
CBC MACs for Arbitrary-Length Messages:
The Three-Key Constructions

John Black1 and Phillip Rogaway2

1 Dept. of Computer Science, University of Nevada, Reno NV 89557, USA,
blackj@cs.ucdavis.edu

2 Dept. of Computer Science, University of California at Davis, Davis, CA 95616,
USA, rogaway@cs.ucdavis.edu, http://www.cs.ucdavis.edu/∼rogaway

Abstract. We suggest some simple variants of the CBC MAC that let
you efficiently MAC messages of arbitrary lengths. Our constructions
use three keys, K1, K2, K3, to avoid unnecessary padding and MAC
any message M ∈ {0, 1}∗ using max{1, �|M |/n�} applications of the
underlying n-bit block cipher. Our favorite construction, XCBC, works
like this: if |M | is a positive multiple of n then XOR the n-bit key K2
with the last block of M and compute the CBC MAC keyed with K1;
otherwise, extend M ’s length to the next multiple of n by appending
minimal 10i padding (i ≥ 0), XOR the n-bit key K3 with the last block
of the padded message, and compute the CBC MAC keyed with K1.
We prove the security of this and other constructions, giving concrete
bounds on an adversary’s inability to forge in terms of her inability to
distinguish the block cipher from a random permutation. Our analysis
exploits new ideas which simplify proofs compared to prior work.

1 Introduction

This paper describes some simple variants of CBC MAC. These algorithms cor-
rectly and efficiently handle messages of any bit length. In addition to our
schemes, we introduce new techniques to prove them secure. Our proofs are
much simpler than prior work. We begin with some background.

The CBC MAC. The CBC MAC [6,8] is the simplest and most well-known way
to make a message authentication code (MAC) out of a block cipher. Let’s recall
how it works. Let Σ = {0, 1} and let E : Key × Σn → Σn be a block cipher:
it uses a key K ∈ Key to encipher an n-bit block X into an n-bit ciphertext
Y = EK(X). The message space for the CBC MAC is (Σn)+, meaning binary
strings whose lengths are a positive multiple of n. So let M = M1 · · ·Mm be a
string that we want to MAC, where |M1| = · · · = |Mm| = n. Then CBCEK

(M),
the CBC MAC ofM under key K, is defined as Cm, where Ci = EK(Mi⊕Ci−1)
for i = 1, . . . ,m and C0 = 0n.
Bellare, Kilian, and Rogaway proved the security of the CBC MAC, in the

sense of reduction-based cryptography [2]. But their proof depends on the as-
sumption that it is only messages of one fixed length, mn bits, that are being

M. Bellare (Ed.): CRYPTO 2000, LNCS 1880, pp. 197–215, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

198 John Black and Phillip Rogaway

MACed. Indeed when message lengths can vary, the CBC MAC is not secure.
This fact is well-known. As a simple example, notice that given the CBC MAC of
a one-block message X, say T = CBCEK

(X), the adversary immediately knows
the CBC MAC for the two-block message X ‖(X ⊕T), since this is once again T .
Thus the CBC MAC (in the “raw” form that we have described) has two

problems: it can’t be used to MAC messages outside of (Σn)+, and all messages
must have the same fixed length.

Dealing with variable message lengths: emac. When message lengths
vary, the CBC MAC must be embellished. There have been several suggestions
for doing this. The most elegant one we have seen is to encipher CBCEK1(M)
using a new key, K2. That is, the domain is still (Σn)+ but one defines EMAC
(for encrypted MAC) by EMACEK1,EK2(M) = EK2(CBCEK1(M)). This algo-
rithm was developed for the RACE project [3]. It has been analyzed by Petrank
and Rackoff [10] who show, roughly said, that an adversary who obtains the
MACs for messages which total σ blocks cannot forge with probability better
than 2σ2/2n.
Among the nice features of EMAC is that one need not know |M | prior to

processing the message M . All of our suggestions will retain this feature.

Our contributions. EMAC has a domain limited to (Σn)+ and uses 1+|M |/n
applications of the block cipher E. In this paper we refine EMAC in three ways:
(1) we extend the domain to Σ∗; (2) we shave off one application of E; and
(3) we avoid keying E by multiple keys. Of course we insist on retaining provable
security (across all messages lengths).
In Section 2 we introduce three refinements to EMAC, which we call ECBC,

FCBC, and XCBC. These algorithms are natural extensions of the CBC MAC.
We would like to think that this is an asset. The point here is to strive for
economy, in terms of both simplicity and efficiency.
Figure 1 summarizes the characteristics of the CBC MAC variants mentioned

in this paper. The top three rows give known constructions (two of which we
have now defined). The next three rows are our new constructions. Note that
our last construction, XCBC, retains essentially all the efficiency characteristics
of the CBC MAC, but extends the domain of correct operation to all of Σ∗. The
cost to save one invocation of the block cipher and extend our domain to Σ∗

is a slightly longer key. We expect that in most settings the added overhead to
create and manage the longer key is minimal, and so XCBC may be preferred.
For each of the new schemes we give a proof of security. Rather than adapt

the rather complex proof of [10], or the even more complicated one of [2], we
follow a new tack, viewing EMAC as an instance of the Carter-Wegman paradigm
[5,12]: with EMAC one is enciphering the output of a universal-2 hash function.
This universal-2 hash function is the CBC MAC itself. Since it is not too hard
to upper bound the collision probability of the CBC MAC (see Lemma 3), this
approach leads to a simple proof for EMAC, and ECBC as well. We then use
the security of ECBC to prove security for FCBC, and then we use the security
of FCBC to prove security for XCBC. In passing from FCBC to XCBC we use

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 199

Construct Domain #E Appls #E Keys Key Length
CBC Σnm |M |/n 1 k

EMAC (Σn)+ 1 + |M |/n 2 2k
EMAC∗ Σ∗ 1 + �(|M |+ 1)/n� 2 2k
ECBC Σ∗ 1 + �|M |/n� 3 3k
FCBC Σ∗ �|M |/n� 3 3k
XCBC Σ∗ �|M |/n� 1 k + 2n

Fig. 1. The CBC MAC and five variants. Here M is the message to MAC and E :
Σk×Σn → Σn is a block cipher. The third column gives the number of applications of
E, assuming |M | > 0. The fourth column is the number of different keys used to key E.
For CBC the domain is actually (Σn)+, but the scheme is secure only on messages of
some fixed length, nm.

a general lemma (Lemma 4) which says, in effect, that you can always replace
a pair of random independent permutations π1(·), π2(·) by a pair of functions
π(·), π(· ⊕K), where π is a random permutation and K is a random constant.

New standards. This work was largely motivated by the emergence of the
Advanced Encryption Standard (AES). With the AES should come a next-
generation standard for using it to MAC. Current CBC MAC standards handle
this, for example, in an open-ended informational appendix [8]. We suggest
that the case of variable message lengths is the usual case in applications of
MACs, and that a modern MAC standard should specify only algorithms which
will correctly MAC any sequence of bit strings. The methods here are simple,
efficient, provably sound, timely, and patent-free—all the right features for a
contemporary standard.

2 Schemes ECBC, FCBC, and XCBC

Arbitrary-length messages without obligatory padding: ecbc. We
have described the algorithm EMACEK1,EK2(M) = EK2(CBCEK1(M)). One
problem with EMAC is that its domain is limited to (Σn)+. What if we want to
MAC messages whose lengths are not a multiple of n?
The simplest approach is to use obligatory 10i padding: always append a

“1” bit and then the minimum number of “0” bits so as to make the length of
the padded message a multiple of n. Then apply EMAC. We call this method
EMAC∗. Formally, EMAC∗

EK1,EK2
(M) = EMACEK1,EK2(M ‖ 10n−1−|M | mod n).

This construction works fine. In fact, it is easy to see that this form of padding
always works to extend the domain of a MAC from (Σn)+ to Σ∗.
One unfortunate feature of EMAC∗ is this: if |M | is already a multiple of n

then we are appending an entire extra block of padding, and seemingly “wasting”
an application of E. People have worked hard to optimize new block ciphers—it
seems a shame to squander some of this efficiency with an unnecessary appli-
cation of E. Moreover, in practical settings we often wish to MAC very short

200 John Black and Phillip Rogaway

MM M M2 3 1 21 3MM

E E

K1 K1 K1

K2

T

K1 K1 K1

K3

T

E E E E E E

10.......0

Fig. 2. The ECBC construction using a block cipher E : Key × Σn → Σn. The
construction uses three keys, K1, K2, K3 ∈ Key. On the left is the case where |M | is a
positive multiple of n, while on the right is the case where it isn’t.

messages, where saving one invocation of the block cipher can be a significant
performance gain.
Our first new scheme lets us avoid padding when |M | is a nonzero multiple

of n. We simply make two cases: one for when |M | is a positive multiple of n and
one for when it isn’t. In the first case we compute EMACEK1,EK2(M). In the
second case we append minimal 10i padding (i ≥ 0) to make a padded message P
whose length is divisible by n, and then we compute EMACEK1,EK3(P). Notice
the different second key—K3 instead of K2—in the case where we’ve added
padding. Here, in full, is the algorithm. It is also shown in Figure 2.

Algorithm ECBCEK1,EK2,EK3(M)
if M ∈ (Σn)+

then return EK2(CBCEK1(M))
else return EK3(CBCEK1(M ‖ 10i)), where i = n− 1− |M | mod n

In Section 4 we prove that ECBC is secure. We actually show that it is a good
pseudorandom function (PRF), not just a good MAC. The security of ECBC
does not seem to directly follow from Petrank and Rackoff’s result [10]. At issue
is the fact that there is a relationship between the key (K1,K2) used to MAC
messages in (Σn)+ and the key (K1,K3) used to MAC other messages.

Improving efficiency: fcbc. With ECBC we are using �|M |/n + 1 appli-
cations of the underlying block cipher. We can get rid of the +1 (except when
|M | = 0). We start off, as before, by padding M when it is outside (Σn)+. Next
we compute the CBC MAC using key K1 for all but the final block, and then use
either key K2 or K3 for the final block. Which key we use depends on whether
or not we added padding. The algorithm follows, and is also shown in Figure 3.
In Section 5 we prove the security of this construction. Correctness follows from
the result on the security of ECBC.

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 201

M 1 M 2 M 3M 3M 2M 1 10.......0

K3K1K1K2

T

K1K1 E E E E E E

T

Fig. 3. The FCBC construction with a block cipher E : Key × Σn → Σn. The con-
struction uses three keys, K1, K2, K3 ∈ Key. On the left is the case where |M | is a
positive multiple of n, while on the right is the case where |M | is not a positive multiple
of n.

Algorithm FCBCEK1,EK2,EK3(M)
if M ∈ (Σn)+

then K ← K2, and P ←M
else K ← K3, and P ←M ‖ 10i, where i← n− 1− |M | mod n

Let P = P1 · · ·Pm, where |P1| = · · · = |Pm| = n
C0 ← 0n

for i← 1 to m− 1 do
Ci ← EK1(Pi⊕Ci−1)

return EK(Pm⊕Cm−1)

Avoiding multiple encryption keys: xcbc. Most block ciphers have a key-
setup cost, when the key is turned into subkeys. The subkeys are often larger
than the original key, and computing them may be expensive. So keying the
underlying block cipher with multiple keys, as is done in EMAC, ECBC, and
FCBC, is actually not so desirable. It would be better to use the same key for
all of the block-cipher invocations. The algorithm XCBC does this.

Algorithm XCBCEK1,K2,K3(M)
if M ∈ (Σn)+

then K ← K2, and P ←M
else K ← K3, and P ←M ‖ 10i, where i← n− 1− |M | mod n

Let P = P1 · · ·Pm, where |P1| = · · · = |Pm| = n
C0 ← 0n

for i← 1 to m− 1 do
Ci ← EK1(Pi⊕Ci−1)

return EK1(Pm⊕Cm−1⊕K)

We again make two cases. If M ∈ (Σn)+ we CBC as usual, except that we
XOR in an n-bit key, K2, before enciphering the last block. If M �∈ (Σn)+ then
append minimal 10i padding (i ≥ 0) and CBC as usual, except that we XOR in
a different n-bit key, K3, before enciphering the last block. Here, in full, is the
algorithm. Also see Figure 4. The proof of security can be found in Section 6.

202 John Black and Phillip Rogaway

K2

M 1 M2 M 3 M1 M 2 M 3 10.......0

K3

K1

T

K1 EEK1

T

EK1K1EK1 E E

Fig. 4. The XCBC construction with a block cipher E : Key × Σn → Σn. We use
keys K1 ∈ Key and K2, K3 ∈ Σn. On the left is the case where |M | is a positive
multiple of n; on the right is the case where |M | is not a positive multiple of n.

Summary. We have now defined CBCρ1(·), EMACρ1, ρ2(·), ECBCρ1, ρ2, ρ3(·),
FCBCρ1, ρ2, ρ3(·), and XCBCρ1, k2, k3(·) where ρ1, ρ2, ρ3 : Σn → Σn and k2, k3 ∈
Σn. We emphasize that the definitions make sense for any ρ1, ρ2, ρ3 : Σn →
Σn; in particular, we don’t require ρ1, ρ2, ρ3 be permutations. Notice that we
interchangeably use notation such as ρ1 and EK1; the key K1 is simply naming
a function ρ1 = EK1.

3 Preliminaries

Notation. If A and B are sets then Rand(A,B) is the set of all functions from A
to B. If A or B is a positive number, n, then the corresponding set is Σn. Let
Perm(n) be the set of all permutations from Σn to Σn. By x R← A we denote
the experiment of choosing a random element from A.
A function family is a multiset F = {f : A → B}, where A,B ⊆ Σ∗. Each

element f ∈ F has a name K, where K ∈ Key. So, equivalently, a function family
F is a function F : Key×A→ B. We call A the domain of F and B the range
of F . The first argument to F will be written as a subscript. A block cipher is a
function family F : Key ×Σn → Σn where FK(·) is always a permutation.
An adversary is an algorithm with an oracle. The oracle computes some

function. Adversaries are assumed to never ask a query outside the domain of
the oracle, and to never repeat a query.
Let F : Key × A → B be a function family and let A be an adversary. We

say that Af forges if A outputs (x, f(x)) where x ∈ A and A never queried its
oracle f at x. We let

Advmac
F (A) def= Pr[f R← F : Af(·) forges]

AdvprfF (A) def= Pr[f R← F : Af(·) = 1]− Pr[R R← Rand(A,n) : AR(·) = 1] ,

and when A = Σn

AdvprpF (A) def= Pr[f R← F : Af(·) = 1]− Pr[π R← Perm(n) : Aπ(·) = 1] .

We overload this notation and write AdvxxxF (R) (where xxx ∈ {mac,prf,prp})
for the maximal value of AdvxxxF (A) among adversaries who use resources R.

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 203

The resources we will deal with are: t, the running time of the adversary; q, the
number of queries the adversary makes; and µ, the maximal bit length of each
query. Omitted arguments are unbounded or irrelevant. We fix a few conventions.
To measure time, t, one assumes some fixed model of computation. This model
is assumed to support unit-time operations for computing f R← Key and FK(P).
Time is understood to include the description size of the adversary A. In the
case of Advmac

F the number of queries, q, includes one “invisible” query to test
if the adversary’s output is a valid forgery.

Basic facts. It is often convenient to replace random permutations with ran-
dom functions, or vice versa. The following proposition lets us easily do this. For
a proof see Proposition 2.5 in [2].

Lemma 1. [PRF/PRP Switching] Fix n ≥ 1. Let A be an adversary that
asks at most p queries. Then
∣∣∣Pr[π R← Perm(n) : Aπ(·) = 1]− Pr[ρ R← Rand(n, n) : Aρ(·) = 1]

∣∣∣ ≤ p(p− 1)
2n+1

As is customary, we will show the security of our MACs by showing that their
information-theoretic versions approximate random functions. As is standard,
this will be enough to pass to the complexity-theoretic scenario. Part of the
proof is Proposition 2.7 of [2].

Lemma 2. [Inf. Th. PRF ⇒ Comp. Th. PRF] Fix n ≥ 1. Let CONS
be a construction such that CONSρ1,ρ2,ρ3(·) : Σ∗ → Σn for any ρ1, ρ2, ρ3 ∈
Rand(n, n). Suppose that if |M | ≤ µ then CONSρ1,ρ2,ρ3(M) depends on the
values of ρi on at most p points (for 1 ≤ i ≤ 3). Let E : Key × Σn → Σn be a
family of functions. Then

AdvprfCONS[E](t, q, µ) ≤ AdvprfCONS[Perm(n)](q, µ) + 3 ·AdvprpE (t′, p), and

Advmac
CONS[E](t, q, µ) ≤ AdvprfCONS[Perm(n)](q, µ) + 3 ·AdvprpE (t′, p) +

1
2n
,

where t′ = t+O(pn).

4 Security of ECBC

In this section we prove the security of the ECBC construction. See Section 2
for a definition of ECBCρ1,ρ2,ρ3(M), where ρ1, ρ2, ρ3 ∈ Rand(n, n).
Our approach is as follows: we view the CBC MAC as an almost universal-2

family of hash functions and prove a bound on its collision probability. Then
we create a PRF by applying one of two random functions to the output of
CBC MAC and claim that this construction is itself a good PRF. Applying
a PRF to a universal-2 hash function is a well-known approach for creating a
PRF or MAC [5,12,4]. The novelty here is the extension to three keys and,
more significantly, the treatment of the CBC MAC as an almost universal-2

204 John Black and Phillip Rogaway

family of hash functions. The latter might be against one’s instincts because the
CBC MAC is a much stronger object than a universal hash-function family. Here
we ignore that extra strength and study only the collision probability.
We wish to show that if M,M ′ ∈ (Σn)+ are distinct then Prπ[CBCπ(M) =

CBCπ(M ′)] is small. By “small” we mean a slowly growing function of m =
|M |/n and m′ = |M ′|/n. Formally, for n,m,m′ ≥ 1, let the collision probability
of the CBC MAC be

Vn(m,m′) def=

max
M∈Σnm, M ′∈Σnm′ , M �=M ′

{ Pr[π R← Perm(n) : CBCπ(M) = CBCπ(M ′)] } .

(The shape of the character “V ” is meant to suggest collisions.) It is not hard
to infer from [10] a collision bound of Vn(m,m′) ≤ 2.5 (m +m′)2/2n by using
their bound on EMAC and realizing that collisions in the underlying CBC MAC
must show through to the EMAC output. A direct analysis easily yields a slightly
better bound.

Lemma 3. [CBC Collision Bound] Fix n ≥ 1 and let N = 2n. Let M,M ′ ∈
(Σn)+ be distinct strings having m = |M |/n and m′ = |M ′|/n blocks. Assume
that m,m′ ≤ N/4. Then

Vn(m,m′) ≤ (m+m′)2

2n

Proof. Although M and M ′ are distinct, they may share some common prefix.
Let k be the index of the last block in which M and M ′ agree. (If M and M ′

have unequal first blocks then k = 0.)
Each particular permutation π is equally likely among all permutations from

Σn to Σn. In our analysis, we will view the selection of π as an incremental
procedure. This will be equivalent to selecting π uniformly at random.
In particular, we view the computation of CBCπ(M) and CBCπ(M ′) as

playing the game given in Figure 5. Here the notation Mi indicates the ith
block of M . We initially set each range point of π as undefined; the notation
Domain(π) represents the set of points x where π(x) is no longer undefined. We
use Range(π) to denote the set of points π(x) which are no longer undefined;
we use Range(π) to denote Σn − Range(π).
During the game, the Xi are those values produced after XORing with the

current message block, Mi, and the Yi values are π(Xi). See Figure 6.
We examine the probability that π will cause CBCπ(M) = CBCπ(M ′), which

will occur in our game iff Ym = Y ′
m′ . Since π is invertible, this occurs iff Xm =

X ′
m′ . As we shall see, this condition will cause bad = true in our game. However,
we actually set bad to true in many other cases in order to simplify the analysis.
The idea behind the variable bad is as follows: throughout the program (lines

5, 12, and 17) we randomly choose a range value for π at some undefined domain
point. Since π has not yet been determined at this point, the selection of our
range value will be an independent uniform selection: there is no dependence

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 205

1: bad ← false; for all x ∈ Σn do π(x)← undefined
2: X1 ←M1; X ′

1 ←M ′
1; BAD ← {X1, X

′
1}

3: for i← 1 to k do
4: if Xi ∈ Domain(π) then Yi ← Y ′

i ← π(Xi) else
5: Yi ← Y ′

i
R← Range(π); π(Xi)← Yi

6: if i < m then begin Xi+1 ← Yi⊕Mi+1

7: if Xi+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {Xi+1} end
8: if i < m′ then begin X ′

i+1 ← Y ′
i ⊕M ′

i+1

9: if X ′
i+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {X ′

i+1} end

10: for i← k + 1 to m do
11: if Xi ∈ Domain(π) then Yi ← π(Xi) else
12: Yi

R← Range(π); π(Xi)← Yi

13: if i < m then begin Xi+1 ← Yi⊕Mi+1

14: if Xi+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {Xi+1} end

15: for i← k + 1 to m′ do
16: if X ′

i ∈ Domain(π) then Y ′
i ← π(X ′

i) else
17: Y ′

i
R← Range(π); π(X ′

i)← Y ′
i

18: if i < m then begin X ′
i+1 ← Y ′

i ⊕M ′
i+1

19: if X ′
i+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {X ′

i+1} end

Fig. 5. Game used in the proof of Lemma 3. The algorithm gives one way to compute
the CBC MAC of distinct messages M = M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m′ . These

messages are identical up to block k.The computed MACs are Ym and Ym′ , respectively.

on any prior choice. If the range value for π were already determined by some
earlier choice, the analysis would become more involved. We avoid the latter
condition by setting bad to true whenever such interdependencies are detected.
The detection mechanism works as follows: throughout the processing of M and
M ′ we will require π be evaluated at m + m′ domain points X1, · · · , Xm and
X ′

1, · · · , X ′
m′ . If all of these domain points are distinct (ignoring duplications due

to any common prefix of M and M ′), we can rest assured that we are free to
assign their corresponding range points without constraint. We maintain a set
BAD to track which domain points have already been determined; initially X1
and X ′

1 are the only such points, since future values will depend on random
choices not yet made. Of course if k > 0 then X1 = X ′

1 and BAD contains only
one value. Next we begin randomly choosing range points; if ever any such choice
leads to a value already contained in the BAD set, we set the flag bad to true.
We now bound the probability of the event that bad = true by analyzing

our game. The variable bad can be set true in lines 7, 9, 14, and 19. In each
case it is required that some Yi was selected such that Yi⊕Mi+1 ∈ BAD (or
possibly that some Y ′

i was selected such that Y
′
i ⊕M ′

i+1 ∈ BAD). The set BAD
begins with at most 2 elements and then grows by 1 with each random choice
of Yi or Y ′

i . We know that on the ith random choice in the game the BAD set
will contain at most i+ 1 elements. And so each random choice of Yi (resp. Y ′

i)

206 John Black and Phillip Rogaway

X

iM M i+1

X i+1i

Y

π π

i

Fig. 6. The labeling convention used in the proof of Lemma 3.

from the co-range of π will cause Yi⊕Mi+1 (resp. Y ′
i ⊕M ′

i+1) to be in BAD
with probability at most (i+1)/(N − i+1). We have already argued that in the
absence of bad = true each of the random choices we make are independent.
We make m− 1 choices of Yi to produce X2 through Xm and m′ − 1 choices of
Y ′

i to determine X
′
2 through X

′
m′ and so we can compute

Pr[bad = true] ≤
m−1+m′−1∑

i=1

i+ 1
N − i+ 1 .

Using the fact that m,m′ ≤ N/4, we can bound the above by
m+m′−2∑

i=1

i+ 1
N − i ≤

2
N

m+m′−2∑
i=1

i+ 1 ≤ (m+m′)2

N
.

This completes the proof.

Fix n ≥ 1 and let F : Key × Σn → Σn be a family of functions. Let ECBC[F]
be the family of functions ECBCf1,f2,f3(·) indexed by Key×Key×Key. We now
use the above to show that ECBC[Perm(n)] is close to being a random function.

Theorem 1. [ECBC ≈ Rand] Fix n ≥ 1 and let N = 2n. Let A be an
adversary which asks at most q queries each of which is at most mn-bits. Assume
m ≤ N/4. Then

Pr[π1, π2, π3
R← Perm(n) : AECBCπ1,π2,π3 (·) = 1] −

Pr[R R← Rand(Σ∗, n) : AR(·) = 1] ≤ q2

2
Vn(m,m) +

q2

2N
≤ (2m2 + 1)q2

N

Proof. We first compute a related probability where the final permutation is
a random function; this will simplify the analysis. So we are interested in the
quantity

Pr[π1
R← Perm(n); ρ2, ρ3 R← Rand(n, n) : AECBCπ1,ρ2,ρ3 (·) = 1]

−Pr[R R← Rand(Σ∗, n) : AR(·) = 1] .

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 207

For economy of notation we encapsulate the initial parts of our experiments into
the probability symbols Pr1 and Pr2, rewriting the above as

Pr1[AECBCπ1,ρ2,ρ3 (·) = 1]− Pr2[AR(·) = 1].

We condition Pr1 on whether a collision occurred within π1, and we differentiate
between collisions among messages whose lengths are a nonzero multiple of n
(which are not padded) and other messages (which are padded). Let UnpadCol be
the event that there is a collision among the unpadded messages and let PadCol
be the event that there is a collision among the padded messages. We rewrite
the above as

Pr1[AECBCπ1,ρ2,ρ3 (·) = 1 | UnpadCol ∨ PadCol] Pr1[UnpadCol ∨ PadCol]

+ Pr1[AECBCπ1,ρ2,ρ3 (·) = 1 | UnpadCol ∨ PadCol] Pr1[UnpadCol ∨ PadCol]

− Pr2[AR(·) = 1].
Observe that in the absence of event (UnpadCol ∨ PadCol), the adversary sees
the output of a random function on distinct points; that is, she is presented with
random, uncorrelated points over the range Σn. Therefore we know

Pr1[AECBCπ1,ρ2,ρ3 (·) = 1 | UnpadCol ∨ PadCol] = Pr2[AR(·) = 1].

Bounding Pr1[UnpadCol ∨ PadCol] and Pr1[AECBCπ1,ρ2,ρ3 (·) = 1 | UnpadCol ∨
PadCol] by 1, we reduce the bound on the obtainable advantage to Pr1[UnpadCol∨
PadCol] ≤ Pr1[UnpadCol] +Pr1[PadCol]. To bound this quantity, we break each
event into the disjoint union of several other events; define UnpadColi to be the
event that a collision in π1 occurs for the first time as a result of the ith un-
padded query. Let qu be the number of unpadded queries made by the adversary,
and let qp be the number of padded queries. Then

Pr1[UnpadCol] =
qu∑
i=1

Pr1[UnpadColi] .

Now we compute each of the probabilities on the righthand side above. If we
know no collisions occurred during the first i− 1 queries we know the adversary
has thus far seen only images of distinct inputs under a random function. Any
adaptive strategy she adopts in this case could be replaced by a non-adaptive
strategy where she pre-computes her queries under the assumption that the first
i − 1 queries produce random points. In other words, any adaptive adversary
can be replaced by a non-adaptive adversary which does at least as well. A
non-adaptive strategy would consist of generating all q inputs in advance, and
from the collision bound on the hash family we know Pr1[UnpadColi] ≤ (i −
1)Vn(m,m) . Summing over i we get

Vn(m,m)
qu∑
i=1

(i− 1) ≤ q2u
2
Vn(m,m) .

208 John Black and Phillip Rogaway

Repeating this analysis for the padded queries we obtain an overall bound of

q2u
2
Vn(m,m) +

q2p
2
Vn(m,m) ≤ q2

2
Vn(m,m) .

Finally we must replace the PRFs ρ2 and ρ3 with the PRPs π2 and π3. Using
Lemma 1 this costs an extra q2u/2N+q

2
p/2N ≤ q2/2N , and so the bound becomes

q2

2
Vn(m,m) +

q2

2N
,

and if we apply the bound on Vn(m,m) from Lemma 3 we have

q2

2
4m2

N
+
q2

2N
≤ (2m2 + 1)q2

N
.

Tightness, and non-tightness, of our bound. Employing well-known tech-
niques (similar to [11]), it is easy to exhibit a known-message attack which forges
with high probability (> 0.3) after seeing q = 2n/2 message/tag pairs. In this
sense the analysis looks tight. The same statement can be made for the FCBC
and XCBC analyses. But if we pay attention not only to the number of mes-
sages MACed, but also their lengths, then none of these analyses is tight. That
is, because the security bound degrades quadratically with the total number of
message blocks, while the the attack efficiency improves quadratically with the
total number of messages. Previous analyses for the CBC MAC and its variants
all shared these same characteristics.

Complexity-Theoretic Result. In the usual way we can now pass from the
information-theoretic result to a complexity-theoretic one. For completeness, we
state the result, which follows using Lemma 2.

Corollary 1. [ECBC is a PRF] Fix n ≥ 1 and let N = 2n. Let E : Key ×
Σn → Σn be a block cipher. Then

AdvprfECBC[E](t, q,mn) ≤
2m2q2 + q2

N
+ 3 ·AdvprpE (t′, q′), and

Advmac
ECBC[E](t, q,mn) ≤

2m2q2 + q2 + 1
N

+ 3 ·AdvprpE (t′, q′)

where t′ = t+O(mq) and q′ = mq.

It is worth noting that using a very similar argument to Theorem 1 we can easily
obtain the same bound for the EMAC construction [3]. This yields a proof which
is quite a bit simpler than that found in [10]. We state the theorem here, but
omit the proof which is very similar to the preceding.

Theorem 2. [EMAC ≈ Rand] Fix n ≥ 1 and let N = 2n. Let A be an
adversary which asks at most q queries, each of which is at most m n-bit blocks,

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 209

where m ≤ N/4. Then

Pr[π, σ R← Perm(n) : AEMACπ,σ(·) = 1]− Pr[ρ R← Rand((Σn)+, n) : Aρ(·) = 1]

≤ q2

2
Vn(m,m) +

q2

2N
≤ (2m2 + 1)q2

N

5 Security of FCBC

In this section we prove the security of FCBC, obtaining the same bound we had
for ECBC. See Section 2 for a definition of FCBCρ1,ρ2,ρ3(M), where ρ1, ρ2, ρ3 ∈
Rand(n, n).

Theorem 3. [FCBC ≈ Rand] Fix n ≥ 1 and let N = 2n. Let A be an
adversary which asks at most q queries, each of which is at most mn bits. Assume
m ≤ N/4. Then

Pr[π1, π2, π3
R← Perm(n) : AFCBCπ1,π2,π3 (·) = 1] −

Pr[R R← Rand(Σ∗, n) : AR(·) = 1] ≤ q2

2
Vn(m,m) +

q2

2N
≤ (2m2 + 1)q2

N

Proof. Let us compare the distribution on functions

{ECBCπ1,π2,π3(·) | π1, π2, π3 R← Perm(n)} and
{FCBCπ1,σ2,σ3(·) | π1, σ2, σ3 R← Perm(n)} .

We claim that these are the same distribution, so, information theoretically, the
adversary has no way to distinguish a random sample drawn from one distribu-
tion from a random sample from the other. The reason is simple. In the ECBC
construction we compose the permutation π1 with the random permutation π2.
But the result of such a composition is just a random permutation, σ2. Elsewhere
in the ECBC construction we compose the permutation π1 with the random per-
mutation π3. But the result of such a composition is just a random permutation,
σ3. Making these substitutions—σ2 for π2 ◦ π1, and σ3 for π3 ◦ π1, we recover
the definition of ECBC. Changing back to the old variable names we have

Pr[π1, π2, π3
R← Perm(n) : AFCBCπ1,π2,π3 (·) = 1]

= Pr[π1, π2, π3
R← Perm(n) : AECBCπ1,π2,π3 (·) = 1]

So the bound of our theorem follows immediately from Theorem 1.

Since the bound for FCBC exactly matches the bound for ECBC, Corollary 1
applies to FCBC as well.

210 John Black and Phillip Rogaway

6 Security of XCBC

In this section we prove the security of the XCBC construction. See Section 2
for a definition of XCBCρ1,ρ2,ρ3(M), where ρ1, ρ2, ρ3 ∈ Rand(n, n) andM ∈ Σ∗.
We first give a lemma which bounds an adversary’s ability to distinguish

between a pair of random permutations, π1(·), π2(·), and the pair π(·), π(K ⊕ ·),
where π is a random permutation and K is a random n-bit string. This lemma,
and ones like it, may make generally useful tools.

Lemma 4. [Two permutations from one] Fix n ≥ 1 and let N = 2n. Let
A be an adversary which asks at most p queries. Then

∣∣∣Pr[π R← Perm(n); K R← Σn : Aπ(·), π(K ⊕ ·) = 1]

− Pr[π1, π2 R← Perm(n) : Aπ1(·), π2(·) = 1]
∣∣∣ ≤ p

2

N
.

Proof. We use the game shown in Figure 7 to facilitate the analysis. Call the
game in that figure Game 1. We play the game as follows: first, the initializa-
tion procedure is executed once before we begin. In this procedure we set each
range point of π as undefined; the notation Domain(π) represents the set of
points x where π(x) is no longer undefined. We use Range(π) to denote the
set of points π(x) which are no longer undefined. We use Range(π) to denote
Σn − Range(π). Now, when the adversary makes a query X to her left oracle,
we execute the code in procedure π(X). When she makes a query X to her
right oracle, we execute procedure π(K ⊕X). We claim that in this setting we
perfectly simulate a pair of oracles where the first is a random permutation π(·)
and the second is π(K ⊕ ·). To verify this, let us examine each of the procedures
in turn.
For procedure π(X), we first check to see if X is in the domain of π. We are

assuming that the adversary will not repeat a query, but it is possible that X is
in the domain of π if the adversary has previously queried the second procedure
with the string K ⊕X. In this case we faithfully return the proper value π(X).
If her query is not in the domain of π we choose a random element Y from S
which we hope to return in response to her query. However, it may be that Y is
already in the range of π. Although we always remove from S any value returned
from this procedure, it may be that Y was placed in the range of π by the second
procedure. If this occurs, we choose a random element from the co-range of π
and return it. For procedure π(K ⊕ ·) we behave analogously.
Note during the execution of Game 1, we faithfully simulate the pair of

functions π(·) and π(K ⊕ ·). That is, the view of the adversary would be exactly
the same if we had selected a random permutation π and a random n-bit stringK
and then let her query π(·) and π(K ⊕ ·) directly.
Now consider the game we get by removing the shaded statements of Game 1.

Call that game Game 2. We claim that Game 2 exactly simulates two random
permutations. In other words, the view of the adversary in this game is exactly as
if we had given her two independent random permutations π1 and π2. Without

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 211

Initialization:
1: S, T ← Σn; K

R← Σn; for all X ∈ Σn do π(X)← undefined

Procedure π(X) :
2: if X ∈ Domain(π) then bad ← true, return π(X)

3: Y
R← S

4: if Y ∈ Range(π) then bad ← true, Y
R← Range(π)

5: π(X)← Y ; S ← S − {Y }; return Y

Procedure π(K ⊕X) :
6: if (K ⊕X) ∈ Domain(π) then bad ← true, return π(K ⊕X)

7: Y
R← T

8: if Y ∈ Range(π) then bad ← true, Y
R← Range(π)

9: π(K ⊕X)← Y ; T ← T − {Y }; return Y

Fig. 7. Game used in the proof of Lemma 4. With the shaded text in place the game
behaves like a pair of functions π(·), π(K ⊕ ·). With the shaded text removed the game
behaves like a pair of independent random permutations π1(·), π2(·).

loss of generality, we assume the adversary never repeats a query. Then exam-
ining procedure π(X), we see each call to procedure π(X) returns a random
element from Σn which has not been previously returned by this procedure.
This clearly is a correct simulation of a random permutation π1(·). For proce-
dure π(K ⊕X), we offset the query value X with some hidden string K, and
then return a random element from Σn which has not been previously returned
by this procedure. Note in particular that the offset by K has no effect on the
behavior of this procedure relative to the previous one. Therefore this procedure
perfectly simulates a random independent permutation π2(·).
In both games we sometimes set a variable bad to true during the execution

of the game. In neither case, however, does this have any effect on the values
returned by the game.
We name the event that bad gets set to true as B. This event is well-defined

for both Games 1 and 2. Notice that Games 1 and 2 behave identically prior to
bad becoming true. One can imagine having two boxes, one for Game 1 and
one for Game 2, each box with a red light that will illuminate if bad should get
set to true. These two boxes are defined as having identical behaviors until the
red light comes on. Thus, collapsing the initial parts of the probabilities into the
formal symbols Pr1 and Pr2, we may now say that Pr1[Aπ(·),π(K ⊕ ·) = 1 | B] =
Pr2[Aπ1(·),π2(·) = 1 | B]. And since Games 1 and 2 behave identically until bad
becomes true, we know Pr1[B] = Pr2[B]. We have that

∣∣∣Pr1[Aπ(·),π(K ⊕ ·) = 1]− Pr2[Aπ1(·),π2(·) = 1]
∣∣∣ =

212 John Black and Phillip Rogaway

∣∣∣Pr1[Aπ(·),π(K ⊕ ·) = 1 | B] · Pr1[B] + Pr1[Aπ(·),π(K ⊕ ·) = 1 | B] · Pr1[B] −

Pr2[Aπ1(·),π2(·) = 1 | B] · Pr2[B]− Pr2[Aπ1(·),π2(·) = 1 | B] · Pr2[B]
∣∣∣ .

From the previous assertions we know this is equal to
∣∣∣Pr1[Aπ(·),π(K ⊕ ·) = 1 | B] · Pr1[B]− Pr2[Aπ1(·),π2(·) = 1 | B] · Pr2[B]

∣∣∣ =
∣∣∣Pr2[B] ·

(
Pr1[Aπ(·),π(K ⊕ ·) = 1 | B]− Pr2[Aπ1(·),π2(·) = 1 | B]

)∣∣∣ ≤ Pr2[B].

Therefore we may bound the adversary’s advantage by bounding Pr2[B].
We define p events in Game 2: for 1 ≤ i ≤ p, let Bi be the event that bad

becomes true, for the first time, as a result of the ith query. Thus B is the
disjoint union of B1, . . . ,Bp and

Pr2[B] =
p∑

i=1

Pr2[Bi] .

We now wish to bound Pr2[Bi]. To do this, we first claim that adaptivity does
not help the adversary to make B happen. In other words, the optimal adaptive
strategy for making B happen is no better than the optimal non-adaptive one.
Why is this? Adaptivity could help the adversary if Game 2 released informa-
tion associated to K. But Game 2 has no dependency on K—the variable is not
used in computing return values to the adversary. Thus Game 2 never provides
the adversary any information that is relevant for creating a good ith query. So
let A be an optimal adaptive adversary for making B happen. By the standard
averaging argument there is no loss of generality to assume that A is determin-
istic. We can construct an optimal non-adaptive adversary A′ by running A and
simulating two independent permutation oracles. Since Game 2 returns values
of the same distribution, for all K, the adversary A′ will do no better or worse
in getting B to happen in Game 2 if A′ asks the sequence of questions that A
asked in the simulated run. Adversary A′ can now be made deterministic by the
standard averaging argument. The resulting adversary, A′′, asks a fixed sequence
of queries and yet does just as well as the adaptive adversary A.
Now let us examine the chance that bad is set true in line 2, assuming the

adversary has chosen her queries in advance. As we noted above, this can occur
when the adversary asks a query X after having previously issued a queryK ⊕X
to the second procedure. What is the chance that this occurs? We can view the
experiment as follows: at most i− 1 queries were asked of the second procedure;
let’s name those queries Q = {X1, · · · , Xi−1}. We wish to bound the chance
that a randomly chosen X will cause K ⊕X ∈ Q. But this is simply asking the
chance that K ∈ {X ⊕X1, · · · , X ⊕Xi−1} which is at most (i− 1)/N .
What is the chance that bad becomes true in line 4? This occurs when the

randomly chosen Y is already in the range of π. Since Y is removed from S
each time the first procedure returns it, this occurs when the second procedure
returned such a Y and it was then subsequently chosen by the first procedure.

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 213

Since at most i− 1 values were returned by the second procedure, the chance is
at most (i− 1)/N that this could occur.
The same arguments apply to lines 6 and 8. Therefore we have Pr2[Bi] ≤

2(i− 1)/N, and
Pr2[B] ≤

p∑
i=1

2(i− 1)
N

≤ p2

N

which completes the proof.

We may now state and prove the theorem for the security of our XCBC construc-
tion. The bound follows quickly from the the bound on FCBC and the preceding
lemma.

Theorem 4. [XCBC ≈ Rand] Fix n ≥ 1 and let N = 2n. Let A be an
adversary which asks at most q queries, each of which is at most mn bits. Assume
m ≤ N/4. Then

∣∣∣Pr[π1 R← Perm(n); K2,K3 R← Σn : AXCBCπ1,K2,K3(·) = 1]

− Pr[R R← Rand(Σ∗, n) : AR(·) = 1]
∣∣∣

≤ q2

2
Vn(m,m) +

(2m2 + 1)q2

N
≤ (4m2 + 1)q2

N

Proof. By the triangle inequality, the above difference is at most
∣∣∣Pr[π1, π2, π3 R← Perm(n) : AFCBCπ1,π2,π3 (·) = 1]

− Pr[R R← Rand(Σ∗, n) : AR(·) = 1]
∣∣∣

+
∣∣∣Pr[π1, π2, π3 R← Perm(n) : AFCBCπ1,π2,π3 (·) = 1]

− Pr[π1
R← Perm(n); K2,K3 R← Σn : AXCBCπ1,K2,K3(·) = 1]

∣∣∣
and Theorem 3 gives us a bound on the first difference above. We now bound
the second difference. Clearly this difference is at most

∣∣∣Pr[π1, π2, π3 R← Perm(n) : Aπ1(·),π2(·),π3(·) = 1]

− Pr[π1
R← Perm(n); K2,K3 R← Σn : Aπ1(·),π1(K2⊕ ·),π1(K3⊕ ·) = 1]

∣∣∣
since any adversary which does well in the previous setting could be converted
to one which does well in this setting. (Here we assume that A makes at most
mq total queries of her oracles). Applying Lemma 4 twice we bound the above
by 2m2q2/N . Therefore our overall bound is

q2

2
Vn(m,m) +

q2

2N
+
2m2q2

N
≤ q2

2
Vn(m,m) +

(2m2 + 1)q2

N
.

214 John Black and Phillip Rogaway

And if we apply the bound on Vn(m,m) from Lemma 3 we have

q2

2
4m2

N
+
(2m2 + 1)q2

N
≤ (4m2 + 1)q2

N

as required.

xor-after-last-enciphering doesn’t work. The XCBC-variant that XORs
the second key just after applying the final enciphering does not work. That is,
when |M | is a nonzero multiple of the blocksize, we’d have MACπ,K(M) =
CBCπ(M)⊕K. This is no good. In the attack, the adversary asks for the MACs
of three messages: the message 0 = 0n, the message 1 = 1n, and the message
1 ‖ 0. As a result of these three queries the adversary gets tag T0 = π(0)⊕K,
tag T1 = π(1)⊕K, and tag T2 = π(π(1))⊕K. But now the adversary knows
the correct tag for the (unqueried) message 0 ‖ (T0⊕T1), since this is just T2:
namely, MACπ,K(0 ‖ (T0⊕T1)) = π(π(0) ⊕ (π(0)⊕K)⊕ (π(1)⊕K)) ⊕K =
π(π(1))⊕K = T2. Thanks to Mihir Bellare for pointing out this attack.

On key-search attacks. If FCBC or XCBC is used with an underlying block
cipher (like DES) which is susceptible to exhaustive key search, then the MACs
inherit this vulnerability. (The same can be said of ECBC and EMAC, except
that the double encryption which these MACs employ would seem to necessitate
a meet-in-the-middle attack.) It was such considerations that led the designers of
the retail MAC, ANSI X9.19, to suggest triple encryption for enciphering the last
block [1]. It would seem to be possible to gain this same exhaustive-key-search
strengthening by modifying XCBC to again XOR the second key (K2 or K3)
with the result of the last encipherment. (If one is using DES, this amounts to
switching to DESX for the last encipherment [9].) We call this variant XCBCX.
Likely one could prove good bounds for it in the Shannon model. However, none
of this is necessary or relevant if one simply starts with a strong block cipher.

Complexity-Theoretic Result. We can again pass from the information-
theoretic result to the complexity-theoretic one:

Corollary 2. [XMAC is a PRF] Fix n ≥ 1 and let N = 2n. Let E : Key ×
Σn → Σn be a block cipher. Then

AdvprfXCBC[E](t, q,mn) ≤
4m2q2 + q2

N
+ 3 ·AdvprpE (t′, q′), and

Advmac
XCBC[E](t, q,mn) ≤

4m2q2 + q2 + 1
N

+ 3 ·AdvprpE (t′, q′)

where t′ = t+O(mq) and q′ = mq.

Acknowledgments

Shai Halevi proposed the elegant idea of using three keys to extend the domain
of the CBC MAC to Σ∗, nicely simplifying an approach used in an early version

CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions 215

of UMAC [4]. Thanks to Shai and Mihir Bellare for their comments on an early
draft, and to anonymous Crypto ’00 reviewers for their useful comments.
The authors were supported under Rogaway’s NSF CAREER Award CCR-

962540, and under MICRO grants 98-129 and 99-103, funded by RSA Data
Security and ORINCON. This paper was written while Rogaway was on sab-
batical at the Department of Computer Science, Faculty of Science, Chiang Mai
University. Thanks for their always-kind hospitality.

References

1. ANSI X9.19. American national standard — Financial institution retail message
authentication. ASC X9 Secretariat – American Bankers Association, 1986.

2. Bellare, M., Kilian, J., and Rogaway, P. The security of the cipher block
chaining message authentication code. See www.cs.ucdavis.edu/˜rogaway. Older
version appears in Advances in Cryptology – CRYPTO ’94 (1994), vol. 839 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 341–358.

3. Berendschot, A., den Boer, B., Boly, J., Bosselaers, A., Brandt, J.,
Chaum, D., Damg̊ard, I., Dichtl, M., Fumy, W., van der Ham, M., Jansen,
C., Landrock, P., Preneel, B., Roelofsen, G., de Rooij, P., and Vande-
walle, J. Final Report of Race Integrity Primitives, vol. 1007 of Lecture Notes in
Computer Science. Springer-Verlag, 1995.

4. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P. UMAC:
Fast and secure message authentication. In Advances in Cryptology – CRYPTO
’99 (1999), Lecture Notes in Computer Science, Springer-Verlag.

5. Carter, L., and Wegman, M. Universal hash functions. J. of Computer and
System Sciences, 18 (1979), 143–154.

6. FIPS 113. Computer data authentication. Federal Information Processing Stan-
dards Publication 113, U.S. Department of Commerce/National Bureau of Stan-
dards, National Technical Information Service, Springfield, Virginia, 1994.

7. Goldreich, O., Goldwasser, S., and Micali, S. How to construct random
functions. Journal of the ACM 33, 4 (1986), 210–217.

8. Iso/Iec 9797-1. Information technology – security techniques – data integrity
mechanism using a cryptographic check function employing a block cipher algo-
rithm. International Organization for Standards, Geneva, Switzerland, 1999. Sec-
ond edition.

9. Kilian, J., and Rogaway, P. How to protect DES against exhaustive key search.
In Advances in Cryptology – CRYPTO ’96 (1996), vol. 1109 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 252–267.

10. Petrank, E., and Rackoff, C. CBC MAC for real-time data sources.
Manuscript 97-10 in http://philby.ucsd.edu/cryptolib.html, 1997.

11. Preneel, B., and van Oorschot, P. On the security of two MAC algorithms.
In Advances in Cryptology — EUROCRYPT ’96 (1996), vol. 1070 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 19–32.

12. Wegman, M., and Carter, L. New hash functions and their use in authentication
and set equality. In J. of Comp. and System Sciences (1981), vol. 22, pp. 265–279.

	Introduction
	Schemes ECBC, FCBC, and XCBC
	Preliminaries
	Security of ECBC
	Security of FCBC
	Security of XCBC

