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Abstract. We describe a new general method to perform part of the set-
up stage of the XTR system introduced at Crypto 2000, namely finding
the trace of a generator of the XTR group. Our method is substantially
faster than the general method presented at Asiacrypt 2000. As a side
result, we obtain an efficient method to test subgroup membership when
using XTR.

1 Introduction

XTR is an efficient and compact method to work with order p2 −p+1 subgroups
of the multiplicative group GF(p6)∗ of the finite field GF(p6). It was introduced
at Crypto 2000 (cf. [4]), followed by several practical improvements a Asiacrypt
2000 (cf. [5]). In this paper we present some further improvements of the methods
from [4] and [5]. Given the rapidly growing interest in XTR our new methods
are of immediate practical importance.

Let p and q be primes such that p ≡ 2 mod 3 and q divides p2 −p+1, let g be
a generator of the order q subgroup of GF(p6)∗, and let Tr(g) = g+ gp2

+ gp4 ∈
GF(p2) be the trace over GF(p2) of g. In [4] it is shown that the conjugates over
GF(p2) of elements of the XTR group 〈g〉 can conveniently be represented by
their trace over GF(p2), and it is shown how this representation can efficiently
be computed given Tr(g).

Given p and q the trace of a generator of the XTR group can be found as
follows, as shown in [4]. First one finds a value c ∈ GF(p2) such that F (c,X) =
X3−cX2+cpX−1 ∈ GF(p2)[X] is irreducible over GF(p2). Given an irreducible
F (c,X), there exists an element h ∈ GF(p6)∗ of order > 3 and dividing p2 −
p + 1 such that Tr(h) = c. Actually, h is a root of F (c,X). This implies that
Tr(g) can be computed as Tr(h(p2−p+1)/q), assuming that this value is �= 3; if
Tr(h(p2−p+1)/q) = 3 another c has be to found such that F (c,X) is irreducible.
Because F (c,X) is irreducible for about one third of the c’s in GF(p2), on average
3q/(q − 1) different c’s have to be tried before a proper c is found.

Thus, for the XTR parameter set-up process one needs to be able to test irre-
ducibility of polynomials of the form F (c,X) = X3−cX2+cpX−1 ∈ GF(p2)[X]
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for random c ∈ GF(p2). The irreducibility test given in [4] takes 8 log2(p) multi-
plications in GF(p); finding an irreducible F (c,X) using this method thus takes
an expected 24 log2(p) multiplications in GF(p). In the follow-up paper [5] a
method is described that tests irreducibility of F (c,X) for random c ∈ GF(p2)
in 2.4 log2(p) multiplications in GF(p) on average, so that an irreducible F (c,X)
can on average be found in 7.2 log2(p) multiplications in GF(p). In this paper
we present a further refinement of this last method that results in an F (c,X)-
irreducibility test that takes, on average for random c ∈ GF(p2), only 0.9 log2(p)
multiplications in GF(p). As a result, an irreducible F (c,X) can be found in an
expected 2.7 log2(p) multiplications in GF(p).

The test from [4] takes 8 log2(p) multiplications in GF(p), irrespective of the
outcome. The test from [5], on the other hand, is effectively free for half the c’s,
and takes 4.8 log2(p) multiplications in GF(p) for the other half (two thirds of
which lead to an irreducible F (c,X)). Similarly, the refined test in the present
paper is effectively free for half the c’s, and takes 1.8 log2(p) multiplications in
GF(p) for the other half. Thus, if during a cryptographic application of XTR a
value c is transmitted for which, if the protocol is carried out correctly, F (c,X)
is supposed to be irreducible, then the irreducibility of F (c,X) can be verified
at the cost of 1.8 log2(p) multiplications in GF(p) using our new method. This is
more than 60% faster than the method from [5] and implies that this verification
by the recipient of XTR related values does not cause severe additional overhead.
Note that such checks are required because many cryptographic protocols are
vulnerable if ‘wrong’ data are used (cf. [1], [2], [6], [11], and Section 4).

As the irreducibility test from [5] our new irreducibility test is based on
Scipione del Ferro’s method. Instead of applying it directly to test F (c,X) ∈
GF(p2)[X] for irreducibility, however, we reformulate the problem as an irre-
ducibility problem for a third-degree polynomial P (c,X) ∈ GF(p)[X]. This is
done in Section 2. We then show in Section 3 how the irreducibility of the re-
sulting polynomial P (c,X) can be verified. In Section 4 we discuss subgroup
membership testing, and in Section 5 we show how this can be done in XTR.
We present a method that is based on the F (c,X)-irreducibility test and costs
a small amount of additional computation but no additional communication,
and another method that takes only a constant number of GF(p)-operations but
causes some additional communication overhead.

2 From F (c, X) ∈ GF(p2)[X] to P (c, X) ∈ GF(p)[X]

Let c ∈ GF(p2) and let hj ∈ GF(p6) for j = 0, 1, 2 be the roots of F (c,X) ∈
GF(p2)[X]. Because F (c, h−p

j ) = 0 for j = 0, 1, 2 (cf. [4, Lemma 2.3.2.iv ]) we
can distinguish three cases:

I. hj = h−p
j for j = 0, 1, 2.

II. h0 = h−p
0 and hj = h−p

3−j for j = 1, 2.

III. hj = h−p
j+1 mod 3 for j = 0, 1, 2.
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In cases I and II we have that hj ∈ GF(p2) so that F (c,X) is reducible over
GF(p2). In case III all hj have order dividing p2 − p+1 and > 3 so that F (c, x)
is irreducible over GF(p2) (cf. [4, Lemma 2.3.2.vi ]). Thus, if case III can quickly
be distinguished from the other two cases, then the irreducibility of F (c,X) can
quickly be tested. Actually, we only have to be able to distinguish between cases
I and III, because case II can quickly be recognized since it applies if and only if
∆ ∈ GF(p) as in [5, Step 2 of Algorithm 3.5] is a quadratic non-residue in GF(p)
(cf. [5, Lemma 3.6]).

Definition 2.1 Let G(c,X) = F (c,X) · F (cp, X), and let

P (c,X) = X3 + (cp + c)X2 + (cp+1 + cp + c− 3)X + c2p + c2 + 2 − 2cp − 2c.

The following lemma describes some of the immediate properties of the polyno-
mials G(c,X) and P (c,X) and their interrelation.

Lemma 2.2 Both G(c,X) and P (c,X) are in GF(p)[X]. Furthermore P (c,X)
can be written as the product

∏2
j=0(X − Gj) of three linear polynomials if and

only if G(c,X) can be written as the product
∏2

j=0(X
2 + GjX + 1) of three

quadratic polynomials, where Gj ∈ GF(p6) for j = 0, 1, 2. In particular, this
decomposition of G(c,X) is unique modulo permutation and either all Gj are in
GF(p2) or all Gj are in GF(p3).

Proof. It follows from Definition 2.1 and a straightforward computation that
G(c,X) equals

X6−(cp+c)X5+(cp+1+cp+c)X4−(c2p+c2+2)X3+(cp+1+cp+c)X2−(cp+c)X+1.

All coefficients of G(c,X) and P (c,X) equal their own pth power, so that G(c,X)
and P (c,X) are in GF(p)[X]. Because

∏2
j=0(X

2 +GjX + 1) equals

X6 + (G0 +G1 +G2)X5 + (G0G1 +G0G2 +G1G2 + 3)X4 + (2G0 + 2G1 + 2G2

+G0G1G2)X3 + (G0G1 +G0G2 +G1G2 + 3)X2 + (G0 +G1 +G2)X + 1,

it follows that G(c,X) =
∏2

j=0(X
2 +GjX +1) is equivalent to G0 +G1 +G2 =

−cp − c ∈ GF(p), G0G1 + G0G2 + G1G2 = cp+1 + cp + c − 3 ∈ GF(p), and
G0G1G2 = 2cp + 2c− c2p − c2 − 2 ∈ GF(p). That is, G0, G1, G2 are the roots of
P (c,X). The proof now follows from the fact that

∏2
j=0(X −Gj) = X3 − (G0 +

G1 +G2)X2 +(G0G1 +G0G2 +G1G2)X−G0G1G2, Definition 2.1, and the well
known result that the roots of a third degree polynomial over GF(p) are either
in GF(p2) or in GF(p3).

Lemma 2.3 G(c,X) =
∏2

j=0(X
2 +GjX + 1) where, depending on cases I, II,

and III as identified above, the following holds:

I. Gj ∈ GF(p) for j = 1, 2, 3.
II. G0 ∈ GF(p) and Gj ∈ GF(p2) for j = 1, 2.
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III. Gj ∈ GF(p3) for j = 0, 1, 2 and G(c,X) is irreducible over GF(p).

Proof. Immediate. For completeness we present the details. It follows from [4,
Lemmas 2.3.4.ii and 2.3.2.v ] that F (cp, hp

j ) = 0 for j = 0, 1, 2, so that hi
j for

j = 0, 1, 2 and i = 1, p are the roots of G(c,X), in cases I, II, and III.
In case III (i.e., F (c,X) is irreducible over GF(p2)) the hj are conjugates over

GF(p2), i.e., hj = hp2

j+1 mod 3. It follows that h0 and its conjugates over GF(p)
are the zeros of G(c,X) so that G(c,X) is irreducible over GF(p). Furthermore,
hp3

j = hp3 mod p2−p+1
j = h−1

j = hp
j+1 mod 3 and hp4

j+1 mod 3 = h−p5

j+2 mod 3 = hp6

j =

hj . Therefore (hj + hp
j+1 mod 3)

p3
= hj + hp

j+1 mod 3, so that hj + hp
j+1 mod 3 ∈

GF(p3). With hj · hp
j+1 mod 3 = h−p

j+1 mod 3 · hp
j+1 mod 3 = 1 and defining Gj =

−hj −hp
j+1 mod 3 ∈ GF(p3) for j = 0, 1, 2 we find that in case III the polynomial

G(c,X) factors as
∏2

j=0(X
2 +GjX + 1) over GF(p3)[X].

In case I we have for j = 0, 1, 2 that hj · hp
j = h−p

j · hp
j = 1 and (hj + h

p
j )

p =

hp
j + hp2

j = hp
j + hj so that hj + hp

j ∈ GF(p). Defining Gj = −hj − hp
j ∈

GF(p) for j = 0, 1, 2, we find that in case I the polynomial G(c,X) factors as∏2
j=0(X

2 +GjX + 1) over GF(p)[X].
In case II we define G0 = −h0 − hp

0, so that G0 ∈ GF(p) as in case I.
Furthermore, we define Gj = −hj −hp

3−j for j = 1, 2. In this case (hj+h
p
3−j)

p2
=

hp2

j + hp3

3−j = hj + h
p
3−j so that Gj ∈ GF(p2) for j = 1, 2. Because furthermore

hj ·hp
3−j = h−p

3−j ·hp
3−j = 1 we find that G(c,X) is the product of X2+G0X+1 ∈

GF(p)[X] and X2 +GjX +1 ∈ GF(p2)[X] for j = 1, 2. This concludes the proof
of Lemma 2.3.

Corollary 2.4 Depending on cases I, II, and III, the following holds:

I. P (c,X) has three roots in GF(p).
II. P (c,X) has one root in GF(p) and two roots in GF(p2).
III. P (c,X) has three roots in GF(p3) \ GF(p).

Corollary 2.5 F (c,X) is irreducible over GF(p2) if and only if P (c,X) is ir-
reducible over GF(p).

In the next section we show that we can determine irreducibility for P (c,X)
faster than for F (c,X). Note that P (c,X) can be computed from F (c,X) at the
cost of a small constant number of multiplications in GF(p).

3 Testing P (c, X) ∈ GF(p)[X] for irreducibility

Let P (c,X) ∈ GF(p)[X] as in Definition 2.1. We base our method to test P (c,X)
for irreducibility over GF(p) on Scipione del Ferro’s method, cf. [5, Algorithm
3.1]. We recall this algorithm as it applies to P (c,X) ∈ GF(p)[X].

Algorithm 3.1 To find the roots of P (c,X) = X3 + p2X2 + p1X + p0 ∈
GF(p)[X] in a field of characteristic unequal to 2 or 3, do the following.
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1. Compute the polynomial P (c,X − p2/3) = X3 + f1X + f0 ∈ GF(p)[X] with
f1 = p1 − p22/3 and f0 = (27p0 − 9p2p1 + 2p32)/27.

2. Compute the discriminant ∆ = f2
0 + 4f3

1 /27 ∈ GF(p) of the polynomial
X2 + f0X − (f1/3)3, and compute its roots r1,2 = (−f0 ± √

∆)/2.
3. If r1 = r2 = 0, then let u = v = 0. Otherwise, let r1 �= 0, compute a cube

root u if r1, and let v = −f1/(3u).
4. The roots of P (c,X) are u+v−p2/3, uα+vα2 −p2/3, and uα2+vα−p2/3,

with α as in [4, Section 2.1].

Lemma 3.2 With cases I, II, and III as identified in Section 2 and Algorithm
3.1 applied to the polynomial P (c,X) ∈ GF(p)[X], we have that case III applies
if and only if ∆ as in Step 2 of Algorithm 3.1 is a quadratic non-residue in
GF(p) and r1 as in Step 2 of Algorithm 3.1 is not a cube in GF(p2).

Proof. If ∆ as in Step 2 of Algorithm 3.1 is a quadratic residue in GF(p), then
r1 is in GF(p). From p ≡ 2 mod 3 it follows that all elements of GF(p) are cubes,
so u as in Step 3 of Algorithm 3.1 is in GF(p) as well. It follows that P (c,X) has
at least one root in GF(p) so that with Corollary 2.4 case III does not apply.

If ∆ is a quadratic non-residue in GF(p), then r1 ∈ GF(p2)\GF(p). If r1 is a
cube in GF(p2) then P (c,X) cannot have three roots in GF(p3)\GF(p) so that,
with Corollary 2.4, case III does not apply. The proof now follows by observing
that if ∆ is a quadratic non-residue in GF(p) and r1 is not a cube in GF(p2),
then P (c,X) cannot have a root in GF(p) so that, with Corollary 2.4, case III
must apply.

Lemma 3.2 reduces P (c,X)-irreducibility (and thus F (c,X)-irreducibility, cf.
Corollary 2.5) to the computation of a quadratic residue symbol, possibly fol-
lowed by an actual square-root computation and a cubic residuosity test. We
show that the square-root computation can be avoided by combining it with the
cubic residuosity test. We first sketch our approach.

In [5] it was shown (just before Algorithm 3.5 in [5]) that an element x of
GF(p2) is a cube if and only if x(p2−1)/3 = 1, i.e., if and only if (xp−1)(p+1)/3 = 1.
It is easily shown that for y ∈ GF(p2) of order dividing p+1 the trace over GF(p)
of y(p+1)/3 equals 2 if and only if y(p+1)/3 = 1. The trace over GF(p) of y(p+1)/3

can be computed at the cost of 1.8 log2(p) multiplications in GF(p) if the trace
over GF(p) of y is known (cf. Algorithm 3.4). In our application, y = xp−1 and
x = r1 with r1 = −f0/2 +

√
∆/2 (cf. Step 2 of Algorithm 3.1) where ∆ is a

quadratic non-residue. We show that for x of this form the trace over GF(p) of
xp−1 is given by an easy expression in which

√
∆ does not occur. Thus, the only

substantial computation that remains to be done is the computation of the trace
over GF(p) of y(p+1)/3 at the cost of 1.8 log2(p) multiplications in GF(p). We
now present this method in more detail.

Lemma 3.3 Let t ∈ GF(p) be a quadratic non-residue in GF(p) and a, b ∈
GF(p). Then a2 − b2t �= 0 and

(
(a+ bX)p−1 + (a+ bX)1−p

)
mod (X2 − t) = 2

a2 + b2t
a2 − b2t .
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Proof. Because t is a quadratic non-residue we find that a2 − b2t �= 0 and that
t(p−1)/2 = −1. The latter implies that Xp = −X mod (X2 − t), so that
(
(a+ bX)p

a+ bX
+
a+ bX

(a+ bX)p

)
mod (X2 − t) =

(
a− bX
a+ bX

+
a+ bX
a− bX

)
mod (X2 − t).

The result follows with

a− bX
a+ bX

+
a+ bX
a− bX =

(a− bX)2 + (a+ bX)2

(a+ bX)(a− bX)
= 2
a2 + b2X2

a2 − b2X2 .

The following algorithm is well known in the context of primality testing, more
specifically the p+ 1-test for primality (cf. [10, Section 4]).

Algorithm 3.4 To compute the trace Tr(yn) ∈ GF(p) over GF(p) of yn ∈
GF(p2), given an integer n > 0 and the trace Tr(y) ∈ GF(p) over GF(p) of
some y ∈ GF(p2) of order dividing p + 1. This algorithm takes 1.8 log2(p) mul-
tiplications in GF(p) assuming a squaring in GF(p) takes 80% of the time of a
multiplication in GF(p).

1. Let n =
∑k

i=0 ni2i with ni ∈ {0, 1} and nk �= 0, let v = Tr(y) ∈ GF(p) and
compute w = (x2 − 2) ∈ GF(p).

2. For i = k − 1, k − 2, . . . , 0 in succession, do the following.
– If ni = 1, then first replace v by vw−Tr(y) and next replace w by w2−2.
– If ni = 0, then first replace w by vw−Tr(y) and next replace v by v2−2.

3. Return Tr(yn) = v.

Algorithm 3.5 To test P (c,X) = X3 + p2X2 + p1X + p0 ∈ GF(p)[X] for
irreducibility over GF(p), with p unequal to 2 or 3, do the following.

1. Compute the polynomial P (c,X − p2/3) = X3 + f1X + f0 ∈ GF(p)[X] with
f1 = p1 − p22/3 ∈ GF(p) and f0 = (27p0 − 9p2p1 + 2p32)/27 ∈ GF(p).

2. Compute the discriminant ∆ = f2
0 + 4f3

1 /27 ∈ GF(p) of the polynomial
X2 + f0X − (f1/3)3.

3. Compute the Jacobi symbol of ∆. If ∆ is a quadratic residue in GF(p), then
P (c,X) is not irreducible (cf. Lemma 3.2).

4. Otherwise, if ∆ is a quadratic non-residue in GF(p), compute the trace of
rp−1
1 over GF(p) as s = 2 f2

0 +∆

f2
0 −∆

∈ GF(p), where r1 = −f0/2 +
√
∆/2 (cf.

Lemma 3.3).
5. Apply Algorithm 3.4 to Tr(y) = s and n = (p + 1)/3 to compute the trace

over GF(p) of (rp−1
1 )(p+1)/3. If the result equals 2, then r1 is a cube in GF(p2)

and thus P (c,X) is not irreducible (cf. Lemma 3.2).
6. Otherwise, ∆ is a quadratic non-residue and r1 is not a cube in GF(p2) so

that P (c,X) is irreducible over GF(p) (cf. Lemma 3.2).
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Theorem 3.6 For c ∈ GF(p2) the irreducibility of the polynomial F (c,X) =
X3 − cX2 + cpX − 1 over GF(p2) can be tested at the cost of m + 1.8 log2(p)
multiplications in GF(p), for some small constant m.

Proof. The proof follows from Section 2, Algorithm 3.5, and Algorithm 3.4.

Corollary 3.7 Finding the trace of a generator of the XTR group can be ex-
pected to take about q

q−1 (2.7 log2(p) + 8 log2((p2 − p + 1)/q)) multiplications in
GF(p) (cf. [5, Theorem 3.7]).

Proof. Immediate from the proof of [5, Theorem 3.7] and Theorem 3.6 above.

Note that the result from Corollary 3.7 is only about 2.7 log2(p) multiplications
in GF(p) slower than [5, Algorithm 4.5], but more general since it applies to all
p ≡ 2 mod 3 and not only to p ≡ 2, 5 mod 9.

4 Subgroup Attacks

Many cryptographic protocols can be tricked into undesirable behavior if data
is used that does not have the properties prescribed by the protocol. For in-
stance, elements of a certain group may be exchanged, but if membership of the
proper group is not tested before the elements are operated upon, security may
be endangered. A prominent example is the following. Let G be a cyclic, multi-
plicative group of prime order q (of size ≥ 160 bits) where the discrete logarithm
problem is believed to be intractable, and let g be an element of order q in G. In
practice, G is often constructed as a subgroup of an abelian supergroup H, such
that membership of H is easily verified.

For example, if H = GF(p)∗ for a 1024-bit prime number p and the set
{0, 1, ..., p− 1} is used to represent GF(p), then x ∈ H if and only if 0 < x < p,
which can trivially be tested. Similarly, if H is the group of points (written
multiplicatively) of a properly chosen elliptic curve over a finite field, then x ∈ H
can simply be verified by testing that the coordinates of the ‘point’ x belong to
the finite field and that x satisfies the curve equation. In both examples Gmay be
chosen as 〈g〉 for an element g of prime order q dividing the order |H| of H. But
testing if x ∈ G is less trivial and consists of verifying that x ∈ H and xq = 1.
In the first example |H|/|G| is usually very large compared to q, whereas in the
second example this ratio is commonly chosen to be very small.

To review why membership testing of G is crucial to maintain security we
consider the Diffie-Hellman protocol. Assume that Alice calculates vA = gkA ∈ G
where kA is secret and sends the result to Bob. Likewise, Bob calculates and
sends vB = gkB ∈ G to Alice, where kB is supposed to be secret for Alice. The
shared secret key gkAkB can then easily be computed by both Alice and Bob.
The security is based on the assumption that kA or kB cannot be inferred from
g, vA, and vB . This assumption may be incorrect if vA or vB is replaced by an
element not in G, inadvertently or on purpose. As a first illustration, suppose
that α ∈ H is of small order, say 2, and suppose that an active eavesdropper
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changes vA into vA ·α in transit. It follows that in this scenario the Diffie-Hellman
protocol runs successfully if and only if vB is even (or, more in general, if the
order of α divides kB). In other words, the eavesdropper obtains information on
kB , which is not supposed to happen.
As a second illustration, suppose that |H|/|G| is a product of small primes
(cf. [8]), and that h is an element of order |H|/|G|. If Alice somehow convinces
Bob to use gh instead of g, and receives (gh)kB instead of gkB ∈ G from Bob, then
Alice can easily determine hkB and thus kB mod (|H|/|G|) by using the Pohlig-
Hellman algorithm (cf. [9]). That is, Alice obtains secret information on kB if Bob
näıvely uses a ‘wrong’ generator provided by Alice and does not check subgroup
membership of the results of his own computations either. Another example is the
Cramer-Shoup cryptosystem (cf. [3]) whose provable resistance against chosen
ciphertext attacks relies on subgroup membership for a substantial number of
elements that are exchanged in the course of the protocol.

In this paper, subgroup attacks refer to attacks that take advantage of the
omission to verify membership of the subgroup G: they attack the security pro-
vided by the subgroup by replacing subgroup elements by elements from the
supergroup H that do not belong to the proper subgroup. Examples of sub-
group and related attacks can be found in [1], [2], [6], and [11]. We implicitly
assume that membership of H is verified, i.e., that all alleged elements of H are
indeed elements of H, and that this verification can easily be done.

Subgroup attacks can be prevented in roughly three ways:

1. By assuring that alleged subgroup members are indeed subgroup members,
i.e., performing a membership test.

2. By ensuring that the ratio |H|/|G| is small, e.g. 2.
3. By slightly adapting protocols.

We discuss these three prevention methods in more detail.

Membership test
In most practical circumstances the supergroup H is cyclic as well (as in systems
based on the multiplicative group of a finite field), or the order q of G is a prime
number such that H is not divisible by q2 (as in elliptic curve cryptography,
when using non-cyclic curve groups). The following result states that in these
cases it suffices to do an order check, i.e., checking that x ∈ H satisfies xq = 1,
to test membership of G.

Lemma 4.1 Let G be multiplicative subgroup of prime order q of a super-
group H. If there exists an element x ∈ H \ G for which xq = 1, then H is
not a cyclic group and the order of H is divisible by q2.

Proof: Assume to the contrary that H is cyclic. Then the number of elements
of order dividing q is equal to q. The set G

⋃{x}, however, contains at least q+1
elements of order dividing q; it follows that H cannot be cyclic. Furthermore,
〈x, g〉 is a subgroup of H of q2 elements; it follows that q2 divides |H|.
Thus, testing membership of G may entail an operation of cost comparable to
the regular operations of the protocol. To illustrate that an order check is not
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sufficient in all cases, let G̃ be any cyclic group of order q and consider the cyclic
subgroup G = 〈(g1, g2)〉 of the supergroup H = G̃2, where g1, g2 are randomly
chosen in G̃. In this case H is not cyclic and has order q2. To test membership
of G it is not sufficient to check that (h1, h2)q = (1, 1), but one needs to prove
that logg1

(h1) = logg2
(h2) which usually is computationally infeasible. This is

known as an instance of the Decision Diffie-Hellman problem which usually is
computationally infeasible. The latter example is not common in cryptographic
applications, but simply serves as an illustration. From now on we will restrict
ourselves to the situation that an order check is sufficient, i.e., H is cyclic or of
order not divisible by q2.

Choosing a small ratio |H|/|G|
If one chooses the ratio r = |H|/|G| small then there exist only very few pos-
sibilities to perform subgroup based attacks. It seems widely accepted that at
most log2(r) secret bits are leaked if membership of H is checked but member-
ship of G is not. In ordinary multiplicative groups r can only be small if q is
very large, thereby losing the ‘short exponents’ advantage of working in a small
subgroup. The computational overhead of full size exponents can, however, be
reduced by using exponents that are only as long as one typically would choose
the size of a subgroup of prime order q, i.e., ≥ 160 bits (cf. [8, Lemma 2]).
Note that a small |H|/|G| ratio is common in elliptic curve cryptosystems. In
XTR the supergroup H is the order p2 − p + 1 subgroup of GF(p6)∗, and the
XTR group G is a subgroup of order q of H. In Section 5 below it is shown
how membership of H can quickly be tested. Although the possibility of small
values for |H|/|G| = (p2 − p + 1)/q is not explicitly mentioned in [4] or [5] it
can without difficulty be used in the XTR versions of common cryptographic
protocols, thereby limiting the risk of XTR subgroup attacks. Note that the risk
of subgroup attacks against XTR is also very limited if |H|/|G| is chosen as 3q2
for a prime number q2 of the same order of magnitude as q.

Slightly Adapting Protocols
By adding an additional step to protocols using subgroups it can be ensured
that the alleged subgroup element is retracted into the subgroup before secret
information is employed to it. We illustrate this for the Diffie-Hellman protocol,
using the notation as introduced above. Instead of using gkAkB as the shared
secret key, one uses grkAkB , where r = |H|/|G|, which is computed in the fol-
lowing way. Upon receipt of vB from Bob, Alice calculates (vr

B)kA instead of
vkA

B . Similarly, Bob calculates (vr
A)

kB . Note that vr
A is an element of G and that

vrkB mod q
A can only be equal to (vr

A)
kB if vA ∈ G. That is, performing the opera-

tions successively is crucial and, since an attacker may have chosen vA �∈ G, it is
also crucial not to compute vr mod q

A but vr
A for the ‘original’ r = |H|/|G|. Since,

as we assumed, the co-factor r = |H|/|G| is relatively prime with q, breaking
this variant of the Diffie-Hellman protocol is as secure as the original one with
a membership test incorporated into it. Many other DL based protocols and
schemes that are susceptible to subgroup attacks, like the ElGamal scheme, can
be adapted in a similar fashion.
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Obviously, adaptation of protocols is typically a practical solution only if r is
smaller than the prime order q of G, because otherwise a membership test would
be more efficient. For instance, in traditional Schnorr-type subgroups systems
H is the multiplicative group of a large finite field GF(p), the subgroup G has
substantially smaller size q, and r is often quite large: if log2(p) = 1024 and
log2(q) = 160 then log2(r) ≈ 864. If r > q, as in this example, then the best
method we are aware of to verify subgroup membership is to check that the qth
power of the element to be tested equals one (after one has verified, of course,
that it is an element of H). Else, if r < q, then one may choose to slightly adapt
the protocols used.

5 Prevention of Subgroup Attacks in XTR

In this section we focus on preventing subgroup attacks for XTR. Let G denote
the XTR group and H the XTR supergroup of all elements of GF(p6)∗ of order
> 3 and dividing p2−p+1. We describe efficient ways to determine if an element
in GF(p2) is the trace of an element of H. The results from the previous section,
e.g. choosing |H|/|G| small and using short exponents, can then be used to obtain
variants of XTR that are not susceptible to subgroups attacks.

Let d be the element of GF(p2) \GF(p) to be verified. The first method con-
sists simply of checking that F (d,X) is irreducible over GF(p2) (cf. [4, Remark
2.3.3]), which can be done at the cost of 1.8 log2(p) plus a small constant number
of multiplications in GF(p) (cf. Theorem 3.6).

Our second method is effectively free from a computational point of view
because it requires only a small constant number of operations in GF(p), but it
requires a small amount of additional communication. Let p, q, and Tr(g) be as
above and let d ∈ GF(p2) be the element to be verified, i.e., the element that
is supposedly the trace of an element, say h, of the XTR group 〈g〉. Corollary
5.9 below shows that if one sends Tr(h · g) along with d(= Tr(h)), then one
can efficiently verify that d corresponds to the trace of an element of the XTR
supergroup H.

Definition 5.1 Let R(X), S(X) ∈ GF(p2)[X] be two monic third-degree poly-
nomials with non-zero constant term. If the roots of R and S are α0, α1, α2 ∈
GF(p6) and β0, β1, β2 ∈ GF(p6), respectively, then the root-product �(R,S) is
defined as the monic polynomial with the nine roots αi · βj for 0 ≤ i, j ≤ 2.

Lemma 5.2 For R(X), S(X) ∈ GF(p2)[X] the root-product �(R,S) is a ninth-
degree polynomial over GF(p2) with non-zero constant term.

Proof: Fixing R(X) and varying S(X) one finds that the coefficients of the
polynomial �(R,S) are symmetric polynomials in the roots β0, β1, β2 of S(X),
and that they can be written (cf. [7]) as linear sums of elementary symmet-
ric polynomials in β0, β1, β2 with fixed coefficients depending on α0, α1, α2. It
also follows that these fixed coefficients are symmetric polynomials in the roots
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α0, α1, α2. The values of the elementary symmetric polynomials in α0, α1, α2 and
β0, β1, β2 are in GF(p2) because R(X), S(X) ∈ GF(p2)[X], so that the coeffi-
cients of the polynomial �(R,S) are in GF(p2). The remainder of the lemma is
straightforward.

Lemma 5.3 Let R(X), S(X) ∈ GF(p2)[X] and let β0, β1, β2 ∈ GF(p6) be the
roots of S(X). Then

�(R,S) = (β0 · β1 · β2)3R(X · β−1
0 ) ·R(X · β−1

1 ) ·R(X · β−1
2 ).

If S(X) is irreducible over GF(p2) then

�(R,S) = β3(p4+p2+1)
0 R(X · β−1

0 ) ·R(X · β−p2

0 ) ·R(X · β−p4

0 ).

Proof: The first part result is a straightforward verification and the second part
follows from the fact that the roots of S(X) are conjugate over GF(p2) if S(X)
is irreducible over GF(p2).

Note that β0 · β1 · β2 in Lemma 5.3 equals the constant term of S(X). The
crucial aspect of the second part of the lemma is that it describes �(R,S) using
only R(X) and the conjugates of the roots of S(X). That is, if we consider the
representation of GF(p6) that follows by adjoining a root of S(X) to GF(p2),
we can efficiently determine the root-product of R(X) and S(X), assuming we
can efficiently determine the (p2)th and (p4)th powers of a root of S(X) in this
representation.

In our application S(X) is F (c,X) where c = Tr(g) for some element g in
the XTR supergroup H. That is, F (c,X) is irreducible by [4, Remark 2.3.3],
and we represent GF(p6) as GF(p2)(g), i.e., by adjoining the root g of F (c,X)
to GF(p2). Since gp2

= gp−1 and gp4
= g−p and gp−1 and g−p easily follow

given a representation of gp, in order to be able to compute the root-product
�(R,F (c,X)) it suffices to have a representation for gp in GF(p2)(g). The fol-
lowing result shows how such a representation can be obtained. We abbreviate
Tr(gi) as ci.

Proposition 5.4 Let c = Tr(g) for some element g ∈ H. Given cm−2 =
Tr(gm−2), cm−1 = Tr(gm−1), and cm = Tr(gm), values K,L,M ∈ GF(p2) such
that gm = Kg2 + Lg +M mod F (c,X) can be computed at the cost of a small
constant number of operations in GF(p).

Proof: By raising gm = Kg2 + Lg +M to the (pi)th power for i = 0, 2, 4, and
by adding the three resulting identities, we find that cm = Kc2 + Lc1 +Mc0.
Similarly, from gm−1 = Kg+L+Mg−1 and gm−2 = K+Lg−1+Mg−2 it follows
that cm−1 = Kc1 + Lc0 +Mc−1 and cm−2 = Kc0 + Lc−1 +Mc−2 respectively.
This leads to the following system of equations over GF(p2):


 cm−2
cm−1
cm


 =


 c−2 c−1 c0
c−1 c0 c1
c0 c1 c2


 ·


ML
K


 .
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Because cm, cm−1, and cm−2 are given and the matrix on the right hand side is
invertible (cf. [4, Lemma 2.4.4]) the proof follows.

Corollary 5.5 Let c = Tr(g) for some element g ∈ H. Given Tr(gp−2), a
representation of gp mod F (c,X) can be computed at the cost of a small constant
number of operations in GF(p).

Proof: This follows from Proposition 5.4 and the fact that cp = cp1 = cp and
cp−1 = cp2 = cp

2

1 = c1 = c.

Theorem 5.6 Let R(X) ∈ GF(p2)[X] be a monic third-degree polynomial with
non-zero constant term. Let c = Tr(g) for some element g ∈ H. Given Tr(gp−2),
the root-product �(R(X), F (c,X)) can be computed at the cost of a small con-
stant number of operations in GF(p).

Proof: This follows immediately from Lemma 5.3 and Corollary 5.5.

We remark that cp−2 = cp+1, as cp+1 = c · cp − cp · cp−1 + cp−2 (cf. [4, Lemma
2.3.4.i]), cp = cp, and cp−1 = c. As the value cp−2 plays an important role it
could be pre-computed and stored. The following result states that cp−2 can
quickly be recovered from a single bit.

Proposition 5.7 Let c = Tr(g) for some element g ∈ H. Then Tr(gp−2) =
cp−2 can be computed at the cost of a square-root computation in GF(p2), as-
suming one bit of information to resolve the square-root ambiguity.

Proof: Write cp−2 = x1α + x2α
2 in the representation of GF(p2) introduced

in [4, Section 2.1]. A straightforward verification shows that (cp−2 − cpp−2)
2 =

−3(x1 − x2)2. Combining this with the identity for (cp−2 − cpp−2)
2 given in [4,

Lemmas 2.4.4 and 2.4.5] (and using that cp−2 = cp+1), we find that −3(x1 −
x2)2 = c2p+2 + 18cp+1 − 4(c3p + c3) − 27 ∈ GF(p).

On the other hand cp−2 + cpp−2 = −(x1 + x2). Using that cp−2 = gp−2 +
g(p−2)p2

+ g(p−2)p4
= gp−2 + g−2p+1 + gp+1, it follows that cpp−2 = g−p−1 +

g−p+2 + g2p−1. Now,

cp+1 = c · cp = (g + gp−1 + g−p)(gp + g−1 + g−p+1)
= gp+1 + gp−2 + g−2p+1 + g−p−1 + g−p+2 + g2p−1 + 3
= cp−2 + c

p
p−2 + 3.

That is, x1 + x2 = 3 − cp+1 ∈ GF(p). Combining the two identities involving
x1 − x2 and x1 + x2 it follows that cp−2 and its conjugate over GF(p) can be
computed at the cost of a square-root calculation in GF(p2). To distinguish
cp−2 = x1α + x2α

2 from its conjugate x2α + x1α
2 a single bit that is on if and

only if x1 > x2 suffices.

Lemma 5.8 Let c = Tr(g) for some element g ∈ H and let d, d′ ∈ GF(p2).
Given the value cp−2 the correctness of the following statement can be checked
at the cost of a small, constant number of operations in GF(p): there exists an
element h ∈ H such that d = Tr(h) and d′ = Tr(h · g).
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Proof: Consider the following algorithm:

1. By a simple verification check whether 1, α or α2 are roots of the polynomial
F (d,X). If so, then the statement is not true.

2. Otherwise, calculate the root-product �(F (d,X), F (c,X)) and determine if
this is divisible by the polynomial F (d′, X). If so, the statement is true,
otherwise it is not.

The conclusion of the first step of the algorithm is trivial. For a proof of the
conclusion of Step 2 of the algorithm, assume that d is not equal to the trace of
an element of H. It follows from [4, Lemma 2.3.2] that the roots of F (d,X) are
in GF(p2). According to Step 1 the roots are not equal to 1, α or α2, so that the
roots of F (d,X) are not members of H either, as the greatest common divisor of
p2 − p+1 and p2 − 1 is 3 and H has order > 3. It easily follows that none of the
roots of the root-product �(F (d,X), F (c,X)) lies in H. Moreover, as the roots
of F (c,X) do not lie in GF(p2), it follows that the roots of the root-product do
not lie in GF(p2) either.

Applying [4, Lemma 2.3.2] once more, the roots of the polynomial F (d′, X)
are either in GF(p2) or in H. It follows that F (d′, X) cannot divide the root-
product �(F (d,X), F (c,X)). Thus if F (d′, X) divides �(F (d,X), F (c,X)), then
d is equal to the trace of an element h ∈ H. In this situation, the roots of the
root-product are equal to hpi ·gpj

for i, j = 0, 2, 4. It follows that F (d′, hpi ·g) = 0
for some i in {0, 2, 4} and hence that d = Tr(hpi

) and d′ = Tr(hpi · g). That is,
the statement is true.

We finally observe that the algorithm requires a small constant number of
operations in GF(p2).

Corollary 5.9 Let c = Tr(g) for some element g ∈ H and suppose that Tr(gp−2)
is known. Then accompanying the trace value of an element h ∈ H by the trace
of its ‘successor’ h · g enables an efficient proof of membership of h in H.

Corollary 5.10 Let c = Tr(g) where g is (known to be) a generator of the XTR
group, let d be the trace of an element that is (known to be) in the XTR group
〈g〉, and let d′ be some element of GF(p2). Then it can efficiently be verified
if d and d′ are of the form Tr(gx), Tr(gx+1), respectively, for some integer x,
0 < x < q.

An XTR public key meant for digital signatures takes the form p, q, c, d, and
d′ where p and q are primes satisfying the usual XTR conditions and where
c = Tr(g) for a generator g of the XTR group, d = Tr(gk) for a secret key
k, and d′ = Tr(gk+1) (cf. [4]). The above corollary implies that a Certificate
Authority can efficiently verify the consistency of an XTR signature public key
presented by a client, before issuing a certificate on it. More specifically, suppose
a client provides a Certificate Authority with XTR public key data containing p,
q, c, d, and d′ where p and q are primes satisfying the usual XTR conditions and
where, supposedly, c = Tr(g) for a generator g of the XTR group, d = Tr(gk)
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for a secret key k, and d′ = Tr(gk+1). The Certificate Authority can easily check
that this is indeed the case, in two steps. First the Certificate Authority checks
that p and q are well-formed and that c and d are indeed traces of elements of the
XTR group using standard XTR arithmetic (cf. [4, Lemma 2.3.4 and Theorem
2.3.8]). Secondly, the Certificate Authority uses Corollary 5.10 to verify that d
and d′ are traces of consecutive (and unknown, to the Certificate Authority)
powers of the generator corresponding to c.
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