Formalizing a JVML Verifier for Initialization
in a Theorem Prover

Yves Bertot

INRIA Sophia Antipolis
2004 Route des Lucioles

06902 Sophia Antipolis Cedex, France
Yves.Bertot@inria.fr

1 Introduction

The byte-code verifier is advertised as a key component of the security and
safety strategy for the Java language, making it possible to use and exchange
Java programs without fearing too much damage due to erroneous programs or
malignant program providers. As Java is likely to become one of the languages
used to embed programs in all kinds of appliances or computer-based applica-
tions, it becomes important to verify that the claim of safety is justified.

We worked on a type system proposed in [7] to enforce a discipline for object
initialization in the Java Virtual Machine Language and implemented it in the
Coq [B] proof and specification language. We first produced mechanically checked
proofs of the theorems in [7] and then we constructed a functional implemen-
tation of a byte-code verifier. We have a mechanical proof that this byte-code
verifier only accepts programs that have a safe behavior with respect to initial-
ization. Thanks to the extraction mechanism provided in Coq [17], we obtain a
program in CAML that can be directly executed on sample programs.

A safe behavior with respect to initialization means that the fields of any
object cannot be accessed before this object initialized. To represent this, the
authors of [[7] distinguish between uninitialized objects, created by a new instruc-
tion and initialized objects. Initialization is represented by an init instruction
that replaces an uninitialized object with a new initialized object. Access to fields
is represented abstractly by a use instruction, which operates only if the operand
is an initialized object. Checking that initialization is properly respected means
checking that use is never called with the main operand being an unitialized
object.

There are two parts in this work. The first part simply consists in the me-
chanical verifications of the claims appearing in [7]. This relies on a comparison
between operational semantics rules and typing rules. In terms of manpower in-
volved, this only required around three weeks of work. This shows that proof
tools are now powerful enough to be used to provide mechanical verifications of
theoretical ideas in programming language semantics (especially when semantic
descriptions are given as sets of inference rules).

The second part consists in producing a program, not described in [7], that
satisfies the requirements described there. To develop this program, we have

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 14-24] 2001.
© Springer-Verlag Berlin Heidelberg 2001



Formalizing a JVML Verifier for Initialization in a Theorem Prover 15

analyzed the various constraints that should be satisfied for each instruction
and how these constraints could be implemented using a unification algorithm.
In all, the experiments that the proof tool can also be used as a programming
tool, with the advantage that logical reasoning can be performed on program
units even before they are integrated in a completely functioning context.

This paper is a short abstract of a paper published as an INRIA research
report under the title A Coq formalization of a Type Checker for Object Initial-
ization in the Java Virtual Machine [2].

1.1 Related Work

Several teams around the world have been working on verifying formally that the
properties of the Java language and its implementation suite make it a reasonably
safe language. Some of the work done is based on pen-and-paper proofs that the
principles of the language are correct, see for instance [226//14].

Closer to our concerns are the teams that use mechanical tools to verify the
properties established about the formal descriptions of the language. A very ac-
tive team in this field is the Bali team at University of Munich who is working
on a comprehensive study of the Java language, its properties and its implemen-
tation [L5/13/19] using the Isabelle proof system [18]. Other work has been done
with the formal method B and the associated tools [3], at Kestrel Institute using
Specware [8]20], or in Nijmegen [9/10] using both PVS [16] and Isabelle.

2 Formalizing the Language and Type System

2.1 Data-Types

The formalization we studied is based on a very abstract and simplified descrip-
tion of the Java Virtual Machine language. The various data-types manipulated
in the programs are represented by abstract sets: ADDR for addresses in programs,
VAR for variable names, integer for numeral values, T for classes.

The type of classes being left abstract, the way objects of a given class are
constructed is also left abstract. We will actually rely on the minimal assump-
tions that there is a family of types representing the values in each class, such a
family is represented by a function from T to the type of data-types, written in
Coq as the following parameter to the specification.

Parameter object_value:T -> Set.

Since the objective of this study is initialization, there is a distinct family of sets
for uninitialized object of a given class:

Parameter uninitialized_value: T -> Set.

We also assume the existence of test equality functions for uninitialized objects.
With all this, we express that the set of values manipulated by the abstract

Java virtual machine is the disjoint sum of the set of integers, the set of object

values and the set of uninitialized object values, with the following definition:



16 Yves Bertot

Inductive value: Set :=
int_val: integer ->value
| obj: (t:T) (object_value t) ->value
| un: (t:T) (a:ADDR) (uninitialized_value t) ->value.

This inductive definition shows that a value can be in one of three cases, rep-
resented by three constructors. The first constructor, int val expresses that a
value can be an integer, the second constructor, obj expresses that a value can
be an initialized object in some class T, the third constructor, un, expresses that
a value can be an unitialized object for some class T, and that this value is also
tagged with an address. Note that this definition uses a feature called dependent
types: viewed as a function, the constructor obj takes a first argument t in T
and a second argument whose type depends on the first one: this type must be
object value T.

The formal description of the Java Virtual Machine language as used in [7]
boils down to a 10 constructor inductive type in the same manner. We named
this type jvmli.

2.2 Operational Semantics

In [7], the operational semantics are given as a set of inference rules which
describe the constraints that must hold between input and output data for each
possible instruction. We handle judgments of the form

P (pe f,s) = (pd, [, 5).

These judgments must be read as for program P, one step of execution starting
from the program counter pc, variable value description f, and stack s returns
the new program counter pc’, the new variable value description f’, and stack s'.
Stacks are simply represented as finite lists of objects of type value. to represent
memory, we use functions written f, f/, from variable names (type VAR) to values
(type value).

For instance, the language has an instruction load that fetches a value in
memory and places it on the stack. This is expressed with this inference rule:

Plpc] = load =
P <pC,f,5>—><pC+1,f,f[l']'3>

Special attention must be paid to the way initialization works. Initializing
an object means performing a side-effect on this object and all references to the
object should view this side-effect. Thus, if several references of the same object
have been copied in the memory then all these references should perceive the
effect of initialization.

This is expressed with two rules. First the new instruction always creates an
object that is different from all objects already present in memory (in this rule
A’ is a short notation for (uninitialized value o)) .

Plpdd=newo ac A’ Unused(a,f,s)
Pl—(pc,f,s>—><pc—|—1,f,a~8>



Formalizing a JVML Verifier for Initialization in a Theorem Prover 17

Second, all occurrences (i.e., references) of an object in memory are modified
when it is initialized (A is a short notation for object value o, [a//a]f is the
function that maps « to f(z) if f(z) # a and to o’ if f(z) = d/, and [a'/a]s is
the same stack as s except that instances of a have been replaced with a’).

Plpc] = init o a€ A7P° o € A Unused(d, f, s)
Pt <pC, f7 a- S> - <pC +1, [a//a]fv [d/a]s)

All these rules are easily expressed as constructors for inductive propositions,
that are a common features in many modern proof tools.

2.3 Type System

In [7] the authors propose a set of typing rules for jvmli programs. This type
system is based on the existence of a representation of all types for the stack
and the variables at all lines in the program. It handles judgments of the form

F,S,i P

meaning the type information for variables in F and for stacks in S is consis-
tent with line i of program P. The variable F actually represents a function over
addresses, such that F'(i) is a function over variable names, associating vari-
able names to types (we will write F; instead of F'(i)). Similarly S represents
a function over addresses, where S; is a stack of types. Consistency between
type information with the program expresses that the relations between types
of memory locations correspond to the actual instruction found at that address
in the program. It also involves relations between types at line ¢ at types at all
lines where the control will be transfered after execution of this instruction.

For instance, the typing rule for load expresses that the type information at
the line ¢ + 1 must indicate that some data has been added on the stack when
compared with the type information at line i.

P[i] = load x
Fin=F
Siv1 = Fi(z)-S;
i+ 1€ Dom(P)
F.Sik P

For new and init there are a few details that change with respect to the
operational semantics. While the operational semantics required that the object
added on top of the stack by new should be unused in the memory, the type
system also requires that the type corresponding to this data should be unused.
For init, the operational semantics requires that the new initialized value should
be unused but this premise has no counterpart in the typing rule. Still the typing
rule for init requires that all instances of the uninitialized type found on top
of the stack should be replaced by an initialized type. In these rules we use o to



18 Yves Bertot

denote the type of initialized objects and o; to denote the types of uninitialized
objects created at address 1.

Pli] =new o

Fi+1 =F; P[’L] =init o
Siy1 =0, S; Fiy1 = [0/0j]F;
g; ¢ Sl Sz =0; -«
Ve.Fi(z) # o; Siy1 =[o/0j]a
F,S,i+-P F,S,iP

A singularity of this description is that all inference rules have the same conclu-
sion, so that the proof procedures that usually handle these operational seman-
tics descriptions [4] failed to be useful in this study.

3 Consistency of the Type System

The main theorem in [7] is a soundness theorem, saying that once we have proved
that a program is well-typed this program will behave in a sound manner. Here
this decomposes in a one-step soundness theorem: if a program P is well-typed
at address i with respect to type information given by F' and S, then executing
this instruction from a state that is consistent with F' and S at address ¢ should
return a new state that is also consistent with F' and S at the address given by
the new program counter.

This proof of soundness is pretty easy to perform, since the operational se-
mantics rule and the typing rule are so close. However special attention must be
paid to the problem of initialization because of the use of substitution. At the
operational level, initialization works by substituting all instances of the unini-
tialized object with an initialized instance. At the type-system level, the same
operation is performed, but how are we going to ensure that exactly the same
location will be modified in both substitutions?

The solution to this problem is introduced in [7] under the form of a predicate
ConsistentInit which basically expresses that whenever two locations have the
same uninitialized type, then these locations contain the same value. In other
terms, although there may be several values with the same uninitialized type,
we can reason as if there was only one, because two different values will never
occur at the same time in memory. This ensures that the substitutions in the
operational rule for init and in the typing rule for init modify the memory in
a consistent way.

The theorem of soundness is then expressed not only in terms of type con-
sistency between the state and the type information at address i, but also
in terms of the ConsistentInit property. We also have to prove that this
ConsistentInit property is invariant through the execution of all instructions.
Proving this invariant represents a large part of the extra work imposed by ini-
tialization. A more detailed presentation of the proof is given in the extended
version of this paper [2]. We also proved a progress theorem that expresses that if
the state is coherent with some type information and the instruction at address



Formalizing a JVML Verifier for Initialization in a Theorem Prover 19

1 is not a halt instruction then execution can progress at address i. The two
theorems can be used to express that program execution for well-typed programs
progresses without errors until it reaches a halt statement.

4 Constructing an Effective Verifier

The type system does not correspond to an algorithm, since it assumes that
the values F' and S have been provided. An effective byte-code verifier has to
construct this information. According to the approach advocated in [7], one
should first produce this data, possibly using unsafe techniques, and then use the
type verification described in the previous section to verify that the program is
well-typed according to that information. The approach we study in this section
is different: we attempt to construct F and S is such a way that the program
is sure to be well-typed if the construction succeeds: it is no longer necessary to
check the program after the construction.

In [12], T. Nipkow advocates the construction of the type information as the
computation of a fix-point using Kildall’s algorithm [IT]. We have used a similar
technique, based on traversing the control flow graph of the program and finding
a least upper bound in a lattice. The lattice structure we have used is the lattice
structure that underlies unification algorithms and we have, in fact, re-used a
unification algorithm package that was already provided in the user libraries of
the proof system [21]. However, the general approach of Nipkow was not followed
faithfully, because the constraints we need to ensure are not completely stable
with respect to the order used as a basis for unification. As a result, we still need
to perform a verification pass after the data has been constructed.

4.1 Decomposing Typing Rules into Constraints

The typing constraints imposed for each instruction can be decomposed into
more primitive constraints. We have isolated 8 such kinds of constraints. To ex-
plain the semantics of these constraints, we have a concept of typing states, with
an order between typing states, <. Typing states are usually denoted with vari-
ables of the form ¢, ¢’. We have a function add constraint’ to add constraints.

1. (tc all vars i j). This one expresses that the types of variables at lines 4
and j have to be the same.

2. (tc stack i j). This one expresses that the types in stacks at lines ¢ and j
have to be the same.

3. (tc top ¢ 7). This one expresses that the type on top of the stack at line ¢
has to be the type 7.

4. (tc pop i 7). This one expresses that the stack at line j has one less element
than the stack at line ¢

5. (tc push ¢ j x). This one expresses that the stack at line j is the same as
the stack at line ¢ where a type has been added, this type being the type of
variable x at line :.



20

Yves Bertot

. (tc push type i j 7). This one is like the previous one except that the type

is given in the constraint.

. (tc store @ = j). This one expresses that the variables at line j have the

same type as at line ¢, except for the variable x, which receives at line j the
type that is on top of the stack at line 4, also the stack at line j is the same
as the stack at line 7 with the top element removed.

. (tc init i j o). This one expresses most of the specific constraints that

are required for the instruction init. Its semantics is more complicated to
describe and it is actually expressed with three properties. The first property
expresses that the stack must have an uninitialized type on top:

tc_init_stack_exists:
Vi, j, t, 0.
(add constraint’ (tc init i j o) t) = (Some t) =
(stack defined ¢ i) =
Fk, . Si(i) = op -«

The second property expresses that all variables that referred to that unini-
tialized type at line ¢ must be updated with a new initialized type at line j
(we define a function subst on functions from VAR to types to represent the
substitution operation).

tc_init_frame:
Vi, j, k. t, 0, a.
(add constraint’ (tc init ¢ j o) t) = (Some t) =
Si(i) =0 - a =
Fi(j) = (subst Fy(i) oy 0)

The third property expresses the same thing for stacks (we also have a func-
tion subst stk to represent the substitution operation on stack).

tc_init_stack:
Vi, j, k. t, 0, a.

(add constraint’ (tc init ¢ j o) t) = (Some t) =

St (’L) =0 =

S¢(j) = (subst stk a o, 0)

In these statements, the predicate (stack defined ¢ i) expresses that even
though the state ¢ may be incomplete, it is necessary that it already contains
enough information to know the height of the stack at line 3.

The constraints for each instruction are expressed by composing several primitive
constraints. For instance, the constraints for (load z) at line i are the following
ones:

(tc all vars ¢ (i + 1)) (tcpushi (1 +1) )

A special case is the instruction (new o), which creates an uninitialized value,

i.e., a value of type o; if we are at address 7. We associate to this instruction the
following constraints:

(tc all vars ¢ (i + 1)) (tc push type i (1 + 1) 0;)



Formalizing a JVML Verifier for Initialization in a Theorem Prover 21

These constraints do not express the requirement that the type of the uninitial-
ized object, o;, must not already be present in the memory at line ¢ (this was
expressed by the predicate Unused in the typing rule).

We use an order < between typing information states, such that ¢ < ¢’ means
that ¢’ contains strictly more information about types than t. In fact, this order
is simply the instantiation order as used in unification theory. All constraints,
except the constraint tc init are preserved through <. The requirements for
initialization and for creating a new unitialized object are not preserved, this
explains why we have to depart from Kildall’s algorithm.

4.2 Relying on Unification

We use unifiable terms to represent successive states of the verifier and unifiable
terms to represent constraints. Applying a constraint ¢ to a type state t is im-
plemented as applying the most general unifier of ¢ and ¢ to ¢ to obtain a new
state t’. Let us call cumulative constraints constraints of the kinds 1 to 7 in the
enumeration above. These are the constraints that are stable with respect to the
order <.

The fragments F' and S of the typing state actually are bi-dimensional arrays.
For F' the lines of the arrays are indexed with addresses, while the columns
correspond to variables. For S the lines are also indexed with addresses, and each
line gives the type of the stack at the corresponding address. When representing
these notions as unifiable terms, they can be encoded as lists of lists.

The unifiable terms are composed of variables and terms of the form

filty, .o tr)
for a certain number of function operators f;. These operators are as follows:

— fcons and fnil are the constructors for lists.

— fint is the operator for the type of integer values, (otype o) is used for
types of initialized objects of class o, and (utype o i) for types of unitialized
objects created at address 1.

The initial typing state is the pair of a variable, to express that nothing is known
about F in the beginning and a term of the form fcons(fnil, X) to express that
we know that the stack at line 0 is the empty stack and that we do not know
anything about the stack on other lines yet.

The unifiable terms corresponding to cumulative constraints are easily ex-
pressed as iterations of the basic function operators. To make this practical we
define a few functions to represent these iterations. For instance, we construct
the term

fcons(Xgy1,...fcons(Xyq,—1(fcons(t, Xp1j))...)

by a calling a function (place one list t j (k+1)). The third argument, k+ 1,
is used to shift the indices of the variables occurring at places 1, ..., j — 1 in
the list. This term represents a list where the j** element is constrained by t



22 Yves Bertot

and all other elements are left unconstrained (even the length of the list is not
constrained much, it only needs to be greater than j).

Similarly, (mk two list t1 to gap i k) will construct the list whose length
has to be greater than ¢ + gap and whose elements at ranks ¢ and ¢ 4+ gap are
constrained by t; and to respectively (here again the last argument, k is used to
shift the indices of all the extra variables inserted in the list).

We do not describe the encoding of all constraints, but we can already express
the encoding of the constraint (tc push 4 j ) (when j > i):

[(tcpushi jx)] =
(place one list (place one list Xy z k+2) i (k+ 2+ 2)),
(mk two list Xjy1 (fcons Xi Xpt1) (J—4) i (k+z+1i+2))

Proving that the constraints are faithfully represented by the unifiable terms
we associate to them requires that we show how functions like place one list
behave with respect to some interpretation functions, mostly based on some form
of nth function to return the n'* element of a list. For instance, if F,S represent
the typing state, knowing the type of variable x at line ¢ simply requires that we
compute the unifiable term given by (nth (nth F i) x).

4.3 A Two Pass Algorithm

The algorithm performs a first pass where all cumulative constraints are applied
to the initial typing state to obtain preliminary information about all types of
variables and stacks at all lines. The constraint tc init for initializations is
also applied, even though we know that it will be necessary to re-check that the
constraint is still satisfied for the final state.

The second pass does not modify the typing state anymore. It simply verifies
that the final typing state does satisfy the restrictive constraint imposed by
instructions new and init. For (new o) at line ¢, it means verifying that the type
o; occurs nowhere in the variables or the stack at line ¢. For (init o) it means
checking again that the unifiable term [(tc init ¢ (i + 1) o)] unifies with the
final state.

5 Conclusion

The extraction mechanism of Coq makes it possible to derive from this proof
development a program that will run on simple examples. This program is very
likely to be unpractical: no attention has been paid to the inherent complexity
of the verification mechanism. At every iteration we construct terms whose size
is proportional to the line number being verified: in this sense the algorithm
complexity is already sure to be more than quadratic.

Still, even if the exact representation of the typing state and constraints are
likely to change to obtain a more usable verifier, we believe that the decompo-
sition of its implementation and certification in the various phases presented in
this paper is likely to remain relevant. These phases are:



Formalizing a JVML Verifier for Initialization in a Theorem Prover 23

1. Proving the soundness of a type system that uses data not in the program,

2. Proving that a program can build the missing data and ensure the typing
constraints,

3. Setting aside the constraints that may not be preserved through the refine-
ments occurring each time a line is processed,

4. Traverse the program according to its control flow graph,

With a broader perspective, this development of a certified byte-code verifier
shows that very recent investigations into the semantics of programming lan-
guages can be completely mechanized using modern mechanical proof tools. The
work presented here took only two months to mechanize completely and the part
of this work that consisted in mechanizing the results found in [7] took between
one and two weeks. This is also an example of using a type-theory based proof
system as a programming language in the domain of program analysis tools, with
all the benefits of the expressive type system to facilitate low-error programming
and re-use of other programs and data-structures, as we did with the unification
algorithm of [2T]. Future development on this work will lead to more efficient,
but still certified, implementations of this algorithm and and integration in a
more complete implementation such as the one provided in [I.

References

1. G. Barthe, G. Dufay, L. Jakubiec, S. Melo de Sousa, and B. Serpette. A Formal
Executable Semantics of the JavaCard Platform. In D. Sands, editor, Proceedings
of ESOP’01, volume 2028 of LNCS, pages 302-319. Springer-Verlag, 2001.

2. Yves Bertot. A coq formalization of a type checker for object initialization in the
java virtual machine. Research Report RR-4047, INRIA, 2000.

3. Ludovic Casset and Jean-Louis Lanet. How to formally specify the java byte
code semantics using the b method. In proceedings of the Workshop on Formal
Techniques for Java Programs at ECOOP 99, June 1999.

4. Christina Cornes and Delphine Terrasse. Automatizing inversion of inductive pred-
icates in coq. In Types for Proofs and Programs, volume 1158 of Lecture Notes in
Computer Science. Springer-Verlag, 1995.

5. Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy, Catherine
Parent, Christine Paulin-Mohring, and Benjamin Werner. The Coq Proof Assistant
User’s Guide. INRIA, May 1993. Version 5.8.

6. Stephen N. Freund and John C. Mitchell. A Formal Framework for the Java Byte-
code Language and Verifier. In ACM Conference on Object-Oriented Programming:
Systems, Languages and Applications, November 1999.

7. Stephen N. Freund and John C. Mitchell. A Type System for Object Initialization
in the Java Bytecode Language. ACM Transactions on Programming Languages
and Systems, September 2000.

8. A. Goldberg. A specification of Java loading and bytecode verification. In Proceed-
ings of 5th ACM Conference on Computer and Communication Security, 1998.

9. Ulrich Hensel, Marieke Huisman, Bart Jacobs, and Hendrik Tews. Reasoning about
classes in object-oriented languages: Logical models and tools. In Proceedings of
European Symposium on Programming (ESOP ’98), volume 1381 of LNCS, pages
105-121. Springer-Verlag, March 1998.



24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Yves Bertot

Marieke Huisman. Java program verification in Higher-order logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

G. A. Kildall. A unified approach to global program optimization. In Proceedings
of the ACM Symposium on Principles of Programming Languages, pages 194-206,
1973.

Tobias Nipkow. Verified bytecode verifiers. unpublished, available at URL
http://www.in.tum.de/ "nipkow/pubs/bcv2.html, 2000.

Tobias Nipkow, David von Oheimb, and Cornelia Pusch. pJava: Embedding a
programming language in a theorem prover. In Friedrich L. Bauer and Ralf
Steinbriiggen, editors, Foundations of Secure Computation, volume 175 of NATO
Science Series F: Computer and Systems Sciences, pages 117-144. 10S Press, 2000.
R. O’Callahn. A simple, comprehensive type system for java bytecode subroutines.
In ACM Symposium on Principles of Programming Languages, pages 70-78. ACM
Press, 1999.

David von Oheimb and Tobias Nipkow. Machine checking the Java specification:
Proving type-safety. In Jim Alves-Foss, editor, Formal Syntax and Semantics of
Java, LNCS. Springer, 1998. To appear.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, feb 1995.

Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs in the
system Coq. Journal of Symbolic Computation, 15:607-640, 1993.

Lawrence C. Paulson and Tobias Nipkow. Isabelle : a generic theorem prover,
volume 828 of Lecture Notes in Computer Science. Springer-Verlag, 1994.
Cornelia Pusch. Proving the soundness of a Java bytecode verifier specification
in Isabelle/HOL. In W. Rance Cleaveland, editor, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’99), volume 1579 of LNCS, pages
p- 89-103. Springer-Verlag, 1999.

Z. Qian. A formal specification of Java Virtual machine instructions for objects,
methods, and subroutines. In Formal Syntax and Semantics of Java, volume 1523
of Lecture Notes in Computer Science. Springer-Verlag, 1999.

Joseph Rouyer. Développement de l'algorithme d’unification dans le calcul des
constructions avec types inductifs, September 1992. (In french), available at URL
http://coq.inria.fr/contribs/unification.html.

Raymie Stata and Martin Abadi. A type system for Java bytecode subroutines.
In Proceedings of the 25th Annual ACM Symposium on Principles of Programming
Languages, pages 149-160. ACM Press, January 1998.


http://www.in.tum.de/~nipkow/pubs/bcv2.html
http://coq.inria.fr/contribs/unification.html

	Introduction
	Related Work

	Formalizing the Language and Type System
	Data-Types
	Operational Semantics
	Type System

	Consistency of the Type System
	Constructing an Effective Verifier
	Decomposing Typing Rules into Constraints
	Relying on Unification
	A Two Pass Algorithm

	Conclusion

