
scheme of [11]—being allowed to choose a representation of IF2n we can select a
hash function “with a trapdoor”:
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Example 4. For the representation IF2167 ∼= IF2(α) with α being a root of
X167 +X165 +X161 +X160 +X158 +X157 +X156 +X155 +X154 +X152 +X150 +

X148+X145+X143+X142+X140+X138+X137+X134+X131+X130+X126+X125+
X123+X119+X118+X117+X116+X115+X113+X112+X111+X107+X105+X104+
X99 +X96 +X93 +X91 +X89 +X88 +X86 +X85 +X82 +X81 +X80 +X77 +X76 +
X74 +X73 +X71 +X65 +X64 +X62 +X61 +X58 +X57 +X54 +X53 +X51 +X49 +
X48 +X47 +X45 +X40 +X38 +X37 +X35 +X34 +X33 +X30 +X29 +X27 +X26 +
X25 +X21 +X19 +X17 +X14 +X13 +X12 +X10 +X6 +X5 +X2 +X +1 ∈ IF2[X]

the orders of A and B are ord(A) = 2167+1, ord(B) = (2167+1)/3. Moreover,
167 is prime, and the prime factorizations of (2167 ∓ 1) compute to

2167 − 1 = 2349023 · 79638304766856507377778616296087448490695649 ,
2167 + 1 = 3 · 62357403192785191176690552862561408838653121833643 .

At first glance these parameters look reasonable. However, the bitstring

01010100 01101000 01101001 01110011 00100000 01101001
(ASCII) T h i s i

01110011 00100000 01110100 01101000 01100101 00100000
s t h e

01110111 01100001 01111001 00100000 01100001 00100000
w a y a

01110100 01110010 01100001 01110000 01100100 01101111
t r a p d o

01101111 01110010 00100000 01100011 01100001 01101110
o r c a n

00100000 01101100 01101111 01101111 01101011 00100000
l o o k

01101100 01101001 01101011 01100101 00101110 00100000
l i k e .

(of length 42 ·8 = 336) hashes to a matrix with trace 0 and order 2. So we obtain
a bitstring of length 336 · 2 = 672 that hashes to the identity.

The phenomenon of hash functions with a trapdoor is well-known (see, e. g.,
[9,12]). For the SL2(IF2n) hashing scheme deriving parameters with a trapdoor
as in Example 4, is comparatively easy—the basic idea is to exploit the fact that,
independent of the value of n, the group SL2(IF2n) always contains elements of
order 2 and 3 (see Proposition 1 and Lemma 1): we start by fixing a bitstring
which consists of two or three (depending on whether we want to have an ele-
ment of order two or three) repetitions of an arbitrary bit sequence m. Then we
compute the “generic hash value” H = H(X) of this bitstring, i. e., instead of
using the matrices A and B we use the matrices

AX =
(

X 1
1 0

)
and BX =

(
X X + 1
1 1

)
,

where the generator α is replaced by an indeterminate X. Next, we compute the
irreducible factors f1, . . . , fr of the greatest common divisor of the entries of the
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matrix H − I2. Then choosing the field IF2n as IF2n ∼= IF2(α) with α a root of
some fi guarantees that H − I2 is in the kernel of the specialization X �→ α. In
other words, the bit sequence m hashes to a matrix of order at most two resp.
three. Experiments show that it is quite easy to derive weak parameters for the
SL2(IF2n) hashing scheme in this way for all 127 ≤ n ≤ 170 (see Table 1 in the
appendix for some examples).

5 Constructing “Real” Collisions

We conclude by a simple example that illustrates the use of elements of small
order for deriving “real” collisions, i. e. (short) non-empty bitstrings m1 �= m2
that hash to the same value.

Remark 3. Let m be a bitstring hashing to a matrix of order ord(m). Then also
each bitstring rot(m) derived from m through bit-wise left- or right-rotation
hashes to a matrix of order ord(m).

Proof. Rotating the bitstring simply translates into conjugating the hash value
with a non-singular matrix. Hence, as the order of a matrix is invariant under
conjugation, the claim follows. ��
In the following example Remark 3 is used for deriving a collision:

Example 5. We use the representation of IF2140 of Example 3. Applying a brute-
force approach for constructing short products of A and B of small order one
can derive the identities

(B9ABAB3A)25 = I2 = (B3ABAB9A)25 .

As B3ABAB9A is similar to B9AB3ABA we get

(B9ABAB3A)25 = I2 = (B9AB3ABA)25

resp. after multiplication with (B9AB)−1 from the left and (BA)−1 from the
right

AB3A(B9ABAB3A)23B9ABAB2 = B2ABA(B9AB3ABA)23B9AB3A .

So we obtain two different bitstrings of length 5 + 16 · 23 + 14 = 387 that hash
to the same value.

6 Summary and Conclusion

We have shown that for various choices of the parameters in the SL2(IF2n) hash-
ing scheme, suggested in [11], messages can be modified without changing the
hash value. Moreover, we have given several examples of hash functions “with a
trapdoor” within this family.
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In order to avoid the attacks based on functional decomposition and interme-
diate fields presented in Section 3, one should choose n being prime. We dissuade
from using the SL2(IF2n) hashing scheme or its generalization to SL2(IFpn) in
case of n being composite. Moreover, Section 4 demonstrates that even in the
case of n being prime it is fairly easy to find defining polynomials yielding hash
functions with a trapdoor. Consequently, appropriate care should be taken in fix-
ing the representation of IF2n which is used for hashing (concerning the problem
of avoiding trapdoors in hash functions cf., e. g., [12]).
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Appendix: Examples

For each 127 ≤ n ≤ 170 we easily found representations of IF2n ∼= IF2[X]/f(X)
together with a bitstring m of length n that hashes to a matrix of order 3.
In Table 1, we list for each prime number in this range such a representation
together with the corresponding bitstring. To illustrate that neither A nor B is
of small order, the orders of A and B are also included in the table.

Note that all the examples have been derived by means of the computer
algebra system MAGMA on usual SUN workstations at a university institute;
neither specialized hard- or software nor extraordinary computational power
have been used.

In Table 2 some representations of IF2n ∼= IF2[X]/f(X) are listed, where the
defining polynomial f(X) = (g ◦h)(X) allows a nontrivial decomposition. In ad-
dition to a bitstring m that hashes to a matrix H(m) of small order ord(H(m)),
the orders of A and B are also included. In the last column, we list the total
length of the resulting bitstring hashing to the identity. As low weight polyno-
mials are of particular interest for hardware implementations of IF2n arithmetic,
a main focus is on decomposable trinomials.
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Table 1. Weak parameters (bitstrings m of length n and ord(H(m)) = 3)

n f(X) ord(A) ord(B) m

127 X127+X125+X117+X113+X109+
X103 + X87 + X85 + X81 + X77 +
X71+X23+X21+X17+X13+X7+1

2127−1 2127−1 120130120310114

131 X131 + X123 + X121 + X115 +
X113 + X109 + X99 + X97 + X77 +
X67 + X65 + X13 + X3 + X + 1

2131+1 2131−1 150410121

137 X137 + X135 + X125 + X119 +
X113 + X105 + X103 + X97 + X73 +
X71 + X65 + X9 + X7 + X + 1

2137+1 2137−1 10101010130

139 X139+X133+X127+X123+X121+
X117 +X113 +X107 +X101 +X97 +
X75+X69+X65+X11+X5+X+1

2139+1 2139−1 1302130131

149 X149+X143+X137+X133+X129+
X113 +X111 +X105 +X101 +X97 +
X85 + X79 + X73 + X69 + X65 +
X21 + X15 + X9 + X5 + X + 1

2149+1
3 2149−1 10310144

151 X151 + X147 + X139 + X135 +
X131 + X107 + X103 + X99 + X87 +
X83 + X75 + X71 + X67 + X23 +
X19 + X11 + X7 + X3 + 1

2151−1 2151−1 1010148

157 X157+X155+X153+X147+X141+
X137 + X131 + X109 + X105 +
X99 + X93 + X91 + X89 + X83 +
X77 + X73 + X67 + X29 + X27 +
X25 + X19 + X13 + X9 + X3 + 1

2157−1 2157−1 10120210150

163 X163+X162+X157+X156+X141+
X140 + X109 + X108 + X99 + X98 +
X93 + X92 + X77 + X76 + X35 +
X34 + X29 + X28 + X13 + X12 + 1

2163−1 2163−1 15010210153

167 X167+X165+X163+X153+X149+
X133 +X129 +X113 +X103 +X99 +
X97+X89+X85+X69+X65+X39+
X37+X35+X25+X21+X5+X+1

2167+1 2167−1 10130212010210153
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