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Abstract. The method of stochastic discrimination (SD) introduced by
Kleinberg ([6l7])is a new method in pattern recognition. It works by pro-
ducing weak classifiers and then combining them via the Central Limit
Theorem to form a strong classifier. SD is overtraining-resistant, has a
high convergence rate, and can work quite well in practice. However,
some strict assumptions involved in SD and the difficulties in understan-
ding SD have limited its practical use. In this paper, we present a simple
algorithm of SD for two-class pattern recognition. We illustrate the al-
gorithm by applications in classifying the feature vectors from some real
and simulated data sets. The experimental results show that SD is fast,
effective, and applicable.

1 Introduction

Suppose that certain objects are to be classified as coming from one of two
classes, say class 1 and class 2. A fixed number of measurements made on each
object form a feature vector ¢. All the feature vectors constitute a finite feature
space F C R”. We can classify an object after observing its feature vector ¢ with
the aid of the classification rule of SD and a training set TR = {T' Ry, TR»},
where T'R; is a given random sample from class i. On an intuitive level, the idea
of SD is similar to how people learn: People learn new knowledge and strategies
step by step. After years of learning, the knowledge and strategies (or skills)
that they have accumulated will enable them to tackle complicated tasks. On a
precise mathematical level, the procedure of SD is outlined as follows.

Step 1. Use the training set and rectangular regions to produce t weak clas-
sifiers S, @) S where ¢ is a natural number. See Section 2.

Step 2. For any given feature vector ¢ from F, calculate the average

X(q,SM) 4+ X(q,8?) +... 4+ X(¢q,5M)

Y(q,S") = ; )

(1)

where X (+,-) is a base random variable defined later in Section 3.
Step 3. Set a level ¢ classification rule as follows: if Y'(q, S%) > 1/2, classify ¢
into class 1; otherwise classify ¢ into class 2. See Section 4.
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The above procedure follows the idea in [7]. We will study these steps in
Sections 2-4.

SD is characterized by the properties of overtraining-resistance, a high con-
vergence rate, and a low misclassification error rate (see [2] and [7]). This will
be shown by examples in Section 5. The underlying ideas behind SD were in-
troduced in [6]. Since then, a fair amount of research has been carried out on
this method, and on variations of its implementation. See, for example, [1], [2],
Bl, El, [7] and [8]. And the results have convincingly shown that stochastic
discrimination is a promising area in pattern recognition.

2 How to Produce Weak Classifiers

We produce weak classifiers through resampling. In fact, a weak classifier is s
finite union of rectangular regions which satisfies some coverage condition. In
this context, a rectangular region in R’ is a region of the form

{(z1,29,...,2p) | a; <z; <b;, fori=1,2,...,p}, (2)

where a; and b; are real numbers for ¢ = 1,2,...,p. Let ® be an appropriate
rectangular region in R° which contains F. We will utilize those rectangular
regions in whose “width” b; — a; along the x;-axis is at least p times the
corresponding width of R, where 0 < p < 1 is a fixed constant. The coverage
condition is related to a ratio variable r. For any subsets 77 and T3 of F, let
r(T1,T) denote the ratio of the number of common feature vectors in 77 and T5
and the number of feature vectors in Ts. For example, if Ty contains 5 feature
vectors and Ty and T3 have 3 feature vectors in common, then (T7,T3) = 3/5 =
0.6. It is seen that r(T,T») represents the coverage of the points in T5 by T7.

Now we can define a weak classifier. Roughly speaking, a weak classifier is a
finite union of rectangular regions such that the coverage of the points in T R
by the union and the coverage of the points in T'R, by the union are different.
Strictly speaking, let 3 be a fixed real numbers with 0 < § < 1, then an S is
said to be a weak classifier if S is a union of at most x rectangular regions in R"
which satisfies |r(S,TRy)—r(S,TR2)| > . The condition r(S,TRy) # r(STRz2)
simply states that S can actually be used as a (very weak) classifier. To illustrate
this, consider an S, which contains 40 sample points from T'R; and 60 from
TRy. Then r(S,TR;y) = 40/ny and (S, TRz) = 60/ny. Suppose 40/n, > 60/n,.
That is, the coverage of the points in T'R; by S is greater than the coverage of
the points in TRy by S. Let S¢ denote the complement of S in F'. Then since
1—-40/n, < 1—60/n,, one sees that the coverage of the points in TRy by S¢ is
greater than the coverage of the points in TR; by S¢. Thus intuitively we could
use S to classify F' by deciding that any sample point ¢ from S belongs to class
1 and any other sample point g from S¢ belongs to class 2. This of course gives
a (very) weak classifier.
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3 Base Random Variables

To connect weak classifiers with feature vectors, we need a base random variable
X (-, ). Given a feature vector ¢ and a weak classifier S, the value of X is defined
to be

_ 1s(g) =r(S,TR,)
X(g,9) = r(S:gTRl)—r(S,TRQ) ’ (3)

where 15(q) = 1 if ¢ is contained in S and 0 otherwise. X(-,-) in (@) can be
understood as the standardized version of 1g(gq), which gives the simplest way
to connect the weak classifiers S and feature vectors q.

4 Classification Rule

Let St = (S(l), S@ S(t)) be a random sample of ¢t weak classifiers. For any
q € F, define Y (q,S?) as stated in (). Under some mild conditions, the Central
Limit Theorem can be used to show the following fact. If ¢ is large enough then
there is a high probability that Y (g, S?) is close to 1 for any ¢ from TR; and
close to 0 for any ¢ from TRy (see Theorem 1 in [2].). Hence one can define the
following

Level ¢t Stochastic Discriminant Classification Rule: For any ¢ € F, if
Y (q,S%) > 1/2, classify ¢ into class 1, otherwise classify ¢ into class 2.

5 Experimental Analysis

In this section, we report the experimental results on classifying feature vectors
from several problems. The emphasis will be placed on normal populations. The
comparison of SD with non-SD methods is also given.

Ezample 1 (Two normal populations with equal covariance matriz ). Consider
two distributions N(p,, I) (class 1) and N(u,, I) (class 2), where I is the
2 x 2 identity matrix, pq is the vector (1.5,0)’, and p, is the vector (0,0)’.
Both of the prior class probabilities w1 (for class 1) and mo (for class 2) are
equal to 1/2. The training set contains 400 points from each class, and test set
contains 1000 points from each class. Let R; be the smallest rectangular region
which contains both training and test data. Suppose A > 1. Let R denote the
rectangular region similar to ®; whose center is the same as that of R; and
whose “width” along the x;-axis is A times the corresponding width of $;. We
regard R, as our R defined in Sect. 2. For the resampling process, A =1, p = 0.3,
B = 0.52, and k¥ = 5. The test error from SD is below 23.55% when the level
t > 4700. See Fig. 1 for the performance of SD. From the figure, we see that
both training and test errors start to decrease at the beginning and then quickly
level off, forming two “parallel curves”, as more weak classifiers are added. This
phenomenon is common for SD classification procedures. As a comparison, the
linear discriminant rule yields a test error 23.15%.
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Fig.1. Training and test errors for the classification with two normal distributions
having the same covariance matrix. The training set contains 400 points from each
class, and the test set contains 1000 points from each class.

Ezample 2 (Classifying Alaskan and Canadian salmon). Here we will show the
performance of SD on the salmon dataset from Johnson and Wichern ([5]). The
original data contain the information of gender, diameter of rings for the first-
year freshwater growth, and diameter of rings for the first-year marine growth
for 50 Alaskan salmon and 50 Canadian salmon. We treat both freshwater and
marine growth ring diameters as the features of salmon.

Johnson and Wichern (J5]) note that the data appears to satisfy the assump-
tion of bivariate normal distributions, but the covariance matrices may differ.
Thus the usual quadratic classification rule may be used to classify the salmon.
Using the quadratic rule and equal prior probabilities, the error rate from a
10-fold cross-validation is then 8%.

To apply SD, we set (A, p,3,k) = (1.005,0.1,0.5,5). From the same data
sets as those used with the quadratic rule, the 10-fold CV error rate from SD is
virtually 9%. See Fig. 2 for the details.

Other comparisons of SD with non-SD methods are also available. For ex-
ample, [2] considers the classification for the Pima Indians diabetes dataset de-
scribed in [9]. The test error from SD is actually identical to the best result
in [9]. Section 3 of [7] reports one experiment on handwritten digit recognition
and another experiment on classifying boundary types in DNA sequences. In the
first experiment, SD is compared with a nearest neighbor algorithm, a k-nearest
neighbor algorithm, and a neural network. In the second experiment, SD is com-
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Fig.2. The averaged training and test errors for classifying Alaskan and Canadian
salmon. The errors are based on a 10-fold cross-validation procedure.

pared with more than 20 different methods. In both cases comparisons show that
SD yields the best test set performance.

Notes. When applying SD to a dataset, we need the values of A, p, k, and
B. From Sect. 2, we know that these 4 parameters together determine weak
classifiers. Since the quantitative relationship among these parameters is not
available, we can apply SD to the training set alone to find out the combination
of these parameters with which the misclassification rate for TR is minimum.
Thus, we propose the following two—step procedure. First, we run SD over TR
by stepping through the range of these parameters and find out the combina-
tions corresponding to the best achieved TR performance. Since SD has an
exponential convergence rate ([2]), this step is practical. In fact, usually we can
obtain several satisfactory combinations and we choose the one with which SD
runs fastest. Then, we apply SD to both training and test sets with the selected
parameters.
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