
Fast LTL to Büchi Automata Translation

Paul Gastin and Denis Oddoux

LIAFA, Université Paris 7, Paris, France
{Paul.Gastin,Denis.Oddoux}@liafa.jussieu.fr

Abstract. We present an algorithm to generate Büchi automata from
LTL formulae. This algorithm generates a very weak alternating co-Büchi
automaton and then transforms it into a Büchi automaton, using a gen-
eralized Büchi automaton as an intermediate step. Each automaton is
simplified on-the-fly in order to save memory and time. As usual we
simplify the LTL formula before any treatment. We implemented this
algorithm and compared it with Spin: the experiments show that our
algorithm is much more efficient than Spin. The criteria of comparison
are the size of the resulting automaton, the time of the computation and
the memory used. Our implementation is available on the web at the
following address: http://verif.liafa.jussieu.fr/ltl2ba

1 Introduction

To prove that a program satisfies some property, a standard method is to use
Linear Time Logic (LTL) model checking. When the property is expressed with
an LTL formula, the model checker usually transforms the negation of this for-
mula into a Büchi automaton, builds the product of that automaton with the
program, and checks this product for emptiness. In this paper we focus on the
generation of a Büchi automaton from an LTL formula, trying to improve the
time and space of the computation and the size of the resulting automaton.

Spin [4] is a very popular LTL model checker. However, the algorithm it
uses to generate a Büchi automaton from an LTL formula, presented in [3],
may be quite slow and may need a large amount of memory, even for some
usual LTL formulae. In particular, this algorithm has a very bad behavior on
formulae with fairness conditions: it is almost impossible to use Spin to generate
a Büchi automaton from a formula containing 5 or more fairness conditions,
both because of the computation time and of the memory needed. For example,
consider a simple response formula G(q → F r) with n fairness conditions:

θn = ¬((G F p1 ∧ . . . ∧ G F pn) → G(q → F r)) . (1)

A formula of this type is very often encountered in LTL model checking. More-
over, the fairness conditions and the right-hand side property are usually more
complex. The value of n is very often greater than 5. Alas, in this case, Spin
fails to produce the Büchi automaton within a reasonable amount of time and
memory (see Table 1).

Spin’s algorithm was improved by [1] (LTL2AUT), [2] (EQLTL), [10] (Wring):
these papers did not modify the basis of the algorithm, but improved it using

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 53–65, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

http://verif.liafa.jussieu.fr/ltl2ba

54 Paul Gastin and Denis Oddoux

Table 1. Comparison on the Formulae θn for 1 ≤ n ≤ 10. Time is in sec, space
in kB. (N/A): no answer from the server within 24 h. (†): the program died,
giving no result.

Spin Wring EQLTL LTL2BA– LTL2BA
time space time space time time space time space

θ1 0.18 460 0.56 4,100 16 0.01 9 0.01 9
θ2 4.6 4,200 2.6 4,100 16 0.01 19 0.01 11
θ3 170 52,000 16 4,200 18 0.01 86 0.01 19
θ4 9,600 970,000 110 4,700 25 0.07 336 0.06 38
θ5 1,000 6,500 135 0.70 1,600 0.37 48
θ6 8,400 13,000 N/A 12 8,300 4.0 88

θ7 72,000† 43,000† 220 44,000 32 175
θ8 4,200 260,000 360 250
θ9 97,000 1,600,000 3,000 490
θ10 36,000 970

the same core algorithm, rewriting LTL formulae, and simplifying the resulting
Büchi automaton. These improvements are quite efficient but the actual trans-
formation of the LTL formula to a Büchi automaton, which is similar to the
tableau construction explained in [3], may still perform badly on some natural
formulae such as θn. Some experiments are presented in Table 1. Note that Wring
is written in Perl while Spin and LTL2BA are written in C and that EQLTL is
used through a web server. Hence the figures are still relevant but should not be
compared litterally. See Sect. 7 for more details.

In this paper, we present a new algorithm to generate a Büchi automaton
from an LTL formula. Our algorithm is not based on the tableau construction
presented in [3]. Instead, using the classical construction (see e.g. [12]), we first
produce an alternating automaton from the LTL formula, with n states where
n is less than the size of the formula. This alternating automaton turns out to
be very weak as shown by Rohde [9]. Thanks to that property, instead of gener-
ating directly a Büchi automaton with 2n × 2n states, we are able to build first
a generalized Büchi automaton, that is a Büchi automaton with labels and ac-
cepting conditions on transitions instead of states, with at most 2n states. Using
a generalized Büchi automaton is one of the most important improvements of
our algorithm. The best solution would be to design a model-checking algorithm
using directly this generalized Büchi automaton, but in order to compare our
work with other ones and to use existing model-checking algorithms, we trans-
form this automaton into a classical Büchi automaton. The method we use is
very classical, and we obtain a Büchi automaton with at most n× 2n states.

The second main improvement stems from our simplifications of the au-
tomata. Since our construction goes in several steps, we are able to simplify
the automata at each step, improving the efficiency of the following steps. The
simplifications dramatically reduce the number of states and transitions of the
automata, especially of the generalized Büchi automaton. Moreover, each simpli-
fication is performed on-the-fly during the construction of each automaton. This
is a major improvement on a posteriori simplifications. The amount of memory

Fast LTL to Büchi Automata Translation 55

used is about the size of the simplified automaton, instead of being the size
of the unsimplified automaton which may be quite huge. The time needed is
also reduced dramatically because we are exploring a much smaller part of the
automaton during the construction.

Using our new algorithm, we built a tool which is available on the web at
http://verif.liafa.jussieu.fr/ltl2ba. Our tool is much more efficient than
any other tool we have tried, in computation time and especially in memory.
The results of our algorithm on the formulae θn with on-the-fly simplifications
(LTL2BA) and with a posteriori simplifications (LTL2BA–) are detailed in Ta-
ble 1. More experimental results are presented in Sect. 7. There we also discuss
the size of the generated automaton. From this point of view also our algorithm is
usually better than Spin though occasionally it may produce a bigger automa-
ton. Note that Spin, LTL2BA– and LTL2BA give exactly the same resulting
automaton on the formulae θn. Wring and EQLTL give bigger automata.

The paper is organized as follows. Section 2 begins with some preliminaries
defining linear temporal logic and its semantics. Sections 3 to 5 describe our
algorithm and some proofs of its correctness. Section 6 presents our simplification
methods and Sect. 7 describes some experimental results.

2 Preliminaries: Linear Temporal Logic (LTL)

LTL was introduced to specify the properties of the executions of a system.
A finite set Prop contains all atomic properties of states. With the standard
Boolean operators (¬, ∧, ∨) we can only express static properties. For dynamical
properties, we use temporal operators such as X (next), U (until), R (release),
F (eventually) and G (always).

Definition 1 (Syntax). The set of LTL formulae on the set Prop is defined
by the grammar ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ, where p ranges over Prop.

The semantics of LTL usually defines whether an execution σ of a given
system satisfies a formula. Actually the semantics only depends on the atomic
propositions that stand in each state of σ. Then for our purpose we consider
only sequences of sets of atomic propositions.

Definition 2 (Semantics). Let u = u0u1 . . . be a word in Σω with Σ = 2Prop.
Let ϕ be an LTL formula. The relation u |= ϕ (u models ϕ) is defined as follows:

– u |= p if p ∈ u0,
– u |= ¬ϕ1 if u 6|= ϕ1,
– u |= ϕ1 ∨ ϕ2 if u |= ϕ1 or u |= ϕ2,
– u |= Xϕ1 if u1u2 . . . |= ϕ1,
– u |= ϕ1 U ϕ2 if ∃k ≥ 0, ukuk+1 . . . |= ϕ2 and ∀0 ≤ i < k, uiui+1 . . . |= ϕ1.

Only basic operators have been defined above. We will of course also use the
derived operators defined by:

tt
def
= p ∨ ¬ p , ff

def
= ¬ tt , ϕ1 ∧ ϕ2

def
= ¬(¬ϕ1 ∨ ¬ϕ2) , (2)

ϕ1 R ϕ2
def
= ¬(¬ϕ1 U ¬ϕ2) , Fϕ

def
= tt U ϕ and Gϕ

def
= ff R ϕ = ¬F¬ϕ .(3)

http://verif.liafa.jussieu.fr/ltl2ba

56 Paul Gastin and Denis Oddoux

An LTL formula that is neither a disjunction (∨) nor a conjunction (∧) is
called a temporal formula.

An LTL formula can be written in negative normal form, using only the
predicates in Prop, their negations, and the operators ∨, ∧, X, U, and R. Notice
that this operation does not change the number of temporal operators of the
formula. From now on, we suppose that every LTL formula is in negative normal
form.

Example 1. Let θ = ¬(G F p → G(q → F r)) be our running example along the
paper. The negative normal form of θ is (ff R (tt U p)) ∧ (tt U (q ∧ (ff R ¬ r))).

Before any construction our algorithm simplifies the formula, using a set of
rewriting rules that reduce the number of temporal operators. This is relevant
since the complexity of our algorithm is based on this number. Some of these
rules are presented in [2],[10]. We will not discuss them in this paper.

3 LTL to Very Weak Alternating Automata (VWAA)

This section explains a classical construction: building a VWAA from an LTL
formula. Alternating automata have been introduced by Muller and Schupp in
[6],[7],[8]. Then in [9], Rohde defined VWAA as he needed them for a work on
transfinite words. VWAA were also described in [5]. However, our definition is
somewhat different from the classical one.

Definition 3. A co-Büchi very weak alternating co-Büchi automaton is a five-
tuple A = (Q,Σ, δ, I, F) where:

– Q is the set of states,
– Let Q′ be the set of conjunctions of elements of Q. The empty conjunction

is denoted by tt. We identify Q′ with 2Q in the following,
– Σ is the alphabet, and we let Σ′ = 2Σ,
– δ : Q→ 2Σ′×Q′

is the transition function,
– I ⊆ Q′ is the set of initial states,
– F ⊆ Q is the set of final states (co-Büchi),
– there exists a partial order on Q such that ∀q ∈ Q, all the states appearing

in δ(q) are lower or equal to q.

The definition of a classical alternating automaton would be the same except
for the last condition on the partial order.

Remark 1. The transition function looks different from the usual definition (∆ :
Q×Σ → B+(Q)). We made those changes for implementation reasons, in order
to ease the manipulation of the data structures and to save time and space
during the computation. The classical representation of our transition function
is given by:

∆(q, a) =
∨

(α,e)∈δ(q)
a∈α

e . (4)

Fast LTL to Büchi Automata Translation 57

GF p F p

p

F(q ∧ G¬ r)

q

G¬ r

¬ r

tt

ff

p

tt

tt

p

p

tt
q ∧ ¬ r

q

¬ r

¬ r

tt

Fig. 1. Automaton Aθ. Some states (right) are unaccessible, they will be re-
moved.

Conversely we may obtain our definition from the classical one, essentially
by taking the disjunctive normal form. Hence the two definitions are equivalent.

Notice that in the transition function we use Σ′ instead of Σ: so that tran-
sitions that differ only by the action can be gathered. In practice, this usually
reduces a lot the number of transitions. However the automaton still reads words
in Σω.

Example 2. You can see the representation of a VWAA on Fig. 1. States in F are
circled twice. Notice that arrows with the same origin represent one transition
to a conjunction of states. In this example, we have:

– I = {GF p ∧ F(q ∧ G¬ r)},
– δ(p) = {(Σp, tt)} where Σp = {a ∈ Σ | p ∈ a},
– δ(G F p) = {(Σp,G F p), (Σ,G F p ∧ F p)}.

A run σ of A on a word u0u1 . . . ∈ Σω is a labeled DAG (V,E, λ) such that :

– V is partitioned in
∞⋃

i=0

Vi with E ⊆
∞⋃

i=0

Vi × Vi+1,

– λ: V → Q is the labeling function,
– λ(V0) ∈ I and ∀x ∈ Vi, ∃(α, e) ∈ δ(λ(x)), ui ∈ α and e = λ(E(x)).

A run σ is accepting if any (infinite) branch in σ has only a finite number of
nodes labeled in F (co-Büchi acceptance condition). L(A) is the set of words
on which there exists an accepting run of A. Note that, Büchi and co-Büchi
acceptance conditions are equivalent for VWAA; one only has to replace F by
Q \ F .

Example 3. Here is an example of an accepting run of the automaton Aθ:

GF p GF p GF p GF p GF p

F p F p

F(q ∧ G¬ r) F(q ∧ G¬ r) F(q ∧ G¬ r)

G¬ r G¬ r

∅ {q, r} {p, q} {p} {p}

58 Paul Gastin and Denis Oddoux

In the definition of the VWAA associated with an LTL formula, we use two
new operators. ⊗ helps treating conjunctions, and ψ gives roughly the DNF of ψ,
allowing us to restrict the states of the automaton to the temporal subformulae
of ϕ.

Definition 4. For J1, J2 ∈ 2Σ′×Q′
we define

J1 ⊗ J2 = {(α1 ∩ α2, e1 ∧ e2) | (α1, e1) ∈ J1 and (α2, e2) ∈ J2},
For an LTL formula ψ we define ψ by: ψ = {ψ} if ψ is a temporal formula,

ψ1 ∧ ψ2 = {e1 ∧ e2 | e1 ∈ ψ1 and e2 ∈ ψ2} and ψ1 ∨ ψ2 = ψ1 ∪ ψ2.

Here is the first step of our algorithm, building a VWAA from an LTL for-
mula. Notice that the number of states of this automaton is at most the size of
the formula.

Step 1. Let ϕ be an LTL formula on a set Prop. We define the VWAA Aϕ by:

– Q is the set of temporal subformulae of ϕ,
– Σ = 2Prop,
– I = ϕ,
– F is the set of until subformulae of ϕ, that is formulae of type ψ1 U ψ2,
– δ is defined as follows (∆ extends δ to all subformulae of ϕ):




δ(tt) = {(Σ, tt)}
δ(p) = {(Σp, tt)} where Σp = {a ∈ Σ | p ∈ a}

δ(¬ p) = {(Σ¬ p, tt)} where Σ¬ p = Σ\Σp

δ(Xψ) = {(Σ, e) | e ∈ ψ}
δ(ψ1 U ψ2) = ∆(ψ2) ∪ (∆(ψ1) ⊗ {(Σ,ψ1 U ψ2)})
δ(ψ1 R ψ2) = ∆(ψ2) ⊗ (∆(ψ1) ∪ {(Σ,ψ1 R ψ2)})


∆(ψ) = δ(ψ) if ψ is a temporal formula

∆(ψ1 ∨ ψ2) = ∆(ψ1) ∪∆(ψ2)
∆(ψ1 ∧ ψ2) = ∆(ψ1) ⊗∆(ψ2)

Using the partial order “subformula of” it is easy to prove that Aϕ is very weak.

Remark 2. One can notice that the elements of Σ′ used in our definition are
intersections of the sets Σ, Σp and Σ¬ p. Hence, they can be denoted by con-
junctions of literals, as in the following examples : p∧ q ∧¬r for Σp ∩Σq ∩Σ¬r,
tt for Σ. Note that intersection and test for inclusion can be easily performed
with this representation.

Example 4. Figure 1 shows the result of Step 1 on the formula θ defined in Ex. 1.

Theorem 1. L(Aϕ) = {u ∈ Σω | u |= ϕ}.

Proof. The idea of the proof is to show recursively that for any subformula ψ of
ϕ, the language accepted by Aϕ with I = ψ is equal to {u ∈ Σω | u |= ψ}. The
main difficulties are encountered for ψ = ψ1 U ψ2 (this is where the acceptance
condition comes into play) and ψ = ψ1 R ψ2. ut

Fast LTL to Büchi Automata Translation 59

GF p ∧ F(q ∧ G¬ r)

GF p ∧ F p ∧ F(q ∧ G¬ r)

G F p ∧ G¬ r

GF p ∧ F p ∧ G¬ r

p

tt

tt

p

p ∧ q ∧ ¬ r

q ∧ ¬ r

p ∧ q ∧ ¬ r

q ∧ ¬ r

p ∧ ¬ r

¬ r

¬ r

p ∧ ¬ r
A B

p

tt

p ∧ q ∧ ¬ r

q ∧ ¬ r

p ∧ ¬ r

¬ r

Fig. 2. Automaton GAθ
, before (left) and after (right) Simplification.

4 VWAA to Generalized Büchi Automata (GBA)

At that point we have obtained a VWAA for our LTL formula ϕ. The problem
is that the usual method to transform an alternating automaton into a Büchi
automaton produces an automaton that is much too big. This is why we generate
first a GBA, which is a Büchi automaton with several acceptance conditions on
transitions instead of states.

Definition 5. A generalized Büchi automaton is a five-tuple G = (Q,Σ, δ, I, T)
where :

– Q is the set of states,
– Σ is the alphabet, and we let Σ′ ⊆ 2Σ,
– δ : Q→ 2Σ′×Q is the transition function,
– I ⊆ Q is the set of initial states,
– T = {T1, . . . , Tr} where Tj ⊆ Q×Σ′ ×Q are the accepting transitions.

Example 5. The automata on Fig. 2 are examples of GBAs. In these examples,
r = 2: dashed transitions are in T1 and bold transitions are in T2. An accept-
ing run has to use infinitely many dashed transitions and infinitely many bold
transitions.

A run σ of G on a word u0u1 . . . ∈ Σω is a sequence q0, q1, . . . of elements of
Q such that q0 ∈ I and ∀i ≥ 0, ∃αi ∈ Σ′ such that ui ∈ αi and (αi, qi+1) ∈ δ(qi).
A run σ is accepting if for each 1 ≤ j ≤ r it uses infinitely many transitions from
Tj . L(G) is the set of words on which there exists an accepting run of G.

Here is the second step of our algorithm, building a GBA from a co-Büchi
VWAA. It can be of course applied to any VWAA, and not only to an automaton
issued from Step 1. GA has at most 2|Q| states and |F | acceptance sets.

Step 2. Let A = (Q,Σ, δ, I, F) be a VWAA with co-Büchi acceptance condi-
tions. We define the GBA GA = (Q′, Σ, δ′, I, T) where:

60 Paul Gastin and Denis Oddoux

– Q′ = 2Q is identified with conjunctions of states as explained in Definition 3,

– δ′′(q1 ∧ . . . ∧ qn) =
n⊗

i=1

δ(qi),

– δ′ is the set of 4-minimal transitions of δ′′ where the relation 4 is defined
by t′ 4 t if t = (e, α, e′), t′ = (e, α′, e′′), α ⊆ α′, e′′ ⊆ e′, and ∀T ∈ T ,
t ∈ T ⇒ t′ ∈ T ,

– T = {Tf | f ∈ F} where
Tf = {(e, α, e′) | f /∈ e′ or ∃(β, e′′) ∈ δ(f), α ⊆ β and f /∈ e′′ ⊆ e′}.

Remark 3. One may notice that using f /∈ e instead of f /∈ e′ in the definition
of Tf would have been more intuitive, since it corresponds to the case where in
the run of A there is no edge with both ends labeled by f . But our definition is
also correct. The proof of the following main theorem is more complicated with
this definition but the experimental results are much better with it, especially
regarding the simplifications.

Example 6. Figure 2 shows the result of Step 2 on the automaton Aθ of Fig. 1.

Theorem 2. L(GA) = L(A).

Remark 4. This is the point where we need the alternating automaton to be
very weak (this theorem is false for classical alternating automata). Consider
an infinite branch in a run of A on a given word : since A is very weak, the
sequence of the labels on this branch is decreasing, and has to be ultimately
constant since Q is finite. Then “having only a finite number of nodes labeled in
F” is equivalent to “having an infinite number of nodes labeled in Q\F”. This
is crucial in the proof.

Proof. Let σ = (V,E, λ) be an accepting run of A on a word u = u0u1 . . .
V =

⋃
i≥0

Vi, E =
⋃

i≥0

Ei, with Ei ⊆ Vi × Vi+1. We are first going to build a new

run of A on u, redefining gradually the sets Vi and Ei to V ′
i ⊆ Vi and E′

i, ∀i ≥ 0.
Let V ′

0 = V0. Now suppose that V ′
i has been defined. By definition of a run,

∀x ∈ V ′
i , ∃αx such that ui ∈ αx, and (αx, ex) ∈ δ(λ(x)) where ex = λ(Ei(x)).

Let α =
⋂

x∈V ′
i

αx and e =
⋃

x∈V ′
i

ex.

By definition of δ′′, t = (λ(V ′
i), α, e) is in δ′′: there exists a transition t′ =

(λ(V ′
i), α′, e′) in δ′ such that t′ 4 t and t′ is minimal. Note that t′ is a transition

of GA, and that ui ∈ α ⊆ α′. Since t′ ∈ δ′ ⊆ δ′′, ∀x ∈ V ′
i , ∃(α′

x, e
′
x) ∈ δ(λ(x))

such that α′ =
⋂

x∈V ′
i

α′
x and e′x =

⋃
x∈V ′

i

e′.

Moreover ∀x ∈ V ′
i such that λ(x) = f ∈ F and t′ ∈ Tf , there exists (α′′

x, e
′′
x) ∈

δ(f) such that f /∈ e′′x ⊆ e′ and α′ ⊆ α′′
x. For all other elements x of V ′

i , let e′′x = e′x
and α′′

x = α′
x.

Let V ′
i+1 = {y ∈ Vi+1 | λ(y) ∈ e′} and E′

i = {(x, y) ∈ V ′
i × V ′

i+1 | λ(y) ∈ e′′x}.
Note that λ(E′

i(x)) = e′′x since e′′x ⊆ e′ = λ(V ′
i) and that E′

i(V
′
i) may be strictly

contained in V ′
i+1.

Fast LTL to Büchi Automata Translation 61

Claim. ∀i ≥ 0, ∀f ∈ F , the following property holds:
if ∃(x, y) ∈ E′

i, λ(x) = λ(y) = f then ∃(x, y) ∈ Ei, λ(x) = λ(y) = f .

Proof. If ∀x ∈ V ′
i , λ(x) 6= f then the claim is true. Otherwise ∃x ∈ V ′

i ⊆
Vi, λ(x) = f . Assume that ∃y ∈ E′

i(x) with λ(y) = f . Then we have
f ∈ e′′x, and by definition of e′′x we deduce that t′ /∈ Tf . Since t′ 4 t we
have t /∈ Tf and we deduce easily that f ∈ ex, which proves the claim.

Let V ′ =
⋃
i≥0

V ′
i , E′ =

⋃
i≥0

E′
i and λ′ be the restriction of λ to V ′. From the

construction, one can easily see that σ′ = (V ′, E′, λ′) is a new run of A on u. We
show first that σ′ is an accepting run. Suppose that σ′ is not accepting: since A
is very weak, the labels on an infinite branch of a run are ultimately constant.
Hence if σ′ is not accepting, then there exists an infinite branch of σ′ ultimately
labeled by some f ∈ F . Using the claim, there exists in σ an infinite branch
which is ultimately labeled by f . This is impossible since σ is accepting.

Let ei = λ(V ′
i), ∀i ≥ 0. We have e0 = λ(V0) ∈ I and from our construction

we get ∀i ≥ 0, ∃αi such that ui ∈ αi and (ei, αi, ei+1) is a transition of GA:
σ′′ = e0, e1, . . . is a run of GA on u. Now let us prove that σ′′ is accepting. Let
i ≥ 0 and f ∈ F . We intend to prove that at some depth j ≥ i the transition
(ej , αj , ej+1) is in Tf .

If f /∈ ei+1 then j = i will do. Otherwise let j > i be the smallest depth
where (f, f) /∈ λ(E′

j). Note that j exists, otherwise there would be an infinite
branch in σ′ ultimately labeled by f and σ′ would not be accepting. Since we
know that f ∈ ej , let x be the node of V ′

j labeled by f . From our construction
we know that ∃(e′′x, α′′

x) ∈ δ(f), f /∈ e′′x ⊆ ej+1 and αj ⊆ α′′
x. We can conclude

that (ej , αj , ej+1) is in Tf .
Therefore, from any accepting run σ of A, we have built an accepting run σ′′

of GA on the same word and we get the first inclusion L(A) ⊆ L(GA).
Conversely let σ′ = e0, e1, . . . be an accepting run of GA on a word u =

u0u1 . . . Hence e0 ∈ I and ∀i ≥ 0, ∃αi, ui ∈ αi and (αi, ei+1) ∈ δ′(ei). Let
V =

⋃
i≥0

Vi where Vi = {(p, i) | p ∈ ei} and let λ(p, i) = p so that λ(Vi) = ei.

By definition of δ′, ∀x ∈ Vi, ∃(αx, ex) ∈ δ(λ(x)) such that ex ⊆ ei+1 and
αi ⊆ αx. Moreover ∀f ∈ F , if (ei, αi, ei+1) ∈ Tf then either f /∈ ei, or λ(x) = f
for some x in Vi and in that case we can choose αx and ex such that f /∈ ex. Let
E be defined by (x, y) ∈ E if ∃i ≥ 0, x ∈ Vi, y ∈ Vi+1 and λ(y) ∈ ex.

We can easily see that σ = (V,E, λ) is a run of A on u. Now suppose that σ
is not accepting: as we proved before, there would exist in σ an infinite branch
with all nodes ultimately labeled by some f ∈ F . But σ′ is accepting so it has
infinitely many transitions in Tf , and for each such transition there is no edge
in E with both ends labeled by f at the corresponding depth. Hence this is
impossible.

Therefore from any accepting run σ′ of GA, we have built an accepting run
σ of A on the same word, proving the converse inclusion L(GA) ⊆ L(A). ut

62 Paul Gastin and Denis Oddoux

A,0

B,1

B,2

tt

p ∧ q ∧ ¬ r

q ∧ ¬ r

p ∧ ¬ r

¬ r p ∧ ¬ r

¬ r

Fig. 3. Automaton BGAθ
after Simplification.

5 GBA to Büchi Automata (BA)

At that point we have obtained a GBA for our LTL formula ϕ. We simply have
to transform it into a BA to complete our algorithm. This construction is quite
easy and well-known, but for the sake of completeness we explain it briefly. We
will begin by defining a BA, using once more the same modifications concerning
the alphabet and the transition function.

Definition 6. A Büchi automaton is a five-tuple B = (Q,Σ, δ, I, F) where :

– Q is the set of states,
– Σ is the alphabet, and we let Σ′ ⊆ 2Σ,
– δ : Q→ 2Σ′×Q is the transition function,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the set of repeated states (Büchi condition).

A run σ of B on a word u0u1 . . . ∈ Σω is a sequence q0, q1, . . . of elements of
Q such that q0 ∈ I and ∀i ≥ 0, ∃αi ∈ Σ′ such that ui ∈ αi and (αi, qi+1) ∈ δ(qi).
A run σ is accepting if there exists infinitely many states in F . L(B) is the set
of words on which there exists an accepting run of B.

Here is the third step of our algorithm, building a BA from a GBA. If B has
n states and r acceptance conditions, then BG has at most (r + 1) × n states.

Step 3. Let G = (Q,Σ, δ, I, T) be a GBA with T = {T1, . . . , Tr}. We define the
BA BG = (Q× {0, . . . , r}, Σ, δ′, I × {0}, Q× {r}) where:

– δ′((q, j)) = {(α, (q′, j′)) | (α, q′) ∈ δ(q) and j′ = next(j, (q, α, q′))}.

with next(j, t) =
{

max{j ≤ i ≤ r | ∀j < k ≤ i, t ∈ Tk} if j 6= r
max{0 ≤ i ≤ r | ∀0 < k ≤ i, t ∈ Tk} if j = r

Example 7. Figure 3 shows the result of Step 3 on the automaton GAθ
of Fig. 2.

Theorem 3. L(BG) = L(B).

Remark 5. There exist many similar algorithms transform a GBA into a BA.
They often consist in building the synchronous product of the GBA with some
automaton verifying that every acceptance condition is verified infinitely often.
This automaton differs from one algorithm to another. We chose one that gives
good results for the size of the resulting BA after simplification.

Fast LTL to Büchi Automata Translation 63

6 Simplification

Simplification is really important in our algorithm. Since each step produces a
new automaton from the result of the previous step, the more we simplify each
result, the faster our algorithm is and the least memory it uses.

After each step, we simplify the automaton obtained, using iteratively three
rules until no more simplification occurs:

– A state that is not accessible can be removed,
– If a transition t1 implies a transition t2, then t2 can be removed,

t1 = (q, α1, q1) implies t2 = (q, α2, q2) if
In a VWAA, α2 ⊆ α1 and q1 ⊆ q2

In a GBA, α2 ⊆ α1, q1 = q2 and ∀t ∈ T , t2 ∈ T ⇒ t1 ∈ T
In a BA, α2 ⊆ α1 and q1 = q2

– If two states q1 and q2 are equivalent, then they can be merged.

q1 and q2 are equivalent if
In a VWAA, δ(q1) = δ(q2) and q1 ∈ F ⇐⇒ q2 ∈ F
In a GBA, δ(q1) = δ(q2) and ∀(α, q′) ∈ δ(q1), ∀T ∈ T ,

(q1, α, q′) ∈ T ⇐⇒ (q2, α, q′) ∈ T
In a BA, δ(q1) = δ(q2) and q1 ∈ F ⇐⇒ q2 ∈ F

Note that for a GBA issued from Step 2, the condition (q1, α, q′) ∈ Tj does
not depend on q1 so that the condition simply becomes δ(q1) = δ(q2).

This simplification procedure is really efficient to reduce the size of the au-
tomata. But the strength of our algorithm is that the last two simplification rules
are also used on-the-fly: after a transition has been created, it is compared with
the other transitions already calculated from the same state, and the ones that
become useless are immediately deleted; after all the transitions of a state have
been created, that state is compared with the other states that have already
been created, and is merged to one of those states if possible. This method is
important since usually many states and transitions are to be simplified, and
simplifying them on-the-fly saves a lot of time and space.

In Table 1, the results of the algorithm with or without on-the-fly simplifi-
cation are compared (LTL2BA– is our algorithm with a posteriori simplification
only). For the formula θn defined in (1), the unsimplified GBA has 2n+1 states,
whereas the simplified GBA has only 2 states. Using on-the-fly simplification
avoids the intermediary exponential automaton which explains the great im-
provement, even if the time and memory used by LTL2BA are still exponential.

7 Experimental Results

In this section we compare the results of some recent algorithms transforming
an LTL formula into a BA.

Spin is a model-checker developed by Bell Labs since 1980. It contains an
algorithm transforming an LTL formula into a BA, presented in [3]. The program
is written in C, and we used version 3.4.1. (released Aug 2000).

64 Paul Gastin and Denis Oddoux

Wring is an algorithm presented in [10]. The program is written in Perl,
so the comparison with our work cannot be read literally, and the amount of
memory used is just an approximation we made using the Unix command ‘top’.

EQLTL is an algorithm presented in [2]. The program is not publicly avail-
able, but a demo is proposed on the web. All we could do was to measure the
time needed by the web interface to start responding to our request. We do not
even know what type of machine handles the request. Consequently the times
we gave should be taken with caution.

LTL2BA is a program written in C as Spin, in order to make reliable com-
parison between the two programs. LTL2BA– is the same program, with a
posteriori simplification only.

Tests were made on a Sun Ultra 10 station with 1 GB of RAM.
As explained in the introduction, we compared the tools on usual LTL for-

mulae, taking the example of the formula θn defined in (1). The result of the
comparison is detailed in Table 1.

Another type of usual LTL formulae, often encountered in model-checking,
is formulae like: ϕn = ¬(p1 U (p2 U (. . . U pn) . . .). We made the same tests on
these fomulae in Table 2. Again our algorithm outperforms the other ones.

Table 2. Comparison on the Formulae ϕn for 2 ≤ n ≤ 8. Time is in sec, Space
in kB.

Spin Wring EQLTL LTL2BA
time space time space time time space

ϕ2 0.01 8 0.07 4,100 8 0.01 3.2
ϕ3 0.03 110 0.29 4,100 8 0.01 5.5
ϕ4 0.75 1,700 1.34 4,200 9 0.01 11
ϕ5 43 51,000 10 4,200 11 0.01 13
ϕ6 1,200 920,000 92 4,500 15 0.15 25
ϕ7 720 6,000 27 9.2 48
ϕ8 92 1,200 93

We also compared the algorithms on random LTL formulae of a fixed size,
using a tool presented in [11]. For compatibility reasons, the only comparison
we could realize was between our algorithm and Spin’s. Here the results are
issued from a test on 200 random formulae of size 10, where both algorithms are
compared on the same formulae. See Table 3 for details.

References

1. M. Daniele, F. Giunchiglia, and M. Vardi. Improved automata generation for
linear temporal logic. In Proc. 11th International Computer Aided Verification
Conference, pages 249–260, 1999.

2. K. Etessami and G. Holzmann. Optimizing Büchi automata. In Proceedings of
11th Int. Conf. on Concurrency Theory (CONCUR), 2000.

Fast LTL to Büchi Automata Translation 65

Table 3. Comparison on Random Formulae of a Fixed Size.

Spin LTL2BA
avg. max. avg. max.

time of computation (seconds) 14.23 4521.65 0.01 0.04
number of states 5.74 56 4.51 39

number of transitions 14.73 223 9.67 112

3. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Protocol Specification Testing and Verification,
pages 3–18, Warsaw, Poland, 1995. Chapman & Hall.

4. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

5. O. Kupferman and M. Vardi. Weak alternating automata are not that weak.
In Proc. 5th Israeli Symposium on Theory of Computing and Systems ISTCS’97,
pages 147–158. IEEE, 1997.

6. D. Muller and P. Schupp. Alternating automata on infinite objects: Determinacy
and Rabin’s theorem. In Proceedings of the Ecole de Printemps d’Informatique
Théoretique on Automata on Infinite Words, volume 192 of LNCS, pages 100–107,
Le Mont Dore, France, May 1984. Springer.

7. D. Muller and P. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54(2-3):267–276, October 1987.

8. D. Muller and P. Schupp. Simulating alternating tree automata by nondeterminis-
tic automata: New results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theoretical Computer Science, 141(1–2):69–107, April 1995.

9. S. Rohde. Alternating automata and the temporal logic of ordinals. PhD Thesis
in Mathematics, University of Illinois at Urbana-Champaign, 1997.

10. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In CAV:
International Conference on Computer Aided Verification, 2000.

11. H. Tauriainen. A randomized testbench for algorithms translating linear temporal
logic formulae into Büchi automata. In Workshop Concurrency, Specifications and
Programming, pages 251–262, Warsaw, Poland, 1999.

12. M. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic, volume
1043 of Lecture Notes in Computer Science, pages 238–266. Springer-Verlag Inc.,
New York, NY, USA, 1996.

	Introduction
	Preliminaries: Linear Temporal Logic (LTL)
	LTL to Very Weak Alternating Automata (VWAA)
	VWAA to Generalized B"uchi Automata (GBA)
	GBA to B"uchi Automata (BA)
	Simplification
	Experimental Results

