
Automated Inductive Verification of
Parameterized Protocols?

Abhik Roychoudhury1 and I.V. Ramakrishnan2

1 School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

abhik@comp.nus.edu.sg
2 Dept. of Computer Science, SUNY Stony Brook

Stony Brook, NY 11794, USA
ram@cs.sunysb.edu

Abstract. A parameterized concurrent system represents an infinite
family (of finite state systems) parameterized by a recursively defined
type such as chains, trees. It is therefore natural to verify parameterized
systems by inducting over this type. We employ a program transforma-
tion based proof methodology to automate such induction proofs. Our
proof technique is geared to automate nested induction proofs which do
not involve strengthening of induction hypothesis. Based on this tech-
nique, we have designed and implemented a prover for parameterized
protocols. The prover has been used to automatically verify safety prop-
erties of parameterized cache coherence protocols, including broadcast
protocols and protocols with global conditions. Furthermore we also de-
scribe its successful use in verifying mutual exclusion in the Java Meta-
Locking Algorithm, developed recently by Sun Microsystems for ensuring
secure access of Java objects by an arbitrary number of Java threads.

1 Introduction

There is a growing interest in verification of parameterized concurrent systems
since they occur widely in computing e.g. in distributed algorithms. Intuitively,
a parameterized system is an infinite family of finite state systems parameterized
by a recursively defined type e.g. chains, trees. Verification of distributed algo-
rithms (with arbitrary number of constituent processes) can be naturally cast as
verifying parameterized systems. For example, consider a distributed algorithm
where n users share a resource and follow some protocol to ensure mutually
exclusive access. Model checking [6,21,24] can verify mutual exclusion for only
finite instances of the algorithm, i.e. for n = 3, n = 4, . . . but not for any n.

In general, automated verification of parameterized systems has been shown
to be undecidable [2]. Thus, verification of parameterized networks is often ac-
complished via theorem proving [14,17,22], or by synthesizing network invariants
? This work was partially supported by NSF grants CCR-9711386, CCR-9876242 and

EIA-9705998. The first author was a Ph.D. student at SUNY Stony Brook during
part of this work.

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 25–37, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

26 Abhik Roychoudhury and I.V. Ramakrishnan

[7,19,28]. Alternatively, one can identify subclasses of parameterized systems
for which verification is decidable [9,10,13,15]. Another approach [8,11,12,16,18]
finitely represents the state space of a parameterized system and applies (sym-
bolic) model checking over this finite representation.

Since a parameterized system represents an infinite family parameterized
by a recursively defined type, it is natural to prove properties of parameter-
ized systems by inducting over this type. In a recent paper [25] we outlined a
methodology for constructing such proofs by suitably extending the resolution
based evaluation mechanism of logic programs. In our approach, the parameter-
ized system and the property to be verified are encoded as a logic program. The
verification problem is reduced to the problem of determining the equivalence of
predicates in this program. The predicate equivalences are then established by
transforming the predicates. The proof of semantic equivalence of two predicates
proceeds automatically by a routine induction on the structure of their trans-
formed definitions. One of our transformations (unfolding) represents resolution
and performs on-the-fly model checking. The others (e.g. folding) represent de-
ductive reasoning. The application of these transformations are arbitrarily in-
terleaved in the verification proof of a parameterized system. This allows our
framework to tightly integrate algorithmic and deductive verification.

Summary of Contributions. In this paper, we employ our logic program
transformation based approach for inductive verification of real-life parameter-
ized protocols. The specific contributions are:

1. We construct an automatic and programmable first order logic based prover
with limited deductive capability. The prover can also exploit knowledge of
network topology (chain, tree etc) to facilitate convergence of proofs.

2. Our program transformation based technique produces induction proofs. We
clarify the connection between our transformations and inductive reasoning.

3. Our technique is not restricted to specific network topologies. We have ver-
ified chain, ring, tree, star and complete graph networks. Furthermore by
enriching the underlying language to Constraint Logic Programming (CLP),
the technique can be extended to verify infinite families of infinite state
systems such as parameterized real-time systems.

4. Besides verifying parameterized cache coherence protocols such as Berkeley
RISC and Illinois, we also report the verification of mutual exclusion in
Java meta-locking algorithm. It is a real-life distributed algorithm recently
developed by Sun Microsystems to ensure mutual exclusion in accessing Java
objects by an arbitrary number of Java threads. Previously, the designers of
the protocol gave an informal correctness argument [1], and model checking
of instances of the protocol were done [4]. This is the first machine generated
proof of the algorithm which is parameterized by the number of threads.

The rest of the paper is organized as follows. Section 2 presents an overview
of our program transformation based proof technique for parameterized systems
presented in [25]. Section 3 clarifies the connection between program transfor-
mations and inductive reasoning. Section 4 discusses the functioning of our au-
tomated prover for parameterized protocols. Section 5 presents the successful

Automated Inductive Verification of Parameterized Protocols 27

nat(0).

nat(s(X)) :- nat(X).

trans(s(X), X).

p(0).

efp(S) :- p(S).

efp(S) :- trans(S, T), efp(T).

thm(X) :- nat(X), efp(X).

System Description Property Description

Fig. 1. Proving Liveness in Infinite Chain.

use of our prover in verifying parameterized cache coherence protocols as well
as the Java meta-locking algorithm. Finally, Section 6 concludes the paper with
related work and possible directions for future research.

2 Overview

In this section, we recapitulate our core technique for inductive verification [25]
through a very simple example. Let us consider an unbounded length chain whose
states are numbered n, n−1, . . ., 0. Further suppose that the start state is n, the
end state is 0 and a proposition p is true in state 0. Suppose we want to prove
the CTL property EF p for every state in the chain. Alternatively, we can view
this chain as an infinite family of finite chains of length 0,1,2,. . . and the proof
obligation as proving EF p for every start state of the infinite family. Either
way, our proof obligation amounts to ∀n ∈ N n |= EF p. Our proof technique
dispenses this obligation by an induction on n.

........ p
0n n-1

Encoding the Problem. In the above example, the states are captured by
natural numbers which we represent by a logic program predicate nat (refer
Figure 1; the term s(K) denotes the number K+1). The transition relation is
captured by a binary predicate trans s.t. trans(S, T) is true iff there exists
a transition from state S to state T. 1 The temporal property EF p is encoded
as a unary predicate efp s.t. for any state S, efp(S) ⇔ S |= EF p. The first
clause of efp succeeds for states in which proposition p holds. The second clause
of efp checks if a state satisfying p is reachable after a finite sequence of tran-
sitions. Thus ∀n ∈ N n |= EFp iff ∀X nat(X) ⇒ efp(X). Moreover this holds if
∀X thm(X) ⇔ nat(X) in P0.

Proof by Program Transformations. We perform inductive verification via
logic program transformations using the following steps. A detailed technical
presentation of this proof technique appears in [25].

1. Encode the system and property description as a logic program P0.
1 For realistic parameterized systems, the global transition relation is encoded recur-

sively in terms of local transition relations of constituent processes; see section 4.

28 Abhik Roychoudhury and I.V. Ramakrishnan

2. Convert the verification proof obligation to predicate equivalence proof obli-
gation(s) of the form P0 ` p ≡ q (p, q are predicates)

3. Construct a transformation sequence P0, P1, . . . , Pk s.t.
(a) Semantics of P0 = Semantics of Pk

(b) from the syntax of Pk we infer Pk ` p ≡ q

For our running example, the logic program encoding P0 appears in Figure 1.
We have reduced the verification proof obligation to showing the predicate equiv-
alence P0 ` thm ≡ nat. We then transform program P0 to obtain a program Pk

where thm and nat are defined as follows.

thm(0).

thm(s(X)) :- thm(X).

nat(0).

nat(s(X)) :- nat(X).

Thus, since the transformed definitions of thm and nat are “isomorphic”,
their semantic equivalence can be inferred from syntax. In general, we have a
sufficient condition called syntactic equivalence which is checkable in polynomial
time w.r.t. program size (refer [25,27] for a formal definition).

Note that inferring the semantic equivalence of thm and nat based on the
syntax of their transformed definitions in program Pk proceeds by induction on
the “structure” of their definitions in Pk (which in this example amounts to an
induction on the length of the chain). The program transformations employed
in constructing the sequence P0, P1, . . . , Pk correspond to different parts of this
induction proof. In the next section, we will clarify this connection between
program transformations and inductive reasoning.

3 Program Transformations for Inductive Verification

Unfold/Fold Program Transformations. We transform a logic program
to another logic program by applying transformations that include unfolding
and folding. A simple illustration of these transformations appears in Figure 2.
Program P ′

1 is obtained from P ′
0 by unfolding the occurrence of q(X) in the

definition of p. P ′
2 is obtained by folding q(X) in the second clause of p in P ′

1

using the definition of p in P ′
0 (an earlier program). Intuitively, unfolding is a

step of clause resolution whereas folding replaces instance of clause bodies (in
some earlier program in the transformation sequence) with its head. A formal
definition of the unfold/fold transformation rules, along with a proof of semantics
preservation of any interleaved application of the rules, appears in [26].

An Example of Inductive Verification. We now apply these transforma-
tions to the definition of thm in the program P0 shown in Figure 1. First we
unfold nat(X) in the definition clause of thm to obtain the following clauses.
This unfolding step corresponds to uncovering the schema on which we induct,
i.e. the schema of natural numbers.

thm(0) :- efp(0).

thm(s(X)) :- nat(X), efp(s(X)).

Automated Inductive Verification of Parameterized Protocols 29

p(X) :- q(X) .

q(0).

q(s(X)) :- q(X).

Unf.−→
p(0).

p(s(X)) :- q(X) .

q(0).

q(s(X)) :- q(X).

F old−→
p(0).

p(s(X)) :- p(X).

q(0).

q(s(X)) :- q(X).

Program P ′
0 Program P ′

1 Program P ′
2

Fig. 2. Illustration of Unfold/Fold Transformations.

We now repeatedly unfold efp(0). These steps correspond to showing the base
case of our induction proof. Note that showing the truth of efp(0) is a finite
state verification problem, and the unfolding steps employed to establish this
exactly correspond to on-the-fly model checking. We obtain:

thm(0).

thm(s(X)) :- nat(X), efp(s(X)).

We repeatedly unfold efp(s(X)) in the second clause of thm. These steps cor-
respond to finite part of the induction step, i.e. the reasoning that allows us to
infer n + 1 |= EF p provided the induction hypothesis n |= EF p holds. We get

thm(0).

thm(s(X)) :- nat(X), efp(X).

Finally, we fold the body of the second clause of thm above using the original
definition of thm in P0. Application of this folding step enables us to recognize
the induction hypothesis (thm(X) in this case) in the induction proof.

thm(0).

thm(s(X)) :- thm(X).

The semantic equivalence of thm and nat can now be shown from their syntax
(by a routine induction on the structure of their definitions). This completes the
verification (by induction on nat).

What Kind of Induction? Since unfolding represents a resolution step, it can
be used to prove the base case and the finite part of the induction step. However,
folding recognizes the occurrence of clauses of a predicate p in an earlier program
Pj(j ≤ i), within the current program Pi. Thus, folding is not the reverse of
unfolding. It can be used to remember the induction hypothesis and recognize
its occurrence. Application of unfold/fold transformations constructs induction
proofs which proceed without strengthening of hypothesis. This is because the
folding rule only recognizes instances of an earlier definition of a predicate, and
does not apply any generalization. In the next section, we will discuss how our
transformation based proof technique can support nested induction proofs.

30 Abhik Roychoudhury and I.V. Ramakrishnan

4 An Automated Prover for Parameterized Protocols

The inductive reasoning accomplished by our transformation based proof tech-
nique has been exploited to build an automated prover for parameterized pro-
tocols. Note that our program transformation based technique for proving pred-
icate equivalences can be readily extended to prove predicate implication proof
obligations of the form P0 ` p ⇒ q.2

Since our transformations operate on definite logic programs (logic programs
without negation), we only verify temporal properties with either the least or the
greatest fixed point operator. For the rest of the paper, we restrict our attention
to only proof of invariants.

4.1 System and Property Specification

To use our prover, first the initial states and the transition relation of the param-
eterized system are specified as two logic program predicates gen and trans. The
global states of the parameterized system are represented by unbounded terms,
and gen, trans are predicates over these terms. The recursive structure of gen
and trans depends on the topology of the parameterized network being verified.
For example, consider a network of similar processes where any process may
perform an autonomous action or communicate with any other process. We can
model the global state of this parameterized network as an unbounded list of the
local states of the individual processes. The transition relation trans can then
be defined over these global states as follows:

trans([H|T], [H1|T1]) :- ltrans(H, in(Act), H1),

trans rest(T, out(Act), T1).

trans([H|T], [H1|T1]) :- ltrans(H, out(Act), H1),

trans rest(T, in(Act), T1).

trans([H|T], [H1|T]) :- ltrans(H, self(Act), H1).

trans([H|T], [H|T1]) :- trans(T, T1).

trans rest([S|T], A, [S1|T]) :- ltrans(S, A, S1).

trans rest([H|T], A, [H|T1]) :- trans rest(T, A, T1).

Thus, each process can perform an autonomous action (denoted in the above as
self(A)) or an input/output action (denoted as in(A)/out(A)) where matching
input and output actions synchronize. The predicate ltrans encodes the local
transition relation of each process. For the global transition relation trans, the
last clause recursively searches the global state representation until one of the
first three rules can be applied. The third clause allows any process to make
an autonomous action. The first and second clauses correspond to the scenario
where any two processes communicate with each other. In particular, the first
(second) clause of trans allows a process to make an in(A) (out(A)) action and
2 The proof obligation P0 ` p ⇒ q formally means: for all ground substitutions

θ we have p(X)θ ∈ M(P0) ⇒ q(X)θ ∈ M(P0) where M(P0) is the set of ground
atoms which are logical consequences of the first-order formulae represented by logic
program P0.

Automated Inductive Verification of Parameterized Protocols 31

invokes trans rest to recursively search for another process which makes the
corresponding out(A) (in(A)) action.

A safety property, denoted in CTL as AG ¬bad can be verified by proving
transition invariance. We prove that (1) a bad state is reachable only from a bad
state, and (2) none of the initial states satisfying gen are bad. This is shown by
establishing (1) bad dest ⇒ bad src, and (2) bad start ⇒ false where the
predicates bad dest, bad src and bad start are defined as:

bad dest(S, T) :- trans(S, T), bad(T).

bad src(S, T) :- trans(S, T), bad(S).

bad start(S) :- gen(X), bad(X).

4.2 Controlling the Proof Search

A skeleton of the proof search conducted by our prover is given below. Given a
predicate implication P0 ` p ⇒ q the prover proceeds as follows.

1. Repeatedly unfold the clauses of p and q according to an unfolding strategy
which is is designed to guarantee termination.

2. Apply folding steps to the unfolded clauses of p, q.
3. (a) Compare the transformed definitions of p and q to compute a finite set

{(p1, q1), . . . , (pk, qk)} s.t. proving
∧

1≤l≤k P0 ` pl ⇒ ql completes the proof
of P0 ` p ⇒ q (i.e. p ⇒ q can then be shown via our syntactic check).
(b) Prove P0 ` p1 ⇒ q1, . . . , P0 ` pk ⇒ qk via program transformations.

Since the proof of each predicate implication proceeds by induction (on the struc-
ture of their definition), nesting of the proof obligations P0 ` p1 ⇒ q1, . . . , P0 `
pk ⇒ qk within the proof of P0 ` p ⇒ q corresponds to nesting of the corre-
sponding induction proofs. Note that for the example in Figure 1, steps (1) and
(2) were sufficient to complete the proof and therefore step (3) did not result in
any nested proof obligations.

The above proof search skeleton forms the core of our automated prover
which has been implemented on top of the XSB logic programming system [29].
Note that the proof search skeleton is nondeterministic i.e. several unfolds or
several folds may be applicable at some step. For space considerations we omit
a full discussion on how a transformation step is selected among all applica-
ble transformations The interested reader is referred [27] (Chapter 6) for a de-
tailed discussion, including a description of how the unfolding strategy guaran-
tees termination. However, note that the prover allows the user to provide some
problem-specific information at the beginning of the proof, namely (i) Network
topology (linear, tree etc.) of the parameterized system, (ii) which predicates in
the program encode the safety property being verified. This user guidance en-
ables the prover to select the transformation steps in the proof attempt (which
then proceeds without any user interaction). Below we illustrate illustrate how
the user-provided information guides the prover’s proof search.

Network Topology. The communication pattern between the different con-
stituent processes of a parameterized network is called its network topology. To

32 Abhik Roychoudhury and I.V. Ramakrishnan

illustrate the role of network topology in our proof search let us suppose that we
are proving bad dest⇒ bad src (refer Section 4.1). In the proof of bad dest⇒
bad src, we first unfold and fold the clauses of bad dest and bad src. The
prover then compares these transformed clauses and detects new predicate im-
plications to be proved. In this final step, the prover exploits the knowledge of
the network topology to choose the new predicate implications. For example,
suppose the parameterized family being verified is a binary tree network whose
left and right subtrees do not communicate directly. Let the clauses of bad dest
and bad src after unfolding and folding be:

bad dest(f(root1,L1,R1), f(root2,L2,R2)) :- p(L1,L2), q(R1,R2).

bad src(f(root1,L1,R1), f(root2,L2,R2)) :- p′(L1, L2), q′(R1, R2).

then by default p ∧ q ⇒ p′ ∧ q′ needs to be proved to establish bad dest ⇒
bad src. Instead, the prover recognizes that p, p′ (q, q′) are predicates defined
over left (right) subtrees. Thus it partitions the proof obligation p ∧ q ⇒ p′ ∧ q′

into two separate obligations defined over the left and right subtrees (whose
transitions are independent of each other): p ⇒ p′ and q ⇒ q′. In other words,
knowledge of transition system is exploited by the prover to choose nested proof
obligations (as a heuristic for faster convergence of the proof attempt).

Predicates Encoding Temporal Property. By knowing which program
predicates encode the safety property, the prover avoids unfolding steps which
may disable deductive steps leading to a proof. To see how, note that the logic
program encoding of a verification problem for parameterized systems inherently
has a “producer-consumer” nature. For example to prove transition invariance,
we need to show bad dest ⇒ bad src (refer Section 4.1) where bad dest(S,
T) :- trans(S, T), bad(T). The system description predicate (trans) is the
producer, since by unfolding it produces instantiations for variable T. Suppose
by unfolding trans(S, T) we instantiate variable T to a term t representing
global states of the parameterized family. Now, by unfolding bad(t) we intend
to test whether bad holds in states represented by t. In other words, the property
description predicate is a consumer. Unfolding of bad(t) should consume the in-
stantiation t, rather than producing further instantiation via unification. Hence
our prover incorporates heuristics to prevent unfoldings of property description
predicates which result in instantiation of variables. Such unfolding steps can dis-
able deductive steps converging to a proof e.g. folding of conjunction of trans
and bad to bad dest. The user-provided information tells us which predicates
encode the safety property and enables us to identify these unfolding steps.

In general, to prove P0 ` p ⇒ q, we first repeatedly unfold the clauses of
p and q. Deductive steps like folding are applied subsequently. Therefore, it is
possible to apply finite sequence of unfolding steps P0 → . . . → Pi → . . . → Pn

s.t. a folding step applicable in program Pi which leads to a proof of P0 `
p ⇒ q is disabled in Pn. One way to prevent such disabling of deductive steps
is to check for applicable deductive steps ahead of unfolding steps. However,
this would add theorem proving overheads to model checking (model checking
is accomplished by unfolding). Our goal is to perform zero-overhead theorem

Automated Inductive Verification of Parameterized Protocols 33

proving, where deductive steps are never applied if model checking alone can
complete the verification task. The other solution is to incorporate heuristics
for identifying unfolding steps which disable deductive steps. This approach is
taken in our prover. The prover prevents any unfolding of a predicate encoding
temporal property which generates variable instantiations.

5 Case Studies and Experimental Results

In this section, we first illustrate the use of our prover in proving mutual ex-
clusion of the Java meta-locking algorithm [1]. Then, in section 5.2 we present
the experimental results obtained on parameterized cache coherence protocols,
including (a) single bus broadcast protocols e.g. Mesi, (b) single bus protocols
with global conditions e.g. Illinois, and (b) multiple bus hierarchical protocols.

5.1 Mutual Exclusion of Java Meta-Lock

In recent years, Java has gained popularity as a concurrent object oriented lan-
guage, and hence substantial research efforts have been directed to efficiently
implementing the different language features. In Java language, any object can
be synchronized upon by different threads via synchronized methods and syn-
chronized statements. Mutual exclusion in the access of an object is ensured
since a synchronized method first acquires a lock on the object, executes the
method and then releases the lock. To ensure fairness and efficiency in access-
ing any object, each object maintains some synchronization data. Typically this
synchronization data is a FIFO queue of the threads requesting the object. Note
that to ensure mutually exclusive access of an object, it is necessary to observe a
protocol while different threads access this synchronization data. The Java meta-
locking algorithm [1] solves this problem. It is a distributed algorithm which is
observed by each thread and any object for accessing the synchronization data of
that object. It is a time and space efficient scheme to ensure mutually exclusive
access of the synchronization data, thereby ensuring mutually exclusive access
of any object. Model checking has previously been used to verify instances of
the Java Meta-locking algorithm, obtained by fixing the number of threads [4].

The formal model of the algorithm consists of asynchronous parallel compo-
sition (in the sense of Milner’s CCS) of an object process, a hand-off process and
an arbitrary number of thread processes. To completely eliminate busy waiting
by any thread, the algorithm performs a race between a thread acquiring the
meta-lock and the thread releasing the meta-lock. The winner of this race is
determined by the hand-off process, which serves as an arbiter.

We model the object process without the synchronization data since we are
only interested in verifying mutually exclusive access of this data. Apart from the
synchronization data, the meta-locking algorithm implicitly maintains another
queue : the queue of threads currently contending for the meta-lock to access
the synchronization data. However, for verifying mutual exclusion we only model
the length of this queue. The local state of the object process therefore contains

34 Abhik Roychoudhury and I.V. Ramakrishnan

a natural number, the number of threads waiting for the meta-lock. This makes
the object an infinite state system.

The thread and the hand-off processes are finite state systems. A thread
synchronizes with the object to express its intention of acquiring/releasing the
meta-lock. A thread that faces no contention from other threads while acquir-
ing/releasing the meta-lock is said to execute the fast path. Otherwise, it executes
the slow path where it gets access to the meta-lock in a FIFO discipline. When
its turn comes, it is woken up by the hand-off process which receives acquisi-
tion/release requests from the acquiring/releasing threads.

We straightforwardly encoded the state representations and the transitions
in the formal model of the protocol as a logic program. The modeling of the
protocol took less than a week, with the help of a colleague who had previously
modeled it in a CCS-like language for model checking. A global state in the logic
program encoding is a 3-tuple (Th, Obj, H) where Th is an unbounded list of
thread states, Obj is a state of the object process (containing an unbounded
term representing a natural number) and H is a state of the hand-off process.

Our prover automatically proves transition invariance for a strengthening of
the mutual exclusion invariant (the mutual exclusion invariant states that < 2
threads own the meta-lock). This strengthening was done manually, by reasoning
about the local states of the hand-off and object processes. This is because the
mutual exclusion invariant is not preserved by every transition (even though
a state violating mutual exclusion is never reachable from the initial state of
the algorithm). Thus, to prove mutual exclusion by transition invariance the
invariant to be proved must be strengthened. Since our inductive prover cannot
strengthen induction hypothesis in a proof, the strengthening was done manually.
However, once the strengthened invariant is fed, the proof proceeds completely
automatically. The timings and the number of proof steps are reported in Table 1
and further discussed in next section.

Recall from section 4.1 that for transition invariance we need to show two
predicate implications bad start ⇒ false and bad src ⇒ bad dest. Since our
proof technique supports nested induction, our prover proves 39 predicate im-
plications (including these two) in the mutual exclusion proof of Java meta-lock.
The 37 other predicate implications are automatically discovered and proved by
our prover. The nesting depth of the inductive mutual exclusion proof is 3.

Table 1. Summary of Protocol Verification Results.

Protocol Invariant Time(secs) # Unfolding #Deductive

Meta-Lock #owner + #handout < 2 129.8 1981 311
Mesi #m + #e < 2 3.2 325 69

#m + #e = 0 ∨ #s = 0 2.9 308 63
Illinois #dirty < 2 35.7 2501 137
Berkeley RISC #dirty < 2 6.8 503 146
Tree-cache #bus with data < 2 9.9 178 18

Automated Inductive Verification of Parameterized Protocols 35

5.2 Experimental Results

Table 1 presents experimental results obtained using our prover: a summary of
the invariants proved along with the time taken, the number of unfolding steps
and the number of deductive steps (i.e. folding, and comparison of predicate
definitions) performed in constructing the proof. The total time involves time
taken by (a) unfolding steps (b) deductive steps, and (c) the time to invoke
nested proof obligations. All experiments reported here were conducted on a
Sun Ultra-Enterprise workstation with two 336 MHz CPUs and 2 GB of RAM.
In the table, we have used the following notational shorthand: #s denotes the
number of processes in local state s. Mesi and Berkeley RISC are single bus
broadcast protocols [3,11,12]. Illinois is a single bus cache coherence protocol
with global conditions which cannot be modeled as a broadcast protocol [8,23].
Tree-cache is a binary tree network which simulates the interactions between the
cache agents in a hierarchical cache coherence protocol [27].

The running times of our prover are slower than the times for verifying single
bus cache coherence protocols reported in [8]. Unlike [8], our prover implements
the proof search via meta-programming. It is feasible to implement our proof
search at the level of the underlying abstract machine thereby improving effi-
ciency. Moreover, note that the abstraction based technique of [8] is not suitable
for verifying parameterized tree networks.

The number of deductive steps in our proofs is consistently small compared
to the number of unfolding steps, since our proof search strategy applies deduc-
tive steps lazily. Due to its tree topology, the state representation of Tree-cache
has a different term structure. This results in a larger running time with fewer
transformation steps as compared to other cache coherence protocols. Finally,
the proof of Java meta-locking algorithm involves nested induction over both
control and data of the protocol. This increases the number of nested proof
obligations, and hence the running time.

6 Related Work and Conclusions

Formal verification of parameterized systems has been researched widely in the
last decade. Some of the well studied techniques include network invariants
[7,19,20,28] (where a finite state process invariant is synthesized), and use of gen-
eral purpose theorem provers e.g. PVS [22], ACL2 [17], Coq [14]. In the recent
past, a lot of activity has been directed towards developing automated techniques
for verifying (classes of) parameterized systems. These include identification of
classes for which parameterized system verification is decidable [9,10,13,15], and
application of model checking over rich languages [8,12,16,18].

The rich language model checking approach finitely represents the state space
and transition relation of a parameterized family via rich languages e.g. regular,
tree-regular languages for linear, tree networks. Note that our approach achieves
a different finite representation; we finitely represent infinite sets of states as
recursively defined logic program predicates. In comparison to the rich language
approach, our technique is not tied to specific classes of networks based on the
choice of the rich language. Thus we have verified parameterized networks of

36 Abhik Roychoudhury and I.V. Ramakrishnan

various topologies e.g. chain, ring, tree, complete graph, star networks. Moreover,
the rich language approach constructs proofs by state space traversal (uniform
proofs) whereas our proofs are inductive.

Our prover is a lightweight automated inductive theorem prover for con-
structing nested induction proofs. Note that in our approach, the induction
schema as well as the lemmas to be used in the inductive proof must be im-
plicit in the logic program itself. This is a limitation of our method. Besides,
our proof technique does not support strengthening of induction hypothesis in
an inductive proof. However, if the schema and the lemmas are implicit in the
logic program, our syntax based transformations uncover the induction schema
and reason about its different cases by uncovering the requisite lemmas.

As future work, we plan to integrate automated invariant strengthening
techniques [5] into our proof technique. This would involve developing a proof
methodology containing both program analysis (to strengthen invariants) and
program transformation (to inductively prove the invariants).

Acknowledgments

The authors would like to thank Samik Basu for his help in modeling the Java
meta-locking algorithm.

References

1. O. Agesen et al. An efficient meta-lock for implementing ubiquitous synchroniza-
tion. In ACM SIGPLAN International Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA), 1999. Technical report
available from http://www.sun.com/research/techrep/1999/abstract-76.html .

2. K. Apt and D. Kozen. Limits for automatic verification of finite-state systems.
Information Processing Letters, 15:307–309, 1986.

3. J. Archibald and J.-L. Baer. Cache coherence protocols: Evaluation using a multi-
processor simulation model. ACM Transactions on Computer Systems, 4, 1986.

4. S. Basu, S.A. Smolka, and O.R. Ward. Model checking the Java meta-locking
algorithm. In IEEE International Conference on the Engineering of Computer
Based Systems. IEEE Press, April 2000.

5. N. Bjorner, I.A. Browne, and Z. Manna. Automatic generation of invariants and
intermediate assertions. Theoretical Computer Science, 173(1):49–87, 1997.

6. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2), 1986.

7. E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks. ACM
Transactions on Programming Languages and Systems, 19(5), 1997.

8. G. Delzanno. Automatic verification of parameterized cache coherence protocols.
In Computer Aided Verification (CAV), LNCS 1855, 2000.

9. E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In ACM SIGPLAN
International Conference on Principles of Programming Languages (POPL), 1995.

10. E.A. Emerson and K.S. Namjoshi. Automated verification of parameterized syn-
chronous systems. In Computer Aided Verification (CAV), LNCS 1102, 1996.

11. E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic infinite
state systems. In IEEE Symposium on Logic in Computer Science (LICS), 1998.

http://www.sun.com/research/techrep/1999/abstract-76.html

Automated Inductive Verification of Parameterized Protocols 37

12. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
IEEE Symposium on Logic in Computer Science (LICS), 1999.

13. S. German and A. Sistla. Reasoning about systems with many processes. Journal
of the ACM, 39:675–735, 1992.

14. INRIA Rocquencourt, URL http://pauillac.inria.fr/coq/doc/main.html ,
Paris, France. The Coq Proof Assistant : Reference Manual, 1999.

15. C. N. Ip and D. L. Dill. Verifying systems with replicated components in Murϕ.
Formal Methods in System Design, 14(3), May 1999.

16. B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying
infinite-state systems. In International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), LNCS 1785, 2000.

17. M. Kaufmann, P. Manolis, and J.S. Moore. Computer-Aided Reasoning: An ap-
proach. Kluwer Academic, 2000.

18. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. In Computer Aided Verification (CAV),
LNCS 1254, 1997.

19. R.P. Kurshan and K. Mcmillan. A structural induction theorem for processes.
Information and Computation, 117:1–11, 1995.

20. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameter-
ized linear networks of processes. In ACM SIGPLAN International Conference on
Principles of Programming Languages (POPL), pages 346–357, 1997.

21. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In ACM SIGPLAN International Conference on
Principles of Programming Languages (POPL), 1985.

22. S. Owre, N. Shankar, and J. Rushby. PVS: A Prototype Verification System. In
International Conference on Automated Deduction (CADE), 1992.

23. F. Pong and M. Dubois. A new approach for the verification of cache coherence
protocols. IEEE Transacations on Parallel and Distributed Systems, 6(8), 1995.

24. J.P. Queille and J. Sifakis. Specification and verification of concurrent programs
in CESAR. In International Symposium on Programming, LNCS 137, 1982.

25. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I.V. Ramakrishnan,
and S. A. Smolka. Verification of parameterized systems using logic program trans-
formations. In International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), LNCS 1785, pages 172–187, 2000.

26. A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakr-
ishnan. A parameterized unfold/fold transformation framework for definite logic
programs. In International Conference on Principles and Practice of Declarative
Programming (PPDP), LNCS 1702, pages 396–413, 1999.

27. Abhik Roychoudhury. Program Transformations for Verifying Parameterized Sys-
tems. PhD thesis, State University of New York at Stony Brook, Available from
http://www.cs.sunysb.edu/~abhik/papers, 2000.

28. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In LNCS 407, 1989.

29. XSB. The XSB logic programming system v2.2, 2000. Available for downloading
from http://xsb.sourceforge.net/.

http://pauillac.inria.fr/coq/doc/main.html
http://www.cs.sunysb.edu/~abhik/papers

	Introduction
	Overview
	Program Transformations for Inductive Verification
	An Automated Prover for Parameterized Protocols
	System and Property Specification
	Controlling the Proof Search

	Case Studies and Experimental Results
	Mutual Exclusion of Java Meta-Lock
	Experimental Results

	Related Work and Conclusions

