GRIP: Graph dRawing with Intelligent
Placement™*

Pawel Gajer! and Stephen G. Kobourov?

! Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218
2 Department of Computer Science
University of Arizona
Tucson, AZ 85721

Abstract. This paper describes a system for Graph dRawing with Intel-
ligent Placement, GRIP. The system is designed for drawing large graphs
and uses a novel multi-dimensional force-directed method together with
fast energy function minimization. The system allows for drawing graphs
with tens of thousands of vertices in under a minute on a mid-range PC.
To the best of the authors’ knowledge GRIP surpasses the fastest previous
algorithms. However, speed is not achieved at the expense of quality as
the resulting drawings are quite aesthetically pleasing.

1 Introduction

The GRIP system is based on the algorithm of Gajer, Goodrich, and Kobourov [6].
It is written in C++ and OpenGL and uses an adaptive Tcl/Tk interface. Given
an abstract graph, GRIP produces a drawings in two and three dimensions either
directly or by projecting higher dimensional drawings into 2D or 3D space. GRIP
follows a number of force-directed drawing tools [LIBJ457)8] but uses a novel
intelligent placement approach to drawing in higher dimensions. A fast energy
minimization function combined with the use of a simple vertex filtration allows
GRIP to draw graphs with tens of thousands of vertices in under one minute.

An overview of the system and its three main phases is given in Fig. [Il
Starting with a graph G = (V, E), we first create a maximal independent set
(MIS) filtration V : V. =V, D V43 D ... D Vi D 0 of the set V of vertices of
G, so that k = O(logn), and |V}| = 3. A filtration V of V is called a mazimal
independent set filtration if V7 is a maximal independent set of GG, and each V;
is a maximal subset of V;_; so that the graph distance between any pair of its
elements is at least 2¢=! 4 1. The graph distance between a pair of vertices is
defined as the length of the shortest path between them in the graph. Note that
the size of a maximal independent set filtration is log §(G), where 6(G) is the
diameter of the graph. We can ensure that the last set has exactly three elements
by modifying the last one or two sets in the filtration.

* This research partially supported by NSF under Grant CCR-9625289, and ARO
under grant DAAH04-96-1-0013.

J. Marks (Ed.): GD 2000, LNCS 1984, pp. 222228 2001.
© Springer-Verlag Berlin Heidelberg 2001

GRIP: Graph dRawing with Intelligent Placement 223

i=0

——— display G

graph G FILTRATION i INITIAL PLACEMENT |~ ™\ REFINEMENT
Vo Vi,ooo, Vy OF V; ~N OF V;

Fig. 1. An overview of the algorithm. Given a graph G, the algorithm proceeds phases.
The first phase creates a MIS filtration. The second and third phases use the filtration sets
Vi, Vie—1, ..., Vo to repeatedly add more vertices and refine the drawing.

Given a graph G, GRIP produces its drawing in three distinct stages: filtration,
initial placement, and refinement. First, we generate an initial embedding of
V. Since |Vi| = 3 the three vertices can be placed in R™ using their graph
distances. Then, we add the vertices of V;_; that are not in V}, placing them
initially at the positions determined by their graph distances to a subset of the
elements of Vj,. The positions of the vertices in Vj,_; are modified using a force-
directed layout method. This process of adding new vertices and refining their
positions is repeated for Vi_o,..., Vi, Vy. The refined positions of the elements
of V constitute the final layout of the vertices of G. Note that we only draw
vertices of G up to this point. When all the vertices have been placed we draw
the edges of G as straight line segments connecting their endpoints.

2 Building MIS Filtrations

A maximal independent set filtration of a graph G can be obtained by computing
the distances between all pairs of vertices of G. A problem with this strategy is
that the running time of the all-pairs shortest path algorithm is £2(nm) and the
storage complexity is 2(n?), e.g., see [2]. When dealing with graphs with tens
of thousand of vertices, both the running time and the space complexity of the
all-pairs shortest path algorithms pose serious problems.

Our solution is based on the observation that to construct MIS filtration
we do not need the distances between all the pairs of vertices. Moreover, the
information that has been used to construct |V;| is not needed to construct |V;11].
Therefore, we use the following “create then destroy” strategy for construction
of MIS filtrations. Suppose we have already constructed set V;. To create V;1,
we build for each vertex of V; a breadth-first search (BFS) tree up to depth 2¢,
but store in it only elements of V;. Note that this is all we need to build V; ;.

In the process of creating V;;1 we may need to build many BFS trees, but
we destroy them immediately once they have been used, so that by the time
we enter the next phase (of building V1), all memory has been freed. Note
that as ¢ decreases, the number of vertices for which we have to perform a
BFS calculation increases, but at the same time the depth to which we have to
build these BFS trees decreases as well. The storage required for this strategy
is max;),y [bfsai(v, V;)], where |bfsyi(v, Vi) is the number of elements of
V; that belong to the BFS tree of v of depth 2¢. The time complexity for this
strategy in the case of bounded degree graph G is @(ZLO > ey, [bEsai(v)]),
where |bfsy: (v)] is the number of the BFS tree of v of depth 2¢. Clearly, if we

224 P. Gajer and S.G. Kobourov

build a complete BFS tree for each vertex of GG, then the running time and
space complexity of this procedure even in the bounded degree case would be
O(n?). Our tests indicate that the running time and storage cost of the above
MIS filtration construction procedure (in the bounded degree case) is less than
quadratic as we only construct partial BFS trees and destroy them right away.
In all of our experiments, the time spent creating the MIS filtration was less
than 3% of the total running time, see Fig[d(a) and Fig[d(b), respectively.

We store a MIS filtration of a graph of n vertices in an array misF1lt of
size n so that the first |Vi| entries in the misFlt array are the elements of
Vi. The next |Vj_1| entries in the array are the elements of Vj_1, followed by
|Vi—2| entries in the misF1t array of the elements of Vi _o, all the way to V5.
To keep track of where one set ends and another one begins we store the indices
indicating the borders of different level sets of the filtration in a separate array
misBorder of size log §(G). Thus the space complexity for storing a MIS filtration
is n 4 log §(G). The same method can be applied to any filtration.

3 Initial Placement and Refinement of V;

The second and third phase of the algorithm are the placement and refinement
stages, respectively. In the i*" placement stage, the vertices of set V; are intel-
ligently placed in R™. In the i*" refinement stage a local force-directed method
is used to obtain better positions for the vertices of V;. After the placement and
refinement phases for V; have been completed, the process is repeated for V;_q,
Vi_a, all the way to V7.

Consider the general placement case. Suppose the refinement and placement
phases for V; have been completed and we want to start the placement phase for
Vi_1. All the vertices in V; are also in V;_1, since V;_1 D V; as defined by the
construction of the filtration. Thus we are only concerned with the placement of
the vertices in V;_; that are not in V;. The idea behind the intelligent placement
is that every vertex ¢ is placed “close” to its optimal position as determined
by the graph distances from ¢ to several already placed vertices. The intuition
is that if we can place the vertices close to their optimal positions from the
very beginning, then the refinement phases need only a few iterations of a local
force-directed method to reach minimal energy state.

For example, the following “three closest to ¢ vertices” strategy starts by
setting pos[t] to the barycenter (pos[u] 4 pos[v] + pos[w])/3 of u,v, and w, the
three vertices closest to t. This is followed by a force-directed modification of
the position vector of ¢ with the energy function E calculated only at the three
points u, v, w. This makes the procedure very fast, and in our tests it produced
good results, see Fig. 2l More details about the placement algorithm can be
found in [6].

While the refinement is calculated using a force-directed method, it is impor-
tant to note that the forces are calculated locally, see Fig. Bla). For each level
of the filtration V;, we perform rounds(¢) updates of the vertex positions, where
rounds(i) is a scheduling function which can be specified at the beginning of the

GRIP: Graph dRawing with Intelligent Placement 225

e L1 = - = = -

Fig. 2. Drawing of the vertices in the filtration sets. Here V : V;, D V4 D Vo D V3 D V4.
The sizes of the sets are 231, 60, 21, 6, 3, respectively. The process begins with a placement
for V4, followed by V3, etc. Note that edges are drawn only when all the vertices are placed.

execution. Typically, 5 < rounds(i) < 30. At all levels of the filtration except
the last one, the displacement vector disp[v] of v is set to a local Kamada-Kawai
force vector,

Ful)= 3 (Gt sdestangea ~ 1) posli - posle).

. 2
u€EN; (v) (ua U) edgelength

For the last level of the filtration, V; = V, when all the vertices have been placed,
we set the displacement vector to a local Fruchterman-Reingold force vector,

distgn (u,v)?
Frl)= 2 peLengen? (Poslul —posl) +
uwEAd](v) g g

edgeLength?
+ e;() W(POSM — pos(u]),

Here, distgn(u,v) is the Euclidean distance between pos[u] and pos[v], and
distg(u,v) is the graph distance between u and v. In the above equations,
edgelength is the unit edge length, Adj(v) is the set of vertices adjacent to v,
and s is a small scaling factor which is set to 0.05 in our program. Note that for
a vertex v € G the force calculation is performed over a restriction N;(v) of the
vertices of G. Each vertex neighborhood N;(v) contains a constant number of
vertices closest to v which belong to V;. Thus only a constant number of vertices
which are near vertex v are used to refine v’s position. This is why we call this
type of force calculation local.

The local temperature heat[v] of v is a scaling factor of the displacement
vector for vertex v. The algorithm for determining the local temperature is in
Fig.[3(b). To speed up the calculation, we maintain two auxiliary arrays o1dDisp
and 0ldCos, where 0ldDisp[v] is the previous displacement vector for v , and
0ldCos[v] is the previous value of the cosine of the angle between 01dDisp[v] and
disp[v]. When a displacement vector of v is calculated for the first time, heat[v]
is set to a default value edgeLength/6. There are three cases for determining the
local temperature: (i) if either o1dDisp[v] or disp|[v] is a zero vector, then the
value of heat[v] does not change; (ii) if v is oscillating around some stationary
point or if it is moving in the same direction we add to it a factor heat[v] * (14
cos xr x 8); (iii) in all other cases we add a factor of heat[v] * (1 + cos 7).

226 P. Gajer and S.G. Kobourov

REFINEMENT OF V;
repeat rounds(i) times
for each v € V; do

updateLocalTemp(v)
if ||disp[v]|| # 0 and |lo1dDisp[v]|| # O

if i >0 then_> cos[u] = disp[v] * 01dDisp[v]
disp[v] = Fux(v) [[disp[v][| * [o1dDisp(v]]|
else . r=0155=3
disp[v] = Fm(v) if 01dCos[v] * cos[v] > 0 then
heat [v] = updateLoca'lTemp(U) heat[v]+ = (1 + cos[v] * r % 5)
disp[v] = heat[v] - LPM else
laisp[v]]| heat[v]+ = (1 + cos[v] x)

for each v € V; do

pos[v] = pos[v] + disp|v] 01ldCos[v] = cos[v]

Fig. 3. Pseudocode for (a) the refinement phase and (b) the local temperature calculation.

4 Implementation

The GRIP system is written in C++ with OpenGL and uses a flexible Tcl/Tk
interface. The system can generate several typical classes of graphs parametrized
by their number of vertices, e.g. paths, cycles, square meshes, triangular meshes,
and complete graphs. GRIP also contains generators for complete n-ary trees,
random graphs with parametrized density, and knotted triangular and rectan-
gular meshes. Different types of tori, as well as cylinders and Moebius bends can
be generated with parametrized thickness and length. Finally, Sierpinski graphs
in 2 and 3 dimensions (Sierpinski triangles and Sierpinski pyramids, respectively)
are also available. In addition to the set of graphs that GRIP can generate, other
graphs can be read from a file in several standard formats. The running times
for the MIS creation and for the entire drawing process can be seen in Fig lla)
and Fig. [4(b), respectively.

The parameters discussed in this paper can be changed via GRIP’s flexible
interface, thus allowing for experimentation with different scheduling functions,
scaling parameters, filtrations, etc. There are controls for the drawing dimension
and the drawing speed. The drawings produced by default are three dimensional,
interactive, and use color and shading to aid three dimensional perception. For
faster drawings the interactive display can be turned off and only the final dra-
wing is shown. The size and colors of the vertices and edges can also be modified.
Several drawings produced by GRIP are included in Fig. BHIO

References

1. I. Brufl and A. Frick. Fast interactive 3-D graph visualization. In F. J. Brandenburg,
editor, Graph Drawing (Proc. GD ’95), volume 1027 of Lecture Notes Computer
Science, pages 99-110. Springer-Verlag, 1996.

2. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

GRIP: Graph dRawing with Intelligent Placement 227

Cycle ——
Degree 4 Mesh ——
Degree 6 Mesh ——

Running time in seconds

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of vertices. Number of vertices

Fig. 4. (a) The left chart shows the running times for construction of a MIS filtration for
cycles, and meshes of degree 4 and 6. (b) The right chart shows the total running time for
the same graphs.

Fig. 6. Cylinders of 1000, 4000, and 10000 vertices.

3. R. Davidson and D. Harel. Drawing graphics nicely using simulated annealing. ACM
Trans. Graph., 15(4):301-331, 1996.

4. A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for undi-
rected graphs. In R. Tamassia and 1. G. Tollis, editors, Graph Drawing (Proc. GD
’94), LNCS 894, pages 388-403, 1995.

5. T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Softw.
— Pract. Exp., 21(11):1129-1164, 1991.

6. P. Gajer, M. T. Goodrich, and S. G. Kobourov. A multi-dimensional approach
to force-directed layouts of large graphs. In To appear in Proceedings of the 8th
Symposium on Graph Drawing, 2000.

7. D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. Tech-
nical Report MCS99-21, The Weizmann Institute of Science, Rehovot, Israel, 1999.

8. T. Kamada and S. Kawai. Automatic display of network structures for human under-
standing. Technical Report 88-007, Department of Information Science, University
of Tokyo, 1988.

228 P. Gajer and S.G. Kobourov

Fig. 7. Tori of various length and thickness: 1000, 2500, and 10000 drawn in four
dimensions and projected down to three dimensions.

lr1

»

aﬁm

Fig. 10. Sierpinski graphs in 2D and 3D (a) 2D Sierpinski of depth 6 (1095 vertices);
(b) 3D Sierpinski of depth 5 (2050 vertices); (c) 3D Sierpinski of depth 6 (8194 vertices).

	GRIP: Graph dRawing with Intelligent Placement
	Introduction
	Building MIS Filtrations
	Initial Placement and Refinement of V_i
	Implementation
	References

