
An Algorithm for Finding Three Dimensional
Symmetry in Trees ?

Seok-Hee Hong and Peter Eades

Basser Department of Computer Science, University of Sydney, Australia.
{shhong, peter}@cs.usyd.edu.au

Abstract. This paper presents a model for drawing trees symmetrically
in three dimensions and a linear time algorithm for finding maximum
number of three dimensional symmetries in trees.

1 Introduction

Symmetry is one of the most important aesthetic criteria for Graph Drawing.
Drawings of graphs in Graph Theory textbooks are often symmetric, because
the symmetry clearly reveals the structure of the graph.

However, previous work on symmetric graph drawing has only focused on
two dimensions. The problem of determining whether a given graph can be
drawn symmetrically is NP-complete in general [10]. Heuristics for symmetric
drawings of general graphs have been suggested [4]. For restricted classes of
graphs, there are polynomial time algorithms: Manning presents algorithms for
constructing symmetric drawings of trees, outerplanar graphs and embedded
planar graphs [8,9,10]; Hong gives algorithms for finding maximum number of
symmetries in series-parallel digraphs and planar graphs [5,6].

In this paper, we extend symmetric graph drawing into three dimensions.
Symmetry in three dimensions is much richer than that in two dimensions. For
example, a maximal symmetric drawing of a tree in two dimensions is in Figure 1
(a), showing 12 symmetries. However, the maximal symmetric drawing of the
same tree in three dimensions shows 48 symmetries, as in Figure 1 (b). In fact,
using more complex examples, we can prove the following theorem.

Theorem 1. For each integer n ≥ 10 there is a tree T with n nodes such that
T has no symmetric drawing in two dimensions, but has a drawing in three
dimensions that displays 4bn−6

8 c + 2 symmetries. 1

This paper is organized as follows. In the next section, we give a model for
drawing graphs symmetrically in three dimensions. The main results of the paper
? This research has been supported by a Postdoctoral Fellowship from the

Korean Science and Engineering Foundation and a grant from the Austra-
lian Research Council. Animated drawings are available from S. Hong at
http://www.cs.usyd.edu.au/@shhong/research3.htm.

1 In this extended abstract, proofs are omitted.

J. Marks (Ed.): GD 2000, LNCS 1984, pp. 360–371, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

An Algorithm for Finding Three Dimensional Symmetry in Trees 361

(c)(b)(a)

Fig. 1. Symmetric drawings of trees in two and three dimensions.

are in Section 3: here we present an algorithm for finding maximum number of
symmetries of trees in three dimensions. A significant contribution of Section 3
is the introduction of a new data structure called the “Isomorphism Class Tree”;
this structure is critical for the efficiency of the algorithm. A simple drawing
algorithm is briefly described in Section 4. Section 5 concludes.

2 Symmetric Graph Drawing in Three Dimensions

In this section, we first review the model for symmetric graph drawing in two
dimensions. To explain symmetry in three dimensions, we review some termino-
logy from geometric symmetry and group theory [2,7,11]. Finally describe our
new symmetry model in three dimensions.

2.1 Symmetric Graph Drawing in Two Dimensions

A symmetry of a two dimensional figure is an isometry of the plane that fixes the
figure. There are two types of two dimensional symmetry, rotational symmetry
and reflectional (or axial) symmetry. Rotational symmetry is a rotation about
a point and reflectional symmetry is a reflection in an axis.

Symmetry in graph drawing is closely related to automorphisms of graphs:
a symmetry of a graph drawing induces an automorphism of the graph. In this
case, we say that the drawing displays the automorphism. If an automorphism
is displayed as a symmetry in a drawing of the graph, then it is a geometric
automorphism. The most critical part of the problem of drawing a graph sym-
metrically is to find a large group of geometric automorphisms. This formal
model for symmetric drawing in two dimensions was introduced by a number of
authors [3,5,6,8,9,10].

362 S.-H. Hong and P. Eades

2.2 Symmetries in Three Dimensions

Symmetry in three dimensions is richer and more complex than symmetry in
two dimensions. The types of symmetry in three dimensions can be roughly
classified as direct symmetry and indirect symmetry. These are further refined
as rotation, reflection, inversion and rotary reflection (or rotary inversion) [7,
11]. The difference from two dimensions is that a rotational symmetry in three
dimensions is a rotation about an axis and a reflectional symmetry in three
dimensions is a reflection in a plane. Inversion (or central inversion) is a reflection
in a point. Rotary reflection (inversion) is a composition of a rotation and a
reflection (inversion).

A finite rotation group in three dimensions is one of following three types. A
cyclic group (Cn), a dihedral group (Dn) and the rotation group of one of the
Platonic solids [2,11]. There are only five regular Platonic solids, the tetrahedron,
the cube, the octahedron, the dodecahedron and the icosahedron.

There are many types of full symmetry groups of a finite object in three di-
mensions. The complete list of all possible symmetry groups in three dimensions
can be found in [2,7,11]. However, all are variations on just three types: pyra-
mids, prisms, and Platonic solids. It can be shown that for the case of trees, a
maximum size three dimensional symmetry group is one of three types: a regu-
lar pyramid configuration, a regular prism configuration, and the Platonic solids
configuration.

A regular pyramid is a pyramid with a regular k-gon as its base. There is only
one k-fold rotation axis, passing through the apex and the center of its base.
There are k rotational symmetries, each of which is a rotation of 2πi/k, i =
0, 1, . . . , k − 1. Also there are k reflectional symmetries in reflection planes, each
containing the rotation axis. In total, the regular pyramid has 2k symmetries.

A regular prism has a regular k-gon as its top and bottom face. There are
k+1 rotation axes and they can be divided into two classes. The first one, called
the principal axis, is a k-fold rotation axis which passes through the centers
of the two k-gon faces. The second class, of secondary axes, consists of k 2-
fold rotation axes which lie in a plane perpendicular to the principal axis. The
number of rotational symmetries is 2k. Also, there are k reflection planes, each
containing the principal axis, and another reflection plane perpendicular to the
principal axis. Further it has k − 1 rotary reflections. If k is even, then they
are the same as rotary inversions including the central inversion. In total, the
regular prism has 4k symmetries.

The tetrahedron has four 3-fold rotation axes and three 2-fold rotation axes.
It has 12 rotational symmetries and in total 24 symmetries. The octahedron has
three 4-fold rotation axes, four 3-fold axes, and six 2-fold rotation axes. It has
24 rotational symmetries and a full symmetry group of size 48. The icosahedron
has six 5-fold rotation axes, ten 3-fold rotation axes, and fifteen 2-fold rotation
axes. It has 60 rotational symmetries and a full symmetry group of size 120.
Note that the cube and the octahedron are dual solids, and the dodecahedron
and the icosahedron are dual. For details, see [2,7,11].

An Algorithm for Finding Three Dimensional Symmetry in Trees 363

2.3 Symmetric Graph Drawing in Three Dimensions

A symmetry of a three dimensional graph drawing induces an automorphism of
the graph, and this automorphism is displayed by the symmetry. We say that
the automorphism is a three dimensional symmetry of the graph.

To draw a graph symmetrically in three dimensions, there are two steps: first
find the three dimensional symmetries, then construct a drawing which displays
these symmetries. The first step is the more difficult; given the three dimensional
symmetries, the drawing is easy to construct. This paper concentrates on the
first step.

For the purpose of drawing graphs symmetrically, we require a graph drawing
to satisfy three non-degeneracy conditions: no two vertices are located at the
same point, no two edges overlap (they may intersect at a point), and no vertex
lies on an edge with which it is not incident.

Now we are ready to find three dimensional symmetry in trees. In the next
section, we present an algorithm for finding maximum number of symmetries of
trees in three dimensions.

3 Symmetry Finding Algorithm

In this section we describe an algorithm for finding three dimensional symmetry
in trees.

The center of a tree is a vertex c such that the maximum distance between
c and any leaf is minimized. The algorithm treats the input tree as a rooted
tree, rooted at a center. Every tree has either one center or a set of two adjacent
centers; however, for this algorithm, we need a single center and if there are two
centers, then we add a new vertex on the edge joining the two centers to make
one center. The center of a tree T is fixed by every automorphism of T and thus
every symmetry of a drawing of T fixes the location of the center.

The basic idea of the symmetry finding algorithm is to construct all pos-
sible symmetric configurations and then find the configuration which has the
maximum number of symmetries. To construct the symmetric configurations,
we place the center of the input tree at the apex of a pyramid, or at the centroid
of a prism and the Platonic solids. Then we place each subtree attached to the
center to form a symmetric configuration.

The algorithm computes an auxiliary tree called the Isomorphism Class Tree
(ICT). This tree is a fundamental structure defining the isomorphisms between
subtrees in the input tree. Once the ICT has been computed, we use separate
subroutines to find the symmetries in the pyramid, prism, and the Platonic solids
configurations. These subroutines use the data stored at the root and the first
level of the ICT. Thus, the overall algorithm can be divided into four steps, as
follows.

Algorithm 3DSymmetry Tree
Input: A tree T .
Output: A maximum size group of three dimensional symmetries of T .

364 S.-H. Hong and P. Eades

1. Find the center of T and root T at the center.
2. Construct the Isomorphism Class Tree (ICT) of T .
3. Find symmetries of each type.

a) Construct a pyramid configuration.
b) Construct a prism configuration.
c) Construct Platonic solids configuration.

4. Output the group of the configuration which has maximum size.

In Section 3.1, we define the ICT and describe an algorithm to construct it.
Steps 3 (a), (b) and (c) are described in Section 3.2, 3.3 and 3.4. The following
theorem summarises the results.

Theorem 2. Algorithm 3DSymmetry Tree computes a maximum size three di-
mensional symmetry group of a tree in linear time.

3.1 The Isomorphism Class Tree

Roughly speaking, the Isomorphism Class Tree (ICT) of a tree T represents the
isomorphism classes of subtrees of T , some relationships between these classes,
the size of each class, and the sizes of the rotational symmetry groups of the
subtrees. Before giving the formal definition of the ICT, first we explain why it
is needed. As an example, we consider the pyramid configuration, because it is
simplest.

Let c be the center of T . As mentioned above, we root T at c. Deleting
c and all its incident edges results in a collection of rooted disjoint subtrees
T1, T2, . . . , Tm. Each Ti is rooted at the vertex ci that was adjacent to the center.
Using a rooted tree isomorphism algorithm [1] we can partition the Ti into rooted
isomorphism classes I1, I2, . . . , Ik. That is, if Ti and Tj are isomorphic subtrees,
then they belong to the same isomorphism class. Let ni =| Ii | and g be the
greatest common divisor (gcd) of all ni. Then we can construct a pyramid with
a g-fold rotation axis by placing the center at the apex and distributing the
subtrees in the reflection planes, each containing a side edge of the pyramid (See
Figure 3 (a)). It is clear that for each divisor j of g, there is a pyramid drawing
which displays j rotational symmetries.

However, other symmetries are possible. We can choose one subtree Tj from
Ii and place it such that the edge (c, cj) is on the rotation axis as in Fi-
gure 3 (b). Note that in this case, the tree Tj must be fixed by a rotational
symmetry. Thus the symmetry group of the pyramid is the intersection of the
two symmetry groups: one of Tj , and the other which permutes the remaining
subtrees T1, T2, . . . , Tj−1, Tj+1, . . . , Tm. The size of this group is a divisor of
gcd(e, n1, n2, . . . , ni − 1, . . . , nk) where e is the size of a rotational symmetry
group of Tj .

Suppose that Li is the set of sizes of rotational symmetry groups of Tj , and
Gi is the set of divisors of gcd(n1, n2, . . . , ni − 1, . . . , nk). Using this notation,
we can compute the set L of sizes of the rotational symmetry groups (in the
pyramid configuration) for T as follows.

An Algorithm for Finding Three Dimensional Symmetry in Trees 365

Algorithm ComputeL
Input: The sizes n1, n2, . . . , nk of the isomorphism classes of the subtrees
at node u.
Output: The set L of sizes of rotational symmetries of the subtree rooted at
u.

1. L = the set of divisors of gcd(n1, n2, . . . , nk).
2. for i = 1 to k do

a) Compute Gi = the set of divisors of gcd(n1, n2, . . . , ni − 1, . . . , nk).
b) Add Li ∩ Gi to L.

This algorithm requires the computation of Li for i = 1, 2, . . . , k; in princi-
ple, this can be computed recursively. In practice it is more efficient to use the
Isomorphism Class Tree (ICT), defined as follows.

Each node in the ICT represents an isomorphism class. Suppose that c is the
center of a tree T and I1, I2, . . . , Ik are the rooted isomorphism classes of the
rooted subtrees T1, T2, . . . , Tm of c. The root node r of the ICT represents the
whole tree T . The children u1, u2, . . . , uk of r represent the isomorphism classes
I1, I2, . . . , Ik respectively. Suppose that Tj ∈ Ii and cj is the root of Tj . We can
recursively decompose Tj into subtrees Tj1 , Tj2 , . . . , Tjp by deleting cj and then
divide them into isomorphism classes Ii1 , Ii2 , . . . , Iiq . Then ui has ui1 , ui2 , . . . , uiq
as its children in the ICT. The ICT can be recursively constructed in this way
until a subtree becomes a node. Figure 2 shows an example of the ICT.

(a) (b)

Fig. 2. (a) a tree T (b) The Isomorphism Class Tree (ICT) of T.

Suppose that v is a node in the ICT, representing an isomorphism class Iv
and suppose that Tj ∈ Iv. We associate two values with v: the integer nv = |Iv|
and the set Lv of sizes of the rotational symmetries of Tj . These two values are
useful in finding the three dimensional symmetries of a tree.

Next we consider algorithms for constructing the ICT and its associated
values. Using a rooted tree isomorphism algorithm [1], it is simple to construct
the ICT and each nv in linear time. However, we need an algorithm to compute
Lv of each v. This can be computed by applying ComputeL in a bottom up

366 S.-H. Hong and P. Eades

approach on the ICT. However, a direct implementation of ComputeL may be
expensive; we now show how to do it in linear time. Suppose that u is a node
of T and I1, I2, . . . , Ik are the rooted isomorphism classes of the rooted subtrees
T1, T2, . . . , Tm of u. We want to implement ComputeL at the node v corresponding
to u in time O(m). This can be done as follows.

We use a bit array to represent Gi, that is, Gi[p] = 1 if and only if p is a
divisor of each of n1, n2, . . . , ni − 1, . . ., and nk. Also we represent Li as a bit
array: if Tj ∈ Ii has a drawing which displays p rotations, then Li[p] = 1 and
Li[p] = 0 otherwise. Note that if Li[p] = 1, then Li[q] = 1 for all divisors q of p.
The output L of ComputeL can be represented in the same way. Then to compute
Gi ∩ Li and add it to L, we take the bitwise AND of Li and Gi, and then the
bitwise OR with L; this can be done in time O(min(max(Gi), max(Li))).

Since gcd(n1, n2, . . . , nk) ≤ min(n1, n2, . . . , nk), Step 1 of ComputeL can be
implemented in time O(k min(n1, n2, . . . , nk)), which is O(m).

For Step 2, we consider two cases.

– For all p, np > 1. In this case,

gcd(n1, n2, . . . , ni − 1, . . . , nk) ≤ min(n1, n2, . . . , ni − 1, . . . , nk). (1)

Thus max(Gi) ≤ min(n1, n2, . . . , nk). It can be deduced that both parts of
step 2 can be implemented in time O(k min(n1, n2, . . . , nk)), which is O(m).

– For some p, np = 1. In this case, the inequality (1) does not hold. However,
for i 6= p, Gi = {1}; thus we only need to execute steps 2(a) and 2(b) for
the single case i = p. Both Step 2(a) and Step 2(b) take time O(max(Gp)),
which is O(max(n1, n2, . . . , np−1, np+1, . . . , nk)), which is O(m).

It follows that ComputeL can be implemented in time O(m), and thus the
whole of the ICT, including each Lv, can be computed in linear time.

The following sections describe steps 3(a), 3(b), and 3(c) of 3DSymmetry Tree
in turn. These algorithms use the ICT; in fact, they only consider the root r and
its children ui (together with ni and Li) in the ICT.

3.2 Pyramid Configuration

In this section, we give an algorithm for finding all possible rotational symmetries
in the pyramid configuration. The basic idea is to construct a pyramid-type
drawing of a tree by placing the center of the tree at the apex of a pyramid, some
fixed subtrees about the rotation axis, and k isomorphic subtrees in the reflection
planes that contain the side edges of the pyramid. The resulting drawing has the
same symmetry group of the k-gon based pyramid.

The set Lr at the root of the ICT contains the sizes of rotational symmetry
groups which fix at most one subtree. However, there is another way of construc-
ting symmetric drawings of trees by placing another subtree on the rotation axis:
we can place two possibly different subtrees on the rotation axis, if the symmetry
groups of the fixed subtrees are appropriate.

An Algorithm for Finding Three Dimensional Symmetry in Trees 367

(b)(a) (c)

Fig. 3. The pyramid configuration with different number of fixed subtrees.

For example, Figure 3 (a) shows the pyramid with no fixed subtree and
Figure 3 (b) shows the pyramid with one fixed subtree. Figure 3 (c) shows the
pyramid with two fixed subtrees.

The pyramid algorithm mainly depends on the number of fixed subtrees on
the rotation axis. This is at most two, as described in the following Lemma.

Lemma 1. Suppose that T is a tree rooted at the center c of T . Let T1, T2, . . . ,
Tm be the rooted subtrees of c. In a pyramid configuration, there are at most two
fixed subtrees Ti and Tj on the rotation axis.

From Lemma 1 one can derive the following theorem, which forms the basis
of the algorithm.

Theorem 3. Suppose that T is a tree, r is the root node of the ICT of T , and
u1, u2, . . . , uk are the children of r in the ICT. Then:

1. If g is the size of a rotation group in the pyramid configuration, then g is a
divisor of gcd(n1, n2, . . . , nk).

2. If there is one fixed subtree Tj, then the rotation group of the pyramid is the
intersection of the rotation group of Tj and a rotation group of the remaining
Ti (i = 1, 2, . . . , m, i 6= j). Suppose that up represents the isomorphism class
Ip for which Tj ∈ Ip, and Gp is the set of divisors of gcd(n1, n2, . . . , np −
1, . . . , nk). Then the intersection is Gp ∩ Lp.

3. If there are two isomorphic fixed subtrees Ti and Tj, then the rotation group
of the pyramid is the intersection of the rotation group of Ti (or Tj) and the
rotation group of the remaining T` (` = 1, 2, . . . , m, ` 6= i, j). Suppose that
up represent the isomorphism class Ip to which Ti and Tj belong, and G′

p is
the set of divisors of gcd(n1, n2, . . . , np− 2, . . . , nk). Then the intersection is
G′
p ∩ Lp.

4. If there are two nonisomorphic fixed subtrees Ti and Tj, then the rota-
tion group of the pyramid is the intersection of the rotation group of Ti,
the rotation group of Tj and the rotation group of the remaining T` (` =
1, 2, . . . , m, ` 6= i, j). Suppose that up (uq) represents the isomorphism class

368 S.-H. Hong and P. Eades

Ip (Iq) to which Ti (Tj) belong, and Gpq is the set of divisors of gcd(n1, n2,
. . . , np − 1, . . . , nq − 1, . . . , nk). Then the intersection is Gpq ∩ Lp ∩ Lq.

A direct implementation based on Theorem 3 may be computationally expen-
sive. To reduce the time complexity, we use an approach based on trial division.
We test candidate sizes g of the rotation group. First we compute the remainder
ri of the division of ni by g. There are four cases, corresponding to the four parts
of Theorem 3:

1. If all ri = 0 for all i, then g is the size of a rotation group, with no fixed
subtree.

2. Suppose that there is only one p such that rp = 1 and all the others are 0;
further suppose that g ∈ Lp. Then there is a rotation of size g, with one
fixed subtree.

3. Suppose that there is only one p such that rp = 2 and all the others are 0;
further suppose that g ∈ Lp. Then there is a rotation of size g, with two
isomorphic fixed subtrees.

4. Finally, suppose that there are only two rp and rq which are 1, and all other
are 0; further suppose that g ∈ Lp ∩ Lq. Then there is a rotation of size g,
with two nonisomorphic fixed subtrees.

If none of the four cases above hold, then g is not the size of a rotation group.
Next we need to compute the intersection of the possible candidate g and

the rotation group of the fixed subtrees (Lp or Lq). We can use the same bit
representation which was used for Lv in the ICT as in the previous section.
Each candidate g is represented by a bit array G in a similar fashion. Again,
the intersections are computed by a bitwise AND, but in this case there may
be more than two vectors involved (when there are two candidates, as in item 4
above).

Now we present an algorithm to find the symmetries in a pyramid configu-
ration.

Algorithm Pyramid
(1) For each candidate g do

(1.1) Compute the remainder ri of ni divided by g, for 1 ≤ i ≤ k.
(1.2) Compute the set G of divisors of g.
(1.3) Compute the set L of sizes of all rotational symmetry groups:

(1.3.1) If ri = 0 for 1 ≤ i ≤ k, then add G to L.
(1.3.2) If rp = 1, and ri = 0 for i 6= p, then add G ∩ Lp to L.
(1.3.3) If rp = 2 and ri = 0 for i 6= p, then add G ∩ Lp to L.
(1.3.4) If rp = 1, rq = 1 and ri = 0 for i 6= p, q, then add G ∩ Lp ∩ Lq to L.

(2) Return the maximum element of L.

An analysis similar to that used in the previous section shows that Pyramid
can be implemented in linear time. Note that the output of Pyramid is the
maximum number of rotational symmetries in the pyramid configuration; the
maximum size of a symmetry group in the pyramid configuration is twice as big.

An Algorithm for Finding Three Dimensional Symmetry in Trees 369

3.3 Prism Configuration

A tree drawn in a prism configuration has at most three types of rotation axes
for fixing subtrees, and the number of fixed subtrees can be larger than with the
pyramid configuration. This is described in the following Lemma.

Lemma 2. Suppose that T is a tree rooted at the center c of T . Let T1, T2, . . . ,
Tm be rooted subtrees of c. In a regular k-gon prism configuration, there are zero
or two fixed isomorphic subtrees on the k-fold rotation axis. Also, there are at
most two types of k fixed isomorphic subtrees on the secondary axes.

For example, Figure 4 (a) shows the prism with no fixed subtree and Figure 4
(b) shows the prism with fixed subtrees on the principal axis. Figure 4 (c) shows
the prism with fixed subtrees on the principal and the secondary axes.

(b) (c)(a)

Fig. 4. The prism configuration with different number of fixed subtrees.

From Lemma 2 we can derive the following theorem, which forms the basis
of the prism algorithm.

Theorem 4. Suppose that T is a tree and the ICT is the Isomorphism Class
Tree of T . Suppose that r is the root node of the ICT and u1, u2, . . . , uk are the
children of r in the ICT. Each ui has ni and Li. Suppose that g is the size of
the principal rotation axis of the prism configuration. Let ri be the remainder of
each ni divided by g and mi be the quotient of ni divided by g. Then g satisfies
both of the following conditions.

1. At most two mi are odd and 2 ∈ Li.
2. At most one ri is 2 and g ∈ Li.

Using theorem 4, one can construct a linear time algorithm, similar to Pyra-
mid, to find the maximum number of rotational symmetries in a prism configura-
tion. We omit this algorithm. Note that maximum number of symmetries in the
prism configuration is four times as big as the maximum number of rotational
symmetries in the prism configuration.

370 S.-H. Hong and P. Eades

3.4 Platonic Solids Configuration

The Platonic solids have many rotation axes. However, the symmetry groups of
the Platonic solids are fixed, and we only need to test whether we can construct
a three dimensional drawing of a tree which has the same symmetry group as one
of the Platonic solids. Using the similar method in the previous section, we can
test this in a relatively simple way. For an example, we consider the cube. The
number of the fixed subtrees on each axis is described in the following Lemma.

Lemma 3. Suppose that T is a tree rooted at the center c of T . Let T1, T2, . . . ,
Tm be rooted subtrees of c. In the cube configuration, there are either zero or six
fixed isomorphic subtrees on the 4-fold rotation axes. Also there are either zero
or eight fixed isomorphic subtrees on the 3-fold rotation axes and either zero or
twelve fixed isomorphic subtrees on the 2-fold rotation axes.

For example, Figure 1 (c) shows the fixed subtree on the 4-fold axes of the
cube configuration. From Lemma 3 we can derive the following theorem.

Theorem 5. Suppose that T is a tree and the ICT is the Isomorphism Class
Tree of T . Suppose that r is the root node of the ICT and u1, u2, . . . , uk are the
children of r in the ICT. Each ui has ni and Li. Let ri be the remainder of each
ni divided by 24. Then, if each ri and Li satisfies one of the following conditions,
T has the same symmetry group as the cube.

1. At most one ri is 6 and 4 ∈ Li and at most one rj is 8 and 3 ∈ Lj and at
most one rk is 12 and 2 ∈ Lk.

2. At most one ri is 14 and 4, 3 ∈ Li and at most one rj is 12 and 2 ∈ Lj.
3. At most one ri is 18 and 4, 2 ∈ Li and at most one rj is 8 and 3 ∈ Lj.
4. At most one ri is 20 and 3, 2 ∈ Li and at most one rj is 6 and 4 ∈ Lj.
5. At most one ri is 2 and 4, 3, 2 ∈ Li.

Theorem 5 can be used to construct a linear time algorithm to test whether
a tree has the same symmetry group as the cube. Similar results can be used to
construct algorithms to test whether a tree has the same symmetry group as the
icosahedron and the tetrahedron. We omit these algorithms.

4 Drawing Algorithm

Given a tree T , and a group Γ of three dimensional symmetries of T , it is
straightforward to construct a straight-line drawing of T which displays Γ .

We draw the center of the tree at the origin. Non-fixed subtrees of the center
are drawn in reflection planes through the origin, in such a way that the drawings
of isomorphic subtrees are congruent. Fixed subtrees are drawn recursively. By
assigning disjoint areas of the reflection planes to different subtrees, one can
ensure planarity of the drawing.

An Algorithm for Finding Three Dimensional Symmetry in Trees 371

5 Conclusion

This paper presents a linear time algorithm to construct maximally symmetric
drawings of trees in three dimensions. These symmetries are symmetries of the
whole drawing. It is also possible to extend this work to display symmetries
of part of the drawing by providing a model and algorithms for such “partial
symmetries” in three dimensions.

As further work, we would like to draw planar graphs symmetrically in three
dimensions. Heuristics for drawing general graphs symmetrically in three dimen-
sions remains as a challenge.

References

1. A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, 1974.

2. M. A. Armstrong, Groups and Symmetry, Springer-Verlag, 1988.
3. P. Eades and X. Lin, Spring Algorithms and Symmetry, Computing and Combi-

natorics, Springer Lecture Notes in Computer Science 1276, (Ed. Jiang and Lee),
pp. 202-211.

4. H. Fraysseix, An Heuristic for Graph Symmetry Detection, Graph Drawing’99,
Lecture Notes in Computer Science 1731, (Ed. J. Kratochvil), pp. 276-285, Springer
Verlag, 1999.

5. S. Hong, P. Eades, A. Quigley and S. Lee, Drawing Algorithms for Series-Parallel
Digraphs in Two and Three Dimensions, In S. Whitesides, editor, Graph Dra-
wing (Proc. GD’98), vol. 1547 of Lecture Notes in Computer Science, pp. 198-209,
Springer Verlag, 1998.

6. S. Hong, P. Eades and S. Lee, An Algorithm for Finding Geometric Automor-
phisms in Planar Graphs, Algorithms and Computation, Lecture Notes in Com-
puter Science 1533, (Ed. Chwa and Ibarra), pp. 277-286, Springer Verlag, 1998.

7. E. H. Lockwood and R. H. Macmillan, Geometric Symmetry, Cambridge University
Press, 1978.

8. J. Manning and M. J. Atallah, Fast Detection and Display of Symmetry in Trees,
Congressus Numerantium, 64, pp. 159-169, 1988.

9. J. Manning and M. J. Atallah, Fast Detection and Display of Symmetry in Outer-
planar Graphs, Discrete Applied Mathematics, 39, pp. 13-35, 1992.

10. J. Manning, Geometric Symmetry in Graphs, Ph.D. Thesis, Purdue Univ., 1990.
11. G. E. Martin, Transformation Geometry, an Introduction to Symmetry, Springer,

New York, 1982.

	An Algorithm for Finding Three Dimensional Symmetry in Trees
	Introduction
	Symmetric Graph Drawing in Three Dimensions
	Symmetric Graph Drawing in Two Dimensions
	Symmetries in Three Dimensions
	Symmetric Graph Drawing in Three Dimensions

	Symmetry Finding Algorithm
	The Isomorphism Class Tree
	Pyramid Configuration
	Prism Configuration
	Platonic Solids Configuration

	Drawing Algorithm
	Conclusion
	References

