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Abstract. In this work, fast approximate nearest neighbours search al-
gorithms are shown to provide high accuracies, similar to those of exact
nearest neighbour search, at a fraction of the computational cost in an
OCR task. Recent studies [26,15] have shown the power of k-nearest neig-
hbour classifiers (k-nn) using large databases, for character recognition.
In those works, the error rate is found to decrease consistently as the size
of the database increases. Unfortunately, a large database implies large
search times if an exhaustive search algorithm is used. This is often cited
as a major problem that limits the practical value of the k-nearest neig-
hbours classification method. The error rates and search times presented
in this paper prove, however, that k-nn can be a practical technique for
a character recognition task.
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1 Introduction

Statistical non-parametric methods, such as k-nearest neighbours classifiers, are
receiving renewed attention in the latter years, since very good results are being
reported on many pattern recognition tasks (e.g.[28],[3]). Their theoretical pro-
perties, already known for at least three decades, are also being revisited and
restated under milder assumptions [21], [9].

One of the basic requirements for these methods to obtain good performan-
ces, however, is the access to a very large database of labeled prototypes. In
some tasks, like handwritten character recognition, collecting a large number
of examples is not as hard as in other applications, but searching through the
whole database to find the nearest objects to a test image is time-consuming,
and has to be done for every character in a document. This has been a recurring
argument against the use of k-nn for this task, since a character recognizer is
supposed to carry out many classifications per second to on a moderately po-
werful machine to be useful and competitive. Additionally, the whole database
has to be stored in main memory to perform the search efficiently, since access
to secondary storage would penalize even further the search time.
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The fast increase in the memory capacity of recent computers alleviates the
space occupation problem, making possible the storage of up to tens of millions
of prototypes in a typical personal computer. The speed problems, on the other
hand, can be approached from two (potentially complementary) points of view:
trying to reduce the number of prototypes without degrading the classification
power, or using a fast nearest neighbours search algorithm.

The first approach has been widely studied in the literature, with techniques
like editing [29], [8], condensing [16], LVQ [19], DSM [12], and their multiple
variations being the better known representatives. These methods, have shown
good results, equaling or sometimes improving the classification rates of the k-nn
rule. Their power resides in the smoother discrimination surfaces they yield, by
eliminating not only the redundant prototypes, but also the dubious ones that
appear to “get into other classes’ regions” and give rise to highly intricate sepa-
ration surfaces. Smooth discrimination surfaces mean less risk of over-learning
(good performance on the training set, or on a given validation set being used
to guide the process or set the parameters, but poorer results on an unseen test
set). In a pure k-nn classifier with a large database, this feature is provided by
an adequate choice of k, which usually has to be made larger as the size of the
database grows.

The second approach, adopted in this work, has also been extensively studied
in the literature. A number of methods exist to reduce the cost of an exhaustive
search of the prototypes set to find the k nearest neighbours to a test point. A
brief review of these techniques is presented in the next section.

2 Fast Nearest Neighbour Search Methods

The nearest neighbour search problem can be formulated in several distinct do-
mains: from Euclidean vector spaces to (pseudo)metric spaces. Most algorithms
intended for vector spaces are directly based on the construction of a data struc-
ture known as kd-tree [10], [4], [18]. A kd-tree is a binary tree where each node
represents a region in a k-dimensional space. Each internal node also contains
a hyperplane (a linear subspace of dimension k-1) dividing the region into two
disjoint sub-regions, each inherited by one of its sons. Most of the trees used in
the context of our problem divide the regions according to the points that lay
in them. This way, the hierarchical partition of the space can either be carried
out to the last consequences to obtain, in the leaves, regions with a single point
in them, or can be halted in a previous level so as each leaf node holds b points
in its region. In [27], a very illustrative general exposition of the methods based
on kd-trees is presented, along with a general scheme that allows the reader to
clearly identify the different existing variants and choose one (or a combination
of them) according to the peculiarities of the problem. In [31]can be found a
thorough study of the cost of many kd-tree algorithms for different sample sizes,
dimensionalities and values of b.

Other algorithms, as the one proposed by Fukunaga and Narendra [11], per-
form a hierarchical partition of the space resorting to concepts different to those
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used in the kd-trees, for example, by means of a hierarchical clustering of the
data. The search in the trees obtained by these methods is performed apply-
ing similar concepts to the ones discussed for the classical kd-trees. Other data
structures intended to improve on the kd-trees are for example the VP-trees [30]
and the Geometric Near-neighbour Access Trees (GNATs) [7]. The methods ci-
ted have been developed by researchers working in the fields of Algorithmics,
Data Structures, Computational Geometry, Pattern Recognition, etc., and are
oriented towards main memory storage of the data structure, but a large num-
ber of disk-oriented data structures have also been devised in the field of Spatial
Databases, Geometric Queries in Databases, Image Search and Retrieval, etc.,
among them the K-D-B-Trees [25], the R-trees [14], R*-trees [2], X-trees [5], etc.
Unfortunately, methods coming from these not-so-distant fields have not been
compared or combined often.

A problem closely related to the search in a set of prototypes of the nearest
neighbour of a point is the search of a subset with the k nearest neighbours, for a
given constant k. In classification applications, the k Nearest Neighbours Rule is
a classical method which offers consistently good results, ease of use and certain
theoretical properties related to the expected error. The extension of most of
the referenced algorithms to this variation of the problem is simple, with a cost
equivalent or inferior to k times the cost of the original algorithm.

3 Approximate Nearest Neighbour Search

In many cases, an absolute guarantee of finding the real nearest neighbour of
the test point is not necessary. In this sense, a number of algorithms of appro-
ximate nearest neighbour search have been proposed. These methods can also
be regarded as sub-optimal algorithms for the original problem of exact nearest
neighbour search [6], [22], [1], [23], [17], [20].

But, why seek a suboptimal solution if so many sub-linear exact nearest neig-
hbour search algorithms exist? The answer to this question comes from practical
issues. For instance, the average costs of the most popular exact algorithms based
on search trees are analysed in [27]. According to this author, it is not correct to
assume that these algorithms achieve logarithmic or lower average costs in many
practical cases. That assumption is valid for low dimensionalities, but when the
number of components of the points gets larger, the number of points necessary
to keep the average cost in the same terms is often extremely big.

In this work, two different approximate nearest neighbour algorithms have
been tested. The first one is based on the classical kd-tree method. In a kd-tree,
the search of the nearest neighbour of a test point is performed starting from the
root, which represents the whole space, and choosing at each node the sub-tree
that represents the region of the space containing the test point. When a leaf
is reached, an exhaustive search of the b prototypes residing in the associated
region is performed. Unfortunately, the process is not complete at this point. In
that case, the cost involved in the search would be logarithmic with the number
of points and the technique would be definitive and extremely useful. However, as
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noted before, it is perfectly possible that among the regions defined by the initial
partition, the one containing the test point be not the one containing the nearest
prototype. It is easy to determine if this can happen in a given configuration, in
which case the algorithm backtracks as many times as necessary until it is sure
to have checked all the regions that can hold a prototype nearer to the test point
than the nearest one in the original region. The resulting procedure can be seen
as a Branch-and-Bound algorithm.

If a guaranteed exact solution is not needed, the backtracking process can be
aborted as soon as a certain criterion is met by the current best solution. In [1],
the concept of (1 + ε)-approximate nearest neighbour query is introduced, along
with a new data structure, the BBD-tree. A point p is a (1 + ε)-approximate
nearest neighbour of q if the distance from p to q is less than 1 + ε times the
distance from p to its nearest neighbour. One of the splitting rules proposed for
the BBD-tree, and the algorithm used to perform the (1+ε)-approximate nearest
neighbour queries, based on a priority search scheme, have been used on con-
ventional kd-trees in the experiments, ran using the implementation provided by
D.M. Mount and S. Arya, available from http:// www.cs.umd.edu/˜mount/ANN.
The parameters used were the ones by default, i.e. sliding midpoint splitting and
bucket size of 1 point.

The second approximate nearest neighbour search algorithm tested is ba-
sed on The Extended General Spacefilling Curves Heuristic [24]. The method
works by mapping several times each prototype (an n-dimensional point) into
the one dimensional Real Line through the application of a Spacefilling Map-
ping. Each mapping is preceded by a different set of rotations, normalization
and transformations The unidimensional values that correspond to each map-
ping (sub-model) are sorted and stored into a vector, inserted into a b-tree or
inserted into an indexed table. When a test point p is presented to the system,
it is mapped again into the Real Line with a different transformation for each
of the r submodels. The b nearest neighbors of the unidimensional value in the
Real Line, for each sub-model, can be readily found using a conventional search
in the b-tree, in O(log N + b). The union of the r sets of b neighbours obtained
from the r submodels produces a set (of size ≤ rb, typically much lower than that
upper bound) which will be exhaustively searched to find the nearest neighbour
of p in the original multidimensional space. The constant b can be considered
loosely related (and intentionally homonym) to the number of prototypes that
is assigned to each leaf node in the models where a kd-tree does not partition
the space completely.

4 Databases Used

The well-known NIST Special Databases 3 and 7 have been used in all the
experiments. These databases of isolated handwritten characters, composed of
lower-case, upper-case letters, and digits, were used as training and test sets in
the First Census Optical Character Recognition Systems Conference, sponsored
in 1992 by the American National Institute of Standards and Technology (NIST).
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The purpose of that event was to determine the sate of the art in off-line hand-
written character recognition, and twenty nine participants from North America
and Europe took part in it. A training database (SD3) consisting of 223,125
handwritten digits, 45,313 lower case letters and 44951 upper-case letters, with
128x128 binary pixels images, segmented and labelled by hand, was delivered.
Twenty days later, a test database (TD1, known today as SD7) composed of
59,000 digits, 24,000 lower case letters and 24,000 upper case letters was sent to
the participants, who had to return the results in the next 15 days.

The conference participants and many researchers thereafter have used SD3
and SD7 to test character recognition methods. An important conclusion obtai-
ned from that experience is that SD7 is significantly harder than SD3 for digits
and at least very different, if not harder, for upper and lower case letters. In fact,
SD3 is often split into a training and a test set, and SD7 is taken as a second test
set. In those cases, SD7 is sometimes referred to as “hard test” since its error
rates are considerably larger. The reasons given for that behaviour are related
to the different ways in which SD3 and SD7 were obtained.

Although both databases were acquired by segmenting the characters filled
out in boxes on forms, the forms for SD3 were completed by 2100 permanent
Census field workers, who were probably very motivated and conscious of the
importance of legible writing in the processing of large amounts of forms. SD7, on
the other hand, was acquired from 500 high school students who were forced to
fill out the forms in class. Additionally, SD7 forms were segmented by a different
person than SD3 forms.

Some of the participants in the conference used exclusively SD3 to train, but
others used proprietary databases. Among the first, the best recognition results
at zero-rejection-rate were 96.84% for digits, 96.26% for upper-case letters, and
87.26% for lower-case letters. The methods used in the best system for digits
and in most of the best placed systems were based in the k-nearest neighbours
rule.

In [13], SD3 was used to compare several classifiers on handwritten digits,
namely Multilayer Perceptrons, Radial Basis Function Networks, Gaussian Pa-
rametric Classifiers, and k-Nearest Neighbours methods. 7480 digits randomly
selected among the first 250 writers were used as training and 23140 digits ex-
tracted from the second 250 writers constituted the test set. The best results
were again from the k-nearest neighbours methods. In [15], a perturbation me-
thod using neural networks is proposed, achieving an excellent 97.1% result on
the SD7 digits hard test. The idea of perturbating (distorting) the characters
has been also used in the experiments of this work.

5 Experiments

The preprocessing and feature extraction methods employed were very simple.
In the first place, the character images were sub-sampled from their original
128x128 binary pixels into 14x14 gray value representations by first computing
the minimum inclusion box of each character, keeping the original aspect ra-
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tio, and then accumulating into each of the 14x14 divisions the area occupied
by black pixels to obtain a continuous value between 0 and 1. Principal Com-
ponents Analysis (or Karhunen-Loéve Transform) was then performed on the
image representations to reduce its dimensionality to 45. The reduced resolution
and final dimensionality values were chosen as a good compromise for all the
types of characters tested after extensive experimentation.

Usual slant normalization techniques were not found to improve the results,
but the insertion of artificially slanted images to the training set produced sig-
nificant improvements. The slant was applied to the original binary images and
consisted on right or left-shifting each row an integer number of positions. The
central row was never shifted, and the amount of shift increased linearly from
there to the top and bottom rows, respectively. The new pixels entering the area
after a shift were set to white. Morphological erosions and dilations on the ori-
ginal images were also introduced in the database as a preliminary test to find
out if adding distorted versions of the training data can be useful. The results
of these tests are presented later in this section.

A first set of experiments were performed using the first 200,193 digits from
SD3 as a training set and the remaining 22,903 digits as test set (no writer
was split by this setting). The results for the Spacefilling Curves model (SPFC)
with one of the best combinations of r (number of submodels) and b (number
of neighbours on the Real Line), namely r=15 and b=80, are shown in Table
1. With the same training and test sets, the kd-tree model performed better for
a range of values of ε, as can also be seen in Table 1. These results are at zero
rejection rate, for a number of neighbours k=4, which gave the best results in all
the tests. In our experience, the SPFC method outperforms kd-trees only when
the data points follow uniform distributions, which is not the case for most real
pattern recognition tasks.

Table 1. Results of handwritten digit recognition with a partition of the NIST SD3
database for training and test. CPU times in a Pentium II - 450Mhz machine are shown.

Method and Setting Recog. Rate (%) Search Time (ms/char)
SPFC 99.09 6.44

kd-tree ε = 0.5 99.21 12.66
kd-tree ε = 1.5 99.21 2.40
kd-tree ε = 3.0 99.10 0.65

According to these first results, the rest of the experiments were focused on
the kd-tree models. Similar tests with the first 38,678 upper-case letters from
SD3 as training and the remaining 6,273 as test were performed, along with
tests using the first 38976 lower-case letters for training and the remaining 6,337
for test. The results of these experiments are summarized in Table 2. In this
case, the best numbers of neighbours were k=4 and k=6 respectively.
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Table 2. Results of upper and lower-case letters recognition with partitions of the
NIST SD3 database for training and test. CPU times are in ms/character in a Pentium
II - 450Mhz machine.

Upper-case letters (k=4) Lower-case letters (k=6)
ε Recog. Rate (%) Search Time ε Recog. Rate (%) Search Time

0.0 94.64 20.99 0.0 89.81 20.64
0.5 94.64 8.05 0.5 89.81 8.12
1.5 94.64 1.87 1.5 89.74 1.86
3.0 94.28 0.57 3.0 89.49 0.54

To obtain a quantitative indication of the improvements that can be expected
from training sets of increasing size, a series of experiments was conducted with
training sets from 20,089 to 200,193 digits. The results and recognition speeds
are shown in Figure 1. The throughputs are measured on a Pentium II - 450
Mhz machine running UNIX (Linux 2.2.9) and do not include the preprocessing
time of the test character.

Given the slow increase of the search times incurred when the database grows,
an interesting approach to improve the accuracy, keeping at the same time high
recognition speeds, is to insert new prototypes into the training set. Of course,
making larger the original database is an evident way to do it, but the ma-
nual or semi-automated segmentation and labeling procedures needed to build
a good, large database are very time-consuming. Therefore, a possible approach
to exploit the information of a given database as much as possible is to per-
form controlled deformations on the characters to insert them into a new larger
training set. Similar approaches based on deformations of the data have been
proposed in [15] with excellent results. Here, we propose as a faster and cleaner
option to include the distorted characters in the training set instead of distorting
the test character in several ways and carrying out the classification of each de-
formed pattern. We have tested this scheme using slanted versions of the original
characters, as explained at the beginning of this section. The recognition rate
using 4 slant angles to obtain a training set of 1,000,965 characters (including
the 200,193 original ones) improved to 99.43%, from 99.21%, thus cutting the
error rate by more than one fourth, in the test on SD3 digits, with k=4 and
ε = 1.5. The search time increased from 2.4 ms/char. to 4.5 ms/char.

All the results presented have been obtained using only SD3. The same expe-
riments have been also performed on SD7, taking the whole SD3 as training set.
In Table 3, the results for both databases are summarized. A last experiment was
conducted to test if other kinds of deformations could increase the recognition
rates. Two additional sets of images obtained by eroding and dilating by one pi-
xel the original (128x128) digit images were appended to the training set (which
was then 4+2=6 times larger than the original one). The results for the “easy
test” did not improve, and in the “hard test” the recognition rate increased by
0.31%, reaching 96.59%.
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Fig. 1. Recognition rate at zero percent rejection (left), and number of searches per
second (right) for two different values of k, and increasing training set sizes.

Table 3. Summary of recognition rates of digits and upper-case letters, with partitions
of the NIST SD3 database (“easy test”), and with the whole SD3 for training and SD7
for test (“hard test”). In some experiments the training set has been augmented with
4 slanted versions of each character. The parameters used were k=4 and ε = 1.5.

Training set / Test set Rec. rate digits (%) Rec. rate uppers. (%)
SD3 / SD3 (easy test) 99.21 94.64

SD3+slanted / SD3 (easy test) 99.43 95.78
SD3 / SD7 (hard test) 95.16 89.43

SD3+slanted / SD7 (hard test) 96.28 92.34

6 Conclusions

The experimental results obtained suggest that fast approximate k-nearest neig-
hbours search can be a practical approach to handwritten optical character reco-
gnition. Previous results [26] indicating that the error rate is more than halved
each time the database size is increased tenfold have been confirmed, and preli-
minary work on the idea of inserting distorted characters into the database has
been shown to improve significantly the accuracy with moderate increases of the
search times.

Obviously, many potentially useful distortions are possible, and there is a
practical limit on the number of prototypes in the database. Therefore a method
to reduce its size without compromising the results should be found. Condensing
methods are clear candidates (see section 1), and a simple way to reduce the
number of distorted characters entering the database could be to test each one
before inserting it, and discard points that do not convey discrimination power
(those with k’ neighbours of the same class, for example). Keeping all the original
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prototypes, and inserting only artificial characters meeting a certain criterion
seems a safe and efficient tradeoff, which we plan to test in the immediate future.
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