
Remarks on Mix-Network
Based on Permutation Networks

Masayuki Abe and Fumitaka Hoshino

NTT Laboratories
Nippon Telegraph and Telephone Corporation

1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan
{abe,fhoshino}@isl.ntt.co.jp

Abstract. This paper addresses the security and efficiency issues of the
Mix-net based on permutation networks introduced in [1]. We first show
that the original construction results in a Mix-net that yields biased
permutation, so it gives some advantage to adversaries. A simple repair
is provided. We then observe that one of the original schemes can be
improved so that the servers and verifier enjoy more efficient computation
and communication.

1 Introduction

Secure networks will need to provide data integrity and authenticity, and ex-
isting networks like the Internet are pursuing these goals. In some applications,
however, sending data in an anonymous way plays a central role. Anonymous
voting, payments, or donations are typical examples of applications that con-
cern user’s privacy. Mix-net is a cryptographic technique that offers anonymity
over non-anonymous, i.e., traceable networks; it hides the source of a message
by mixing it with other message sources.

Since the notion of Mix-net was introduced by Chaum [3], much work has
been done on providing more secure, efficient and widely applicable schemes
[15,19,13,2,8,9,1,10,14]. Some of them are cryptoanalyzed and plausibly fixed
[17,11,18,16,6,12].

In [1], Abe introduced an efficient construction of robust and publicly ver-
ifiable Mix-nets based on permutation networks. Since the resulting schemes
provide O(tN logN) efficiency for N inputs and t tolerable corrupt mix-servers,
they suit a small to moderate number of inputs. Those schemes are considered
to be the most efficient ones that provide robustness and public verifiability.

This paper addresses the security and efficiency issues of the schemes in
[1]. We first show that the construction results in a Mix-net that yields biased
permutation, so an adversary can have more advantage in violating anonymity
than random guessing. We provide a sure and simple solution that achieves
uniform distribution over all permutations. We then observe that one of the
original schemes can be improved so that the servers and a verifier enjoy more
efficient computation and communication.

K. Kim (Ed.): PKC 2001, LNCS 1992, pp. 317–324, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

318 Masayuki Abe and Fumitaka Hoshino

Fig. 1. Settings of a switching gate.

Fig. 2. PN(8) with PN(4) Fig. 3. PN(8) after decomposing PN(4)

2 Review

We begin by reviewing the Benes permutation network [20]. Consider a switch
that transposes two input signals according to a binary control signal as illus-
trated in Fig 1. The Benes permutation network is a network of such switches. It
yields arbitrary permutation of the inputs by setting the switches. For N inputs,
which is restricted to be a power of 2, N log2 N − N + 1 switches are necessary
and sufficient to produce arbitrary permutation. Fig. 2 and 3 illustrate recursive
construction of the Benes permutation network for 8 inputs, denoted by PN(8).
Boxes represent switching gates, and the dotted ones indicate fixed gates that
simply output the inputs.

Next we review the Mix-net in [1], which they call MiP-1. It consists of m
servers. Up to t(< m/2) of them can be malicious and colluding. Let p, q be
primes. Let g be an element of Z∗

p that generates a prime subgroup of order
q denoted by 〈g〉. Let x be the decryption key of the Mix-net and y(= gx) be
the corresponding public key (all arithmetic operations in this paper are done
in Zp unless otherwise noted). The input to the Mix-net is a list of N ElGamal
ciphertexts encrypted with y. An ElGamal ciphertext of message msg ∈ 〈g〉 is
a pair (M,G) computed as (M,G) = (msg · ys, gs) where s ∈R Zq. The servers
logically simulate a series of t+1 permutation networks that take N ciphertexts
as inputs. Let ξ denote the total number of columns in t + 1 PN(N)’s. That is,
ξ = (t+1)(2 log2 N+1). Each server is assigned some (or all) columns of switches
in a permutation network in such a way that m servers are assigned ξ columns
in total. Let y1, . . . , yξ be shares of y such that y =

∏ξ
i=1 yi. Let xi be private

key for yi, i.e. yi = gxi . The server that is in charge of the i-th column privately
holds xi. For the sake of robustness, xi is shared among all servers by using t+1

Remarks on Mix-Network Based on Permutation Networks 319

threshold secret sharing. Let ŷj denote
∏ξ

i=j+1 yi. (Let ŷ0 = y and ŷξ = 1.) At
each switching gate in the j-th column, each input ciphertext (M,G) is partially
decrypted and randomized as

(M ′, G′) = (MG−xj ŷr
j , Ggr)

for r ∈U Zq, and output according to the randomly selected setting of the
switch. (For all fixed gates and the switching gates in the ξ-th column, let
(M ′, G′) = (MG−xj , G).) A zero-knowledge proof is then used to prove that
the the outputs are correct. The proof can be done efficiently by using Chaum-
Pedersen technique [4] combined with the OR-proof technique of [5]. Observe
that (M ′, G′) is an ElGamal ciphertext for public key ŷj . Accordingly, the out-
puts from the last column, which are M ′ = MG−xξ , are the plaintexts that
correspond to the input ciphertexts.

This scheme provides O(tN logN) efficiency and is known to best suit small
numbers of inputs as the previous robust verifiable schemes, e.g., [19,13] require
O(mNκ) for error probability 2−κ.

It was proven in [1] that, under the decision Diffie-Hellman assumption, any
poly-time adversary can guess the setting of each switch with probability only
negligibly better than 1/2 since ElGamal encryption is indistinguishable and the
proof is zero-knowledge with regard to switch setting. Hence, it was claimed that
the scheme provides anonymity.

3 Security Issue

3.1 Biased Permutations

We show that randomly selecting each control signal results in a biased permu-
tation even if all servers behave correctly. Let η be the number of switching gates
in PN(N), that is η = N log2 N − N + 1. Observe that N ! < 2η holds for N > 2.
So there are 2η − N ! permutations that have two or more different representa-
tions (switch settings). Accordingly, permutations with multiple representations
are more likely to be generated than those with single representations if control
signals are randomly set.

Indeed, the bias is even worse. Let ζN be the number of representations of
PN(N) for the identity permutation, which straightforwardly outputs the inputs.
The identity permutation is clearly produced when b = 0 for all switching gates.
Observe that the identity permutation can also be obtained by setting b = 1 for
two gates located in the same row of the leftmost and rightmost columns such as
gate 2 and 5 in Figure 2. Since there are N/2 − 1 such pairs of gates in PN(N),
we have

ζN = ζN/2
2 · 2N/2−1. (1)

¿From the above recursive formula and the fact that ζ2 = 1, we obtain

ζN = 2(N/2) log2(N/2)−N/2+1. (2)

320 Masayuki Abe and Fumitaka Hoshino

Furthermore, as we will discuss in Section 3.2, there exist permutations that have
only one representation. Thus, when each control signal is chosen randomly, the
identity permutation appears with probability exponentially higher than the
ones that have only one representation.

Table 1 shows the number of permutations that have more than two repre-
sentations for PN(8). It can be observed that some permutations are likely to be
chosen with 32 times higher probability.

Table 1. Number of permutations in PN (8)that have multiple switch settings. 128 of
8! permutations have 32 different switch settings.

#(equivalent settings) #(permutations)
32 128
16 512
8 2816
5 2048
4 12288
2 14336
1 8192

3.2 Generating Non-biased Permutations

This bias can be eliminated in a simple way; first choose a permutation uniformly
and then compute a proper setting of switches that represents the permutation.
Clearly, this results in uniform distribution over all permutations. As in the
original scheme, the setting of switches remains concealed.

A drawback is the increase of computation needed to transform a permutation
to a switch setting. According to Waksman’s algorithm [20], such a computation
incurs O(N logN) time and memory.

The following description might be easier to follow if readers keep Figure 2
in mind. Let I1, · · · , In be inputs to PN(n) and Õ1, · · · , Õn be the corresponding
outputs from the switching gates in the first column of the permutation net-
work. Similarly, let O1, · · · , On be outputs of the network and Ĩ1, · · · , Ĩn be the
corresponding inputs to the switching gates in the last column. All switches are
set to be straight, i.e. b=0, as the initial state.

The following algorithm sets the switching gates so that the network repre-
sents a given permutation σ : {1, · · · , n} → {1, · · · , n} that results in Oi = Iσ(i)
for i = 1, . . . , n. Indeed, we describe the algorithm so that it sets the gates in
only the first and last column of PN(n), i.e., the numbered gates in Figure 2.
Applying the algorithm repeatedly to the next inner set of gates, eventually sets
all switching gates.

In the following, for some index j, j̄ denotes the index such that Ij and Ij̄

(or Oj and Oj̄) are connected to the same gate. Let Fi be a flag, associated with
Oi, which is initially unset. The algorithm starts with i = 1.

Remarks on Mix-Network Based on Permutation Networks 321

Step 1 Find the smallest i such that Fi is unset. If i 	= 1, arbitrarily set b ∈
{0, 1} for the switch Oi comes from.

Step 2 Repeat the following steps.
2-1 Set Fi.
2-2 Identify j such that Ĩj = Oi by examining the switching gate that Oi

comes from.
2-3 For k such that Ik = Ĩj (i.e, k = σ(i)), if either j or k is even while the

other is odd, then set b = 1 for the switch Ik enters.
2-4 Identify such that Õ� = Ik̄ by examining the switching gate Ik̄ enters.
2-5 For t such that Ot = Õ� (i.e, t = σ−1(k̄)), if either t or is even while

the other is odd, then set b = 1 for the switch that Ot comes from.
2-6 Set Ft and let i be t̄.
2-7 If Fi is already set, exit Step 2.

Step 3 Repeat Step 1-2 until all flags have been set.

The switches in the first and the last column are now configured and the
internal permutation produced by the remaining switches can be computed from
the current configuration. By recursively applying the above procedure to the
remaining switches, taking the internal permutation as σ, one can configure all
switches.

By using the above conversion algorithm, we can show that there exists a
permutation with a unique representation. Observe that for any switch setting,
there exists an execution of the above algorithm that results in the setting.
Thus, the algorithm can yield all possible switch settings. Observe that Step
1 is deterministic when i = 1, and Step 2 is always deterministic. Thus, if a
permutation has two or more representations, corresponding executions of the
above algorithm must select different b at Step 1 in some level of recursion.
Conversely, a permutation has a unique representation if Step 1 is executed only
once in every recursive execution during the conversion. And clearly, one can
manipulate the switch setting so that it happens.

4 Efficiency and Availability Issues

Here we observe that the original scheme reviewed in Section 2 unnecessarily
uses many keys. In that scheme, decryption is incorporated into the task of
every switching gate so that one layer of encryption is removed each time a
ciphertext passes a gate. The following drawbacks arise.

– The servers have to securely maintain ξ private keys and m times many
shares of the keys.

– The number of inputs has to be fixed before generating y1, . . . , yξ as ξ de-
pends on N .

– The zero-knowledge proof at each switching gate is expensive.

Our solution to eliminating these drawbacks is to incorporate the partial
decryption only into the switching gates in the last column of each permuta-
tion network; the remaining switching gates perform randomization only such as

322 Masayuki Abe and Fumitaka Hoshino

(M ′, G′) = (Mŷr
i+1, Ggr). Although computational efficiency is asymptotically

unchanged, this surely saves running time for computing factor G−xi in most
switching gates and corresponding proofs. Furthermore, since the number of yi

becomes t + 1, which is independent of the number of inputs, the number of
inputs need not be fixed before key generation.

5 Refined Scheme

The refined scheme, which reflects all the remarks in the previous sections, is
given below.

[Preparation]
Let {1, . . . ,m} denote servers. The servers agree on a subset of servers, say
W ⊂ {1, . . . ,m} that contains t + 1 servers.

[Key Generation]
The servers generate key pairs (yi, xi) for i = 1, . . . , t + 1 by executing the key
generation protocol of [7]. Public key yi is published and private key xi is shared
in a threshold manner so that xi can be re-constructed by t + 1 honest servers.
Working server i, which refers to the i-th server listed in W , is given shares from
other servers and computes xi privately.

[Mix processing]
Let L0 be a list of input ElGamal ciphertexts. Working server i takes list Li−1
and outputs list Li. Working server i simulates the i-th permutation network in
the following way.

1. Randomly choose a permutation π : {1, . . . , N} → {1, . . . , N}.
2. Compute the switch setting that corresponds to π following the algorithm

shown in Section 3.2.
3. For each switching gate except for the ones in the last column of the sim-

ulating permutation network, randomize each input ciphertext (M,G) as
(M ′, G′) = (Mŷr

i+1, Ggr) with random factor r ∈R Zq. For each switching
gate in the last column, perform randomization and decryption at the same
time as (M ′, G′) = (MG−xi ŷr

i , Ggr). (The last server only perform decryp-
tion as M ′ = MG−xt+1 .) Then, output the resulting ciphertexts in order
according to the switch setting defined in the previous step. For the fixed
gate in the last column, decrypt the inputs as (M ′, G′) = (MG−xi , G) and
simply output them. Then prove that the output is correct by using zero-
knowledge proof. The proof protocol is unchanged from the original one in [1]
(also see [10] for a slightly more efficient proof protocol).

All servers verify the proofs given by server i. If more than t servers agree that any
of the proofs is faulty, then server i is disqualified. All servers then cooperatively
reconstruct xi and decrypt the ciphertexts in Li−1 in public.

The security of this scheme can be argued in the same way as shown in the
original paper with the additional consideration that this scheme yields a uniform

Remarks on Mix-Network Based on Permutation Networks 323

distribution over all permutations. (One missing argument in the security proof
of [1] was about the distribution of the resulting permutation.)

Acknowledgment

The authors thank Tetsutaro Kobayashi for leading us to the security issue.
Invaluable comments from Koutaro Suzuki are appreciated, too.

References

1. M. Abe. Mix-networks on permutation networks. In K. Lam, E. Okamoto, and
C. Xing, editors, Advances in Cryptology – Asiacrypt ’99, volume 1716 of Lecture
Notes in Computer Science, pages 258–273. Springer-Verlag, 1999.

2. M. Abe. Universally verifiable mix-net with verification work independent of the
number of mix-servers. IEICE Transaction of Fundamentals of electronic Com-
munications and Computer Science, E83-A(7):1431–1440, July 2000. Presented at
Eurocrypt’98.

3. D. L. Chaum. Untraceable electronic mail, return address, and digital pseudonyms.
Communications of the ACM, 24:84–88, 1981.

4. D. L. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F.
Brickell, editor, Advances in Cryptology — CRYPTO ’92, volume 740 of Lecture
Notes in Computer Science, pages 89–105. Springer-Verlag, 1993.

5. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Y. G. Desmedt, editor, Advances
in Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in Computer Science,
pages 174–187. Springer-Verlag, 1994.

6. Y. Desmedt and K. Kurosawa. How to break a practical MIX and design a new
one. In B. Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, pages 557–572. Springer-Verlag, 2000.

7. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gener-
ation for discrete-log based cryptosystems. In J. Stern, editor, Advances in Cryp-
tology — EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,
pages 295–310. Springer-Verlag, 1999.

8. M. Jakobsson. A practical mix. In K. Nyberg, editor, Advances in Cryptology
— EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer Science, pages
448–461. Springer-Verlag, 1998.

9. M. Jakobsson. Flash mixing. In PODC99, pages 83–89, 1999.
10. A. Juels and M. Jakobsson. Millimix. Technical Report 99-33, DIMACS Technical

Report, June 1999.
11. M. Michels and P. Horster. Some remarks on a receipt-free and universally veri-

fiable mix-type voting scheme. In K. Kim and T. Matsumoto, editors, Advances
in Cryptology — ASIACRYPT ’96, volume 1163 of Lecture Notes in Computer
Science, pages 125–132. Springer-Verlag, 1996.

12. M. Mitomo and K. Kurosawa. Attack for flash MIX. In Asiacrypt 2000 (to appear),
2000.

13. W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant anonymous
channel. In ICICS98, volume 1334 of Lecture Notes in Computer Science, pages
440–444. Springer-Verlag, 1998.

324 Masayuki Abe and Fumitaka Hoshino

14. M. Ohkubo and M. Abe. A length-invariant hybrid mix. In Asiacrypt2000 (to
appear), 2000.

15. C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing
election scheme. In T. Helleseth, editor, Advances in Cryptology — EURO-
CRYPT ’93, volume 765 of Lecture Notes in Computer Science, pages 248–259.
Springer-Verlag, 1994.

16. B. Pfitzmann. Breaking an efficient anonymous channel. In A. D. Santis, editor,
Advances in Cryptology — EUROCRYPT ’94, volume 950 of Lecture Notes in
Computer Science, pages 339–348. Springer-Verlag, 1995.

17. B. Pfitzmann and A. Pfitzmann. How to break the direct RSA implementation of
MIXes. In J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryptology –
Eurocrypt ’89, volume 434 of Lecture Notes in Computer Science, pages 373–381.
Springer-Verlag, 1989.

18. K. Sako. An improved universally verifiable mix-type voting schemes. Unpublished
Manuscript, 1995.

19. K. Sako and J. Kilian. Receipt-free mix-type voting scheme — a practical solution
to the implementation of a voting booth —. In L. C. Guillou and J.-J. Quisquater,
editors, Advances in Cryptology — EUROCRYPT ’95, volume 921 of Lecture Notes
in Computer Science, pages 393–403. Springer-Verlag, 1995.

20. A. Waksman. A permutation network. Journal of the Association for Computing
Machinery, 15(1):159–163, January 1968.

	Introduction
	Review
	Security Issue
	Biased Permutations
	Generating Non-biased Permutations

	Efficiency and Availability Issues
	Refined Scheme

