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Abstract. We report an experience on a practical system for drawing
hypergraphs in the subset standard. The Patate system is based on
the application of a classical force directed method to a dynamic graph,
which is deduced, at a given iteration time, from the hypergraph struc-
ture and particular vertex locations. Different strategies to define the
dynamic underlying graph are presented. We illustrate in particular the
method when the graph is obtained by computing an Euclidean Steiner
tree.

1 Introduction

Hypergraphs can be viewed as an extension of classical graphs in which edges
can represent relationships between more than two vertices. Figure 1 is an ex-
ample of a possible graphical representation of an hypergraph, where inclusion
relationships are represented by curves that enclose node. An interpretation of
the drawing could be that Paul and John are familiar with GUIs, Paul and Chris
with OSs, Alex, Mary and Bob with SEs, while only Mary and Chris know ab-
out DBase. Sadly, only a few papers in the literature studies the drawing of
hypergraphs [4,7,6].

Johnson and Pollak introduced two notions of planarity of hypergraphs, in-
spired by the Venn diagram representations of sets [9], and have given NP-
completeness results in [4]. In the hyperedge-based Venn diagrams and vertex-
based Venn diagrams, hyperedges are represented by faces of a planar graph that
satisfy some connectivity property.

Mäkinen introduced two kinds of hypergraph drawings in [7]. In both cases,
vertices are represented by points in the plane. In the edge standard, an hyperedge
e is represented by connecting the points that represent the vertices that define
e by smooth curve lines. Two vertices belong to the same hyperedge if there is
a smooth curve between the points that represent these vertices. In the subset
standard, an hyperedge is represented by a closed curve that contains exclusively
the points that represent the vertices that define the hyperedge. Figure (2,left)
is an example of drawing of an hypergraph using these two representations. A
method for drawing hypergraphs in the edge standard is given in [6].
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Fig. 1. A simple hypergraph (left) and a higraph (right), drawn with Patate .

Fig. 2. Drawing of a hypergraph in the edge standard (left) and in the subset standard
(right).

Fig. 3. Example of minimum Euclidean spanning tree (left) and Euclidean Steiner tree
(right).

Our Patate system focuses on the representation of hypergraphs in the sub-
set standard. In this representation, the emphasis is on the representation of
hypergraphs as set intersections. This representation is also a step toward the
drawing of higraphs, structures introduced by Harel in [3]. The higraph model
can be viewed as an hypergraph structure in which edges between nodes or hy-
peredges can be added. Patate can already handle drawings for a subset of
higraphs; the edges can be defined between nodes only, and are then represen-
ted by straight lines. Figure (2,right) is an example of such a higraph drawing
obtained with Patate.
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2 The Method

A graph G = (V, E) is defined by a finite set V of vertices and a finite set E of
edges, that is, unordered pairs of vertices. A hypergraph H = (V, E) is defined
by a finite set V of vertices and a finite set E of hyperedges, that is, unordered
non-empty finite sets of vertices. In this paper, we consider simple hypergraphs,
that is hypergraphs that contain hyperedges between at least two elements.

The method implemented in Patate is as follows:

1) Assign random locations to vertices of H
2) For a given number of iterations

a) Construct a graph G from the current positions of the nodes of hypergraph
H, using one of the three methods described below. For every vertex v in
H, there will be a vertex ν(v) in G.

b) Set the locations of the vertices in G to be the locations of the associated
vertices in H according to ν.

c) Apply a force directed drawing algorithm to compute new locations for
the nodes in G.

d) Set the locations of the vertices in H to be the locations of the associated
vertices in G.

3) For each hyperedge e = {v1, . . . , vk} in H, build a curve that is obtained as
the contour of the union of the edges in G that have both ends in e; the union
of two edges is defined by the union of the drawing of the edge as thick round
edges. In practice, we approximate the thick edges by polygons.

4) An optional step (convex) is to compute, for each hyperedge e, the convex
hull ch(e) of the curve associated with e. The curve of e is set to be the convex
hull ch(e) if only vertices that define e are included in ch(e).

We assume that the reader is familiar with minimum Euclidean spanning
trees and Euclidean Steiner trees (see [5]). Figure 3 is an example of such trees
on a particular set of points. Given an hypergraph H = (V, E), the underlying
graph G, defined in the description of the Patate method above, can be build
using one of the three following methods, starting with an empty graph G:

(dummy) For each vertex v in H, a vertex ν(v) is added in G and for each
hyperedge e in H, a vertex ν(e) is added in G.
Then, for each hyperedge e = {v1, . . . , vk}, edges {ν(e), ν(v1)},
. . . , {ν(e), ν(vk)} are added in G. The location of ν(e) is set to be
the barycenter of v1, . . . , vk.

(span-tree) For each vertex v in H, a vertex ν(v) is added in G. For each
hyperedge e in H, a minimum Euclidean spanning tree that covers
the vertices that define e is computed; the edges of the spanning
tree are added to G.

(Steiner tree) For each vertex v in H, a vertex ν(v) is added in G. For each
hyperedge e in H, a minimum Steiner tree whose leaves are the
vertices that define e is computed. A vertex is added to G for
every steiner point, and the edges of the tree are added to G.
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Fig. 4. Comparison between three different methods (dummy, span-tree, Steiner tree)
to compute the underlying graph during the iteration steps, represented with or without
the optional (convex) step.
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Fig. 5. Evolution of the solution at each iteration step of the Patate method, when
the Steiner and convex options are used.
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Fig. 6. Drawing of an hypergraph with a long hyperedge (left), and an hypergraph
with 20 nodes, hyperedges of length at most 5, and vertices shared between at most 3
hyperedges (right).

3 Implementation

The Patate method is implemented in C++ and uses the LEDA library [8]
for the definition of the graph structures, computation of spanning trees and
convex hulls. The geosteiner system [10] is used to compute Steiner trees. A
modification of the force-directed algorithm by Fruchterman and Reingold [2,1]
is used to compute the locations of the underlying graph G. The output of the
program is a postscript file that represents the drawing of the hypergraph given
as input.

Figure 4 represents drawings obtained using this three methods, and with
or without the optional (convex) step. Figure 5 represents the evolution of the
solution at each iteration step of the method, when the Steiner and convex
options are used.

4 Conclusion

The method gives reasonable results for small hypergraphs, but can fail miserably
when a vertex belongs to a high number of hyperedges (Fig. 7). The Steiner tree
option can be viewed as a compromise between the (span-tree) and (dummy)
options, and seems to produce the best results in practice. More experiments are
needed: we did not investigate whether or not the use of Steiner trees reduces the
number of iterations required to obtain a reasonable drawing. Other methods,
such as the separation of two sets of points by curves with minimum perimeter,
could be used instead of the simple (convex) option.
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Fig. 7. Drawing of the Erdös-hypergraph from [4], using (span-tree) and (convex) op-
tions.
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