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Abstract. At ISW’99, Nishioka, Hanaoka and Imai proposed a digital
signature scheme on ID-based key-sharing infrastructures. That signa-
ture scheme is claimed to be secure if the discrete logarithm problem is
hard to solve. Two schemes (the ID-type and the random-type schemes)
based on the linear scheme for the Key Predistribution Systems (KPS)
and the discrete logarithm problem (DLP) were given.
In this paper we show that those two schemes fail to meet the non-
repudiation requirement: with negligible amount of computation, a sig-
nature could be forged. For the ID-type signature scheme, any verifier
could forge a signature to raise repudiation between that verifier and
the signer. The random type signature scheme has the same weakness.
Furthermore, for the random-type signature scheme, once a signer issued
a signature, anyone (not only the user in the scheme) could forge that
signer’s signature for a n arbitrary message.

1 Introduction

Digital signature plays an important role in authenticating digital documents.
The commonly used digital signature schemes [5,11,13] are all belong to the
public key cryptosystem (PKC). There is a kind of digital signature scheme
that is based on the ID-Based cryptosystem [14] instead of on PKC. The first
such digital signature scheme was proposed by Shamir [14]. Some other digital
signature schemes [3,10,12] are based on the Key Predistribution Systems (KPS).
The KPS is a kind of ID-based cryptosystem and it solves the key distribution
problem with simple calculation [1,2,4,6,7,8,9].

Nishioka, Hanaoka and Imai recently proposed a new signature scheme [12]
on the KPS infrastructure. This scheme is to satisfy the main signature require-
ments: authenticity, unforgeability, and non-repudiation [12]. Two examples were
given and they are claimed to be secure if the discrete logarithm problem is hard
to solve. As will be shown in this paper, those two examples are insecure: a sig-
nature could be easily forged with negligible amount of computation.

Nishioka, Hanaoka and Imai also claimed that if an ID-based key sharing
system exists, an ID-based digital signature system could be easily implemented
[12]. By breaking their proposed concrete signature schemes, it is shown that
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the implementation of secure ID-based digital signature system might not be as
easy as claimed in [12].

This paper is organised as follows. Section 2 introduces the KPS and the
linear KPS scheme. Section 3 introduces the KPS based signature scheme. The
attacks against the ID-type signature scheme and the random-type signature
scheme are given in Section 4 and Section 5, respectively. Section 6 concludes
this paper.

2 KPS and the Linear KPS Scheme

2.1 KPS

The KPS Key Predistribution System [9] consists of one centre and a number of
users. The KPS centre keeps in secret a bi-symmetric “center-algorithm” G(·, ·).
The centre computes each user’s secret algorithm as Xi(·) = G(IDi, ·), where
IDi is the identifier of the user Ui and is publicly authenticated. The algorithm
Xi is pre-distributed to the user Ui secretly and confidentially. The user Ui could
establish a secret common key kij with the user Uj by computing kij = Xi(IDj)
(the user Uj computes it as Xj(IDi)).

2.2 The Linear KPS Scheme

The linear KPS scheme is one of the basic schemes of the KPS. In this scheme
the symmetric centre algorithm is represented as 2nd degree covariant tensor
G where each element Gij(i, j = 0, · · · , m − 1) is in GF (q). A public func-
tion f transforms each ID into an m-dimension vector x on GF (q) as xi =
f(IDi), where xi = (x0i , x

1
i , · · · , xm−1

i )T . The user Ui’s secret algorithm is an
m-dimension vector Xi over GF (q) and is generated as

Xi = G · xi

The common key kij established between Ui and Uj is computed by Ui as

kij = XT
i · xj

or computed by Uj as
kij = XT

j · xi

As long as the number of users is less than m, this linear KPS scheme is secure
since no user(s) could recover the centre algorithm G.

3 The KPS-Based Signature Scheme

In [12], two examples based on the linear scheme for the KPS and the discrete
logarithm problem (DLP) are given. These two signature schemes are introduced
in this section. In the rest of this paper, H denotes an ideal hash function.
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3.1 The ID-Type Scheme

Choose two sufficiently large primes p and q such that p = 2q + 1.

Signature Generation. The user Ui signs a message M as follows.

1. Compute h = H(M ||IDi) mod p
2. The signature S is an m-dimension vector on GF (p) computed as S = hXi ,

i.e., S� = hX�
i mod p for � = 0, 1, · · · , m − 1.

Verification. The user Uj verifies the signature as follows:

1. Compute V1 =
m−1∏
�=0

(S�)x
�
j mod p

2. Compute V2 = hkij mod p where kij is the common key shared by Ui and
Uj .

3. If V1 = V2 or V1 = V2 · hq mod p, the signature is accepted; otherwise, it is
rejected.

Remarks. In the signature verification process,

V1 =
m−1∏
�=0

(S�)x
�
j mod p

= h
∑m−1

�=0
X�

i ·x�
j mod p−1 mod p

=
{

hkij mod p if k̃ij < q
hkij · hq mod p otherwise

where k̃ij =
m−1∑
�=0

X�
i ·x�

j mod p−1. Thus for a signature generated by Ui, V1 = V2

or V1 = V2 · hq mod p.

3.2 The Random-Type Scheme

Choose two sufficiently large primes p and q satisfying q|p − 1. Pick up g with
order q on the multiplicative group Z∗

p.

Signature Generation. The user Ui signs the message M as follows:

1. Generate m random numbers z� ∈ Zq (� = 0, 1, · · · , m − 1).

2. Let z =
m−1∑
�=0

z� mod q, and r� = gz� mod p.

3. Compute s� = (H(M) · z� + X�
i ) · z−1 mod q.

4. The signature of the message M is given as (r�, s�) (� = 0, 1, · · · , m − 1).
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Verification. The user Uj verifies the signature as follows:

1. Let s =
m−1∑
�=0

s� · x�
j mod q, and r =

m−1∏
�=0

r
x�

j

� mod p.

2. Let kij =
m−1∑
�=0

X�
j · x�

i mod q.

3. Compute V1 = rH(M)s−1 · gkij ·s−1
mod p.

4. Compute V2 =
m−1∏
�=0

r� mod p.

5. The user Uj accepts the signature only if V1 = V2.

Remarks. It is not difficult to verify that for a signature generated by Ui,
V1 = V2.

4 Cryptanalysis of the ID-type Signature Scheme

In this section, we show that it is easy for a verifier to forge a signature. This
signature could pass this verifier’s verification process while it could not pass
the verification processes of the other verifiers. However it is sufficient to cause
repudiation between the signer and the verifier since the signer, on the other
hand, can also forge such a signature to cheat that verifier.

Suppose now the signer is Ui and the verifier is Uj . With only the knowledge
of kij , either the user Ui (signer) or Uj (verifier) could forge the signature as
follows:

1. Compute h = H(M ||IDi) and V2 = hkij mod p.
2. Solve for a� (� = 0, 1, · · · , m − 1) from the following equation:

V2 =
m−1∏
�=0

ha�·x�
j mod p, or V2 · hq =

m−1∏
�=0

ha�·x�
j mod p

3. Let S
′
� = ha� mod p. S

′
� (� = 0, 1, · · · , m − 1) are the forged signature.

In step 2, one of the equation is always solvable. And the amount of computation
used in this attack is negligible. Thus either the verifier or signer could forge the
signature easily.

The attack above deals with only one verifier. In the following, we consider the
case in which all the verifiers are involved. All the verifiers may collude to forge
a signature that could pass every verifier’s verification. And the signer can also
forge such a signature to cheat all the verifiers. Suppose there are n (n < m) users
in the KPS scheme. The user U0 is the signer and the users U1 to Un−1 are the
verifiers. In the KPS scheme, the signer has the knowledge of the common keys
k0j (j = 1, 2, · · · , n− 1). The colluded verifiers could also obtain the information
of such common keys. The following attack shows how such a signature could be
forged with the knowledge of the common keys k0j (j = 1, 2, · · · , n − 1).
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1. Compute h = H(M ||ID0). Let V2j = hk0j mod p for j = 1, 2, · · · , n − 1.
2. Solve for a� (� = 0, 1, · · · , m − 1) from the following equations:

V2j =
m−1∏
�=0

ha�·x�
j mod p, (or V2j ·hq =

m−1∏
�=0

ha�·x�
j mod p) (j = 1, 2, · · · , n−1)

3. Let S
′
� = ha� mod p. S

′
� (� = 0, 1, · · · , m − 1) are the forged signature.

5 Cryptanalysis of the Random-Type Signature Scheme

The random-type signature scheme is more vulnerable than the ID-type scheme.
In this scheme, every verifier could forge the signature. Furthermore, anyone
(not only the users in the scheme) could forge a signer’s signatures after that
signer released a signature. In Subsection 5.1, we show how a verifier could forge
a signature. In Subsection 5.2, we show how a signer’s signature could be forged
after one signature is issued.

5.1 A Verifier Could Forge the Signature

With the knowledge of the common key kij , either the user Ui (signer) or Uj

(verifier) could forge the signature as follows:

1. Choose m random numbers bi (i = 0, 1, · · · , m−1) from GF (q). Let ri = gbi .

2. Let r =
m−1∏
�=0

r
x�

j

� mod p, v =
m−1∏
�=0

r� mod p.

3. Solve the following equation for s:

v = rH(M)·s−1 · gkij ·s−1
mod p

4. Choose m numbers s� (� = 0, 1, · · · , m − 1) to satisfy the following linear
equation:

s =
m−1∑
�=0

s� · x�
j mod q

5. (r�, s�) (� = 0, 1, · · · , m − 1) are the forged signature.

Remarks In step 3, the equation could be solved without dealing with the
discrete log problem. The reason is that we only need to deal with the exponent
since all the bases are the same (g). The amount of computation used in the
attack is negligible.
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5.2 Anyone Could Forge the Signature

After a signer issued a signature, his signatures could be forged by anyone (not
only the user in the KPS scheme). Suppose that a user Ui has issued a signature
S of message M . We show that anyone could forge the signature of an arbitrary
message M ′ and to convince a verifier Uj that the signature is given by Ui. The
attack is given as follows:

1. Recover gkij from the signature: from the verification process of signature,
it is easy to compute the value of gkij from the signature and the publicly
known information.

2. Let g′ = gkij .
3. Choose m random numbers bi (i = 0, 1, · · · , m−1) from GF (q). Let r′

i = g′bi .

4. Let r′ =
m−1∏
�=0

r′x�
j

� mod p, v′ =
m−1∏
�=0

r′
� mod p.

5. Solve the following equation for s′:

v′ = r′H(M ′)·s′−1 · g′s′−1
mod p

6. Choose m numbers s′
� (� = 0, 1, · · · , m − 1) to satisfy the following linear

equation:

s′ =
m−1∑
�=0

s′
� · x�

j mod q

7. (r′
�, s

′
�) (� = 0, 1, · · · , m − 1) are the forged signature.

Remarks In step 5, the equation could be solved easily since the bases are all
the same (g′), and only the exponent need to be considered.

Conclusion===========================

6 Conclusions

In this paper, we showed that two recently proposed KPS-based signature
schemes are not secure. The design of secure signature scheme based on KPS is
still an open problem.
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